

Using "Big Data" to help understand NPP challenges

Advanced Sensors and Instrumentation Annual Webinar

October 31 – November 1, 2018

Tom Gruenwald Blue Wave

• Problem:

- Hatch 1 observes sporadic ~0.2Hz chattering in Safety Relief Valves (SRVs)
- Hatch 2 (very similar reactor) does not chatter
 - Chattering valves moved from Hatch 1 to Hatch 2 do not chatter
- Goal:
 - To quickly and autonomously identify chattering valves
 - Create a model which predicts chattering and identify its root cause

- 1.8 TB of data provided for Hatch 1
- There are 32 million data points per year, per valve.
- There are eleven three-stage valves at SNP's Hatch1
- There are about 3 years worth of data (100 million points per valve)

- 5 Batches, 1.81 TB
 - Earliest date: 03/01/2014
 - Latest date: 04/30/2017
 - 1Hz time log
- 3,722 Sensor-Check pairs
 - 28 Service Groups;
 - "YOKO1": 44 Variables, 11SRVs × 4 Thermocouple sensors per SRV
 - Other Groups: Plant Variables
- 6,000 CPU hours to format the data into processable format.

Service	Service
Name	Name
asdcalca	rtp4
asdcalcb	rtp5
calc	rtp6
calpush	rtp7
inter	rtp8
modbus1	rtp9
modbus2	rtp10
modbus3	rtp11
plasma	valves
ррс	yoko1
relay	yoko2
rtp1	yoko3
rtp2	yoko4
rtp3	yoko5

Segment_A_YOKO1_Valve_F

Classifying chattering

- 1. Hand classify chattering
- 2. Split train and test data
- 3. Generate 9 Features
 - 1. 10 minute moving window
 - 2. 7 wavelet variances
 - 3. 1 Fast Fourier Transform
 - 4. Peak to Valley Height
- 4. Train Classifiers Bagged Tree Model
 - 1. 2 million points
- 5. Validate Model
 - 1. 99.8%

Bagged tree classifier

7

Bagged Tree Classifier – Confusion Matrix

Smoothed Classifier

No smoothing

Segment 1 – Time Response

Segment 1 – Time Response

- Chattering start to first positive classifier result ~6 min
- 2. Uncertain region 10-15 hrs
- 3. Total chattering event ~200 hrs

- Search for *plant* parameters with behavior correlating to SRV behavior.
- Explore statistical characteristics and time periods over which to correlate the behavior.
- Filter and sort correlation results to isolate most highly-correlated (+ or -) parameters.

Subset of Plant-to-SRV Correlation Values

Pearson Correlations

- Also interest in finding substitute indicators in the event a given instrument malfunctions
- Created fully interactive heatmap of plant-toplant correlation coefficients

Zoom on selected region

Mouseover yields parameter names and correlation coefficient (top)

- From the correlation analysis, we have produced lists of top correlation pairs during various operational segments.
- We are now working to integrate the chattering-classified data to probe for differences in parameter behavior between chattering and nonchattering states
- We will work with partner to help guide focus in drilling down on components of highest utility

- FFT/Wavelet of every plant variable, and then take the correlation coefficient between the output FFT of each
 - Correlate valves with each other-chatter same time?
 - Does one of the four always go first?
 - Identify Plant Variables highly correlated to chattering states
- Deeper analysis of Chattering
 - Examine length of chattering states and whether continuous or with breaks
 - Determine what causes chattering to cease
- Further test Chattering classifier on data already provided
 - Develop code with User Interface for SNP to use to detect chattering
- Build Machine Learning model to predict chattering from data

Clean. Reliable. Nuclear.

• Problem:

- Plant 1 observes sporadic ~0.2Hz chattering in Safety Relief Valves (SRVs)
- Plant 2 (very similar reactor) does not chatter
 - Chattering valves moved from Hatch 1 to Hatch 2 do not chatter
- Goal:
 - To quickly and autonomously identify chattering valves
 - Create a model which predicts chattering and identify its root cause

- 1.8 TB of data provided for Plant 1
- There are 32 million data points per year, per valve.
- There are eleven three-stage valves at SNP's Plant 1
- There are about 3 years worth of data (100 million points per valve)

- 5 Batches, 1.81 TB
 - Earliest date: 03/01/2014
 - Latest date: 04/30/2017
 - 1Hz time log
- 3,722 Sensor-Check pairs
 - 28 Service Groups;
 - "YOKO1": 44 Variables, 11SRVs × 4 Thermocouple sensors per SRV
 - Other Groups: Plant Variables
- 6,000 CPU hours to format the data into processable format.

F 1	
Service	Service
Name	Name
asdcalca	rtp4
asdcalcb	rtp5
calc	rtp6
calpush	rtp7
inter	rtp8
modbus1	rtp9
modbus2	rtp10
modbus3	rtp11
plasma	valves
ррс	yoko1
relay	yoko2
rtp1	yoko3
rtp2	yoko4
rtp3	yoko5

Classifying chattering

- 1. Hand classify chattering
- 2. Split train and test data
- 3. Generate 9 Features
 - 1. 10 minute moving window
 - 2. 7 wavelet variances
 - 3. 1 Fast Fourier Transform
 - 4. Peak to Valley Height
- 4. Train Classifiers Bagged Tree Model
 - 1. 2 million points
- 5. Validate Model
 - 1. 99.8%

Bagged tree classifier

Bagged Tree Classifier – Confusion Matrix

Smoothed Classifier

No smoothing

Segment 1 – Time Response

Segment 1 – Time Response

- Chattering start to first positive classifier result ~6 min
- 2. Uncertain region 10-15 hrs
- 3. Total chattering event ~200 hrs

- Search for *plant* parameters with behavior correlating to SRV behavior.
- Explore statistical characteristics and time periods over which to correlate the behavior.
- Filter and sort correlation results to isolate most highly-correlated (+ or -) parameters.

Subset of Plant-to-SRV Correlation Values

Pearson Correlations

- Also interest in finding substitute indicators in the event a given instrument malfunctions
- Created fully interactive heatmap of plant-toplant correlation coefficients

Zoom on selected region

Mouseover yields parameter names and correlation coefficient (top)

- From the correlation analysis, we have produced lists of top correlation pairs during various operational segments.
- We are now working to integrate the chattering-classified data to probe for differences in parameter behavior between chattering and nonchattering states
- We will work with partner to help guide focus in drilling down on components of highest utility

- FFT/Wavelet of every plant variable, and then take the correlation coefficient between the output FFT of each
 - Correlate valves with each other-chatter same time?
 - Does one of the four always go first?
 - Identify Plant Variables highly correlated to chattering states
- Deeper analysis of Chattering
 - Examine length of chattering states and whether continuous or with breaks
 - Determine what causes chattering to cease
- Further test Chattering classifier on data already provided
 - Develop code with User Interface for SNP to use to detect chattering
- Build Machine Learning model to predict chattering from data