Advanced Applications and Process Automation

Shawn St. Germain Idaho National Laboratory

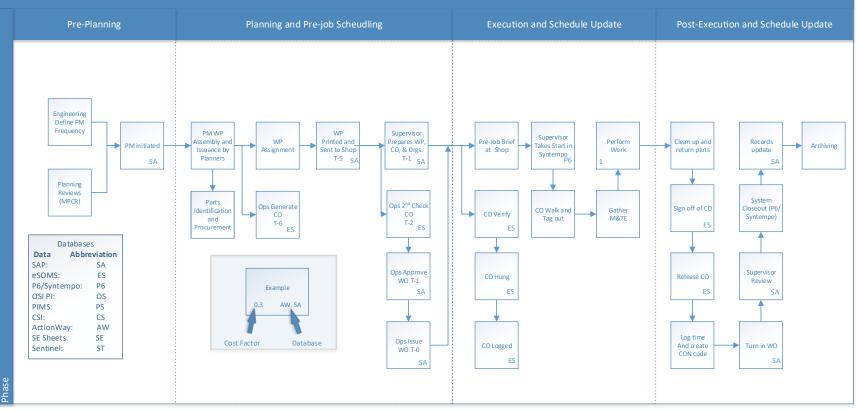
dov

Idaho National

Laboratory

FY 2019 Work Packages

Instrumentation and Control Infrastructure Modernization

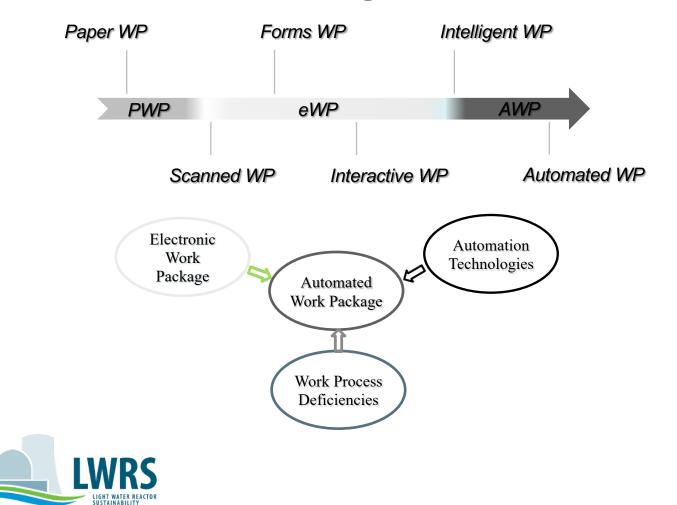

- Identify and resolve technical challenges associated with modernizing I&C infrastructure (new communication protocols, system interfacing, V&V of digital replacements, etc.)
- Digital Architecture for an Automated Plant
 - Data integration to support advanced work processes and plant automation (work management, procurement, scheduling, corrective action, etc.)
- Automation of the Work Process
 - New technologies to replace human actions (drones, cameras)
- Outage Risk Management Improvement
 - Technologies to automatically detect unintended system interactions directed by procedures

Identifying processes and value for automation

PM-Work Process Flow

Digital Architecture

- Challenges:
 - Integration of data sources:
 - Readiness of data for integration
 - Coupling issues
 - Common information model
 - Developing the necessary infrastructure:
 - Data management requirements
 - Data infrastructure development decision making


Digital Architecture

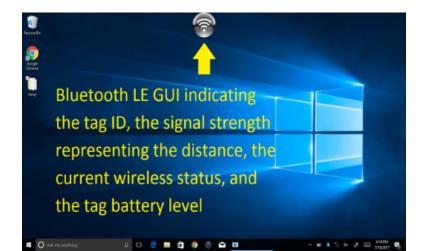
- Plans:
 - Integration of data sources:
 - Data mining methods.
 - Automated data mapping methods.
 - Requirements for a common information model.
 - Developing the necessary infrastructure:
 - Nuclear data sources specific data estimating tools.
 - Data infrastructure costing tool.

Automated Work Packages

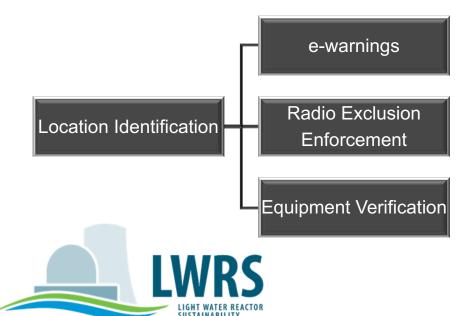
Automated Work Packages- Technologies

- Survey of automation technologies:
 - Applications
 - Cost saving
 - Maturity/readiness

Augmented Reality x	Mobile equipment evaluation tool	Video recording
Bar code	Motion recognition	Video monitoring
Drones	Plant data integration	Virtual Reality
Electronic tags	Radio frequency Identification	Wi-Fi positing
Electronic work package	Smart equipment	Wireless actuators
GPS	Smart tools	Wireless beacons
Image anomaly detection	Smart scheduling	Wireless networks
Image information extraction	Spatial mapping	Wireless sensors
Image objects recognition	Three dimensional animation	Work data mining
Interactive audio	Three dimensional printing	Work risk models
Mobile devices	Video communication tools	_



Technologies to support AWPs - Bluetooth



Technologies to support AWPs - Bluetooth

Bluetooth Low Energy Beacons

- Very compact, light, and easily attachable to walls and surfaces.
- Detected by any Bluetooth enabled device.
- Very low energy consumption.
- Inexpensive (tens of United States dollars).
- Tunable signal strength (inches to tens of feet's)

Technologies to support AWPs - RFID

Ultra High Frequency Radio Frequency Identification (*UHF RFID*)

- Passively powered tags.
- Various forms and sizes of tags.
- Various types of readers power method and antennas connection.
- Low-cost technology .

 Tracking MTE
 Verification of proper MTE use by the craft

 Accountability in foreign materials exclusions zones (FMEZ)

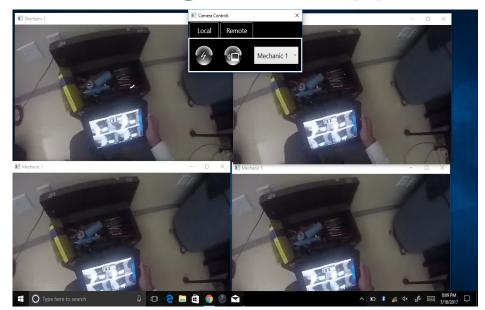
 Removal of contaminated or expensive MTE

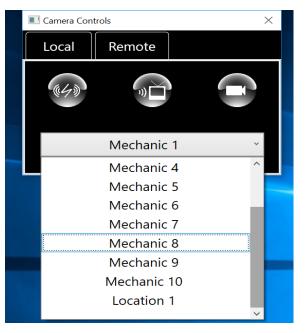
 Inventory of outage

containers

RFID utilization and evaluation







Technologies to support AWPs - Cameras

Technologies to support AWPs - Cameras

- Automation of gauges reading logging to enable a new source of data stream. Main features:
 - Using 360 cameras (low resolution)
 - At oblique angles
 - Mobile and fixed cameras

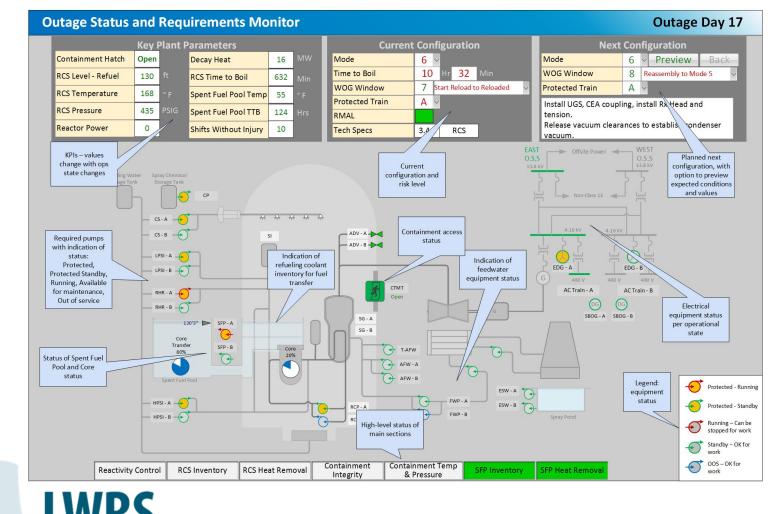
Computer Vision to monitor process bottlenecks

Controls	s	Shows the ID,	verage it Time
Begin	Quit	location, and waiting time of a person	$\overline{\mathbf{P}}$
Alert Time: 30	mins	37	
Alarm Time: 60	mins	ID # time Total ID # time	ie IPI
Station #2			
Alert Time: 45	mins		
Alarm Time: 80	mins		
Personnel Alert Time: 15	mins	Use proximity analysis to identify teams and detect anomaly team behaviors	
Alarm Time: 35	mins	of each station a the overall RPI	and
Radiation Protection Island Alert Time: 150	mins		
Alarm Time: 250	mins		

Technologies to support AWPs - Drones

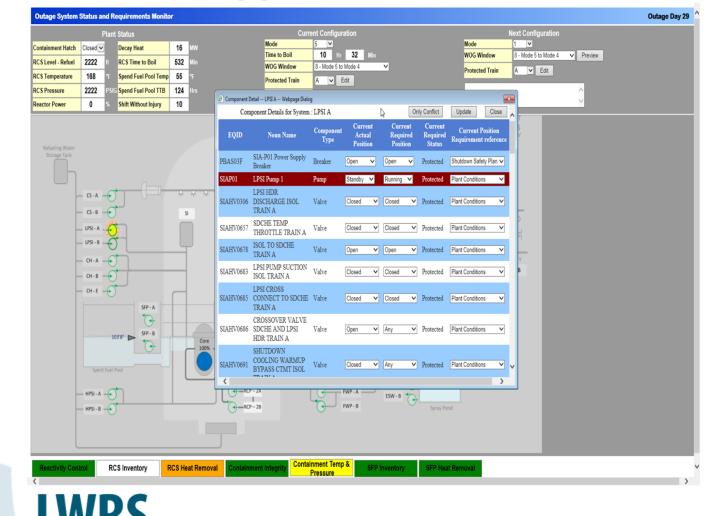
- Automation of manual inspection tasks using drones:
 - Inspections
 - Field actions
 - Material transport
 - Radiation surveys

Images obtained from Stock.Adobe


Outage Risk Management Improvement (ORMI) Project Scope

- Improve real-time plant risk management and configuration control during outages.
- Develop a means for combining actual plant status information with intended component manipulations embedded in procedures
- Monitor technical specifications, probabilistic risk assessment information, and ongoing risk mitigation plans to identify possible interactions of concern

Outage Risk Management Improvement


SUSTAINABILITY

OSSRM Software Application

LIGHT WATER REACTOR

SUSTAINABILITY

Outage Risk Management Improvement – Natural Language Processing

Outage Procedure

Outage Manager

- Detect and Define Sections
- Identify Components
- Delineate Existing and Novel Action Verbs

Document Analyzer Module

- Load Known Components
- Load Known Action Verbs
- Load Defined Component State Conflicts

Depot Loader Module

- Identify Novel Action Verbs
- Detect State Transition Conflicts

Rule Processor Module

Outage Manager

Idaho National Laboratory