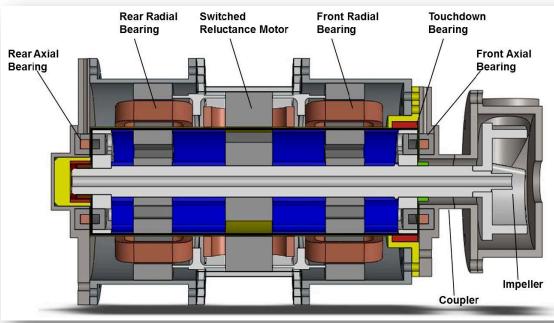


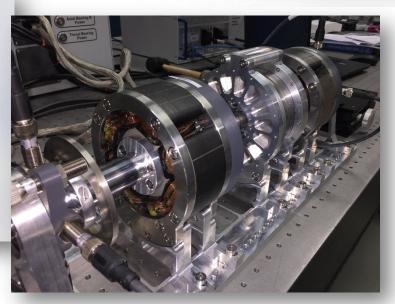
Demonstration of Embedded I&C

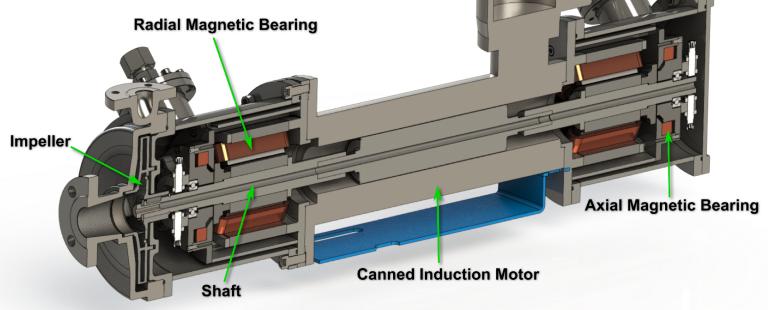

Advanced Sensors and Instrumentation Annual Webinar

October 31 – November 1, 2018

Dr. Alexander Melin Oak Ridge National Laboratory

- Overview of Previous Work
 - High Temperature Molten Salt Pump Conceptual Design
 - Manufacturability Analysis
 - Component Reliability Analysis
 - Modeling and Control Design
 - Bench-top magnetic bearing testbed
 - Loop-scale magnetic bearing testbed

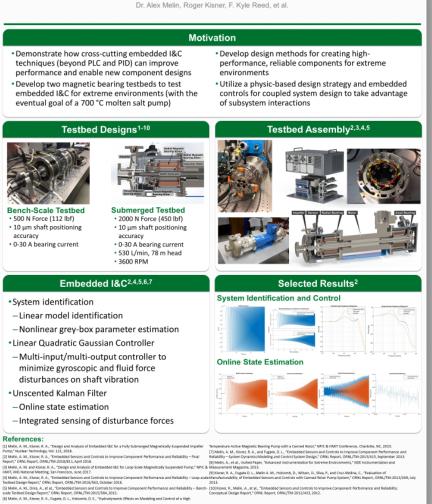

- Overview of Previous Work
 - Conceptual high temperature molten salt pump design
 - Material studies and selection
 - System requirements and design basis
 - Electrical and magnetic design
 - High temperature wiring
 - Environmental conditions
 - Sensors and controls
 - Reliability


- Overview of Previous Work
 - Bench-top magnetic bearing testbed
 - 30 A max coil current, 24 V
 - 500 N max force

- Overview of Previous Work
 - Loop-scale magnetic bearing testbed
 - 30 A max coil current, 24 V
 - 2000 N max force
 - First of its kind submerged stator/rotor magnetic bearing

- Overview of Previous Work
 - Loop-scale magnetic bearing testbed
 - Problems with commercial PWM boards in power supply

- Incorrectly wired ground
- Prevented operation in bipolar mode (-24 V to 24 V)
- Like a car with accelerator but no brakes

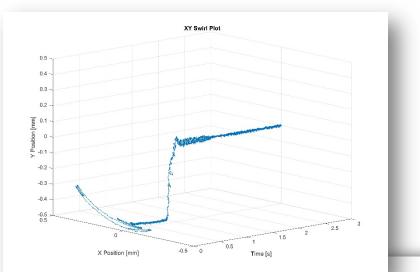

- Goals and Objectives
 - Increase nuclear industry awareness of the advantages of embedded I&C through technical posters, presentations, reports, and peer-reviewed publications.
 - Design a custom controllable power supply for the ORNL submerged magnetic bearing testbed to improve the current response.
 - Synthesize, program, and test a new stabilizing feedback controller using the new power supplies.
 - Install testbed in a water test loop.
 - Experiments
 - System identification with both dry and wet stator/rotor for A/B rotordynamics comparison.
 - Pump performance comparison (power, energy, and pressure vs. flow)
 - Coast down time vs. static shaft position.

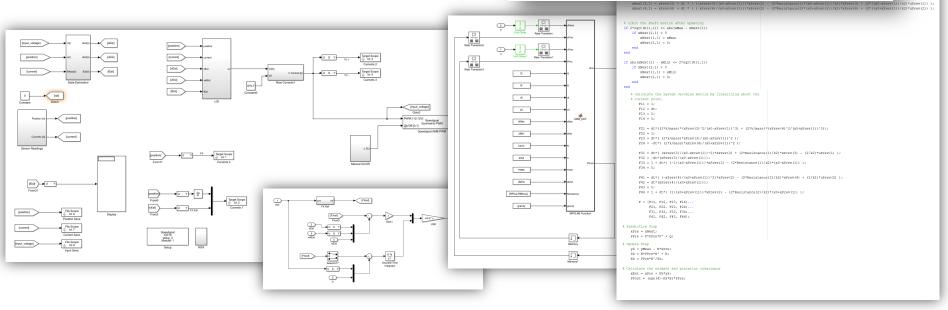
- Goal and Objective
- Participants
 - Dr. Alexander Melin
 - Kyle Reed
 - Dr. Aravind Mikkilineni
 - Roger Kisner
- Revised Schedule

Tasks	Description	Мау	June	July	August	September	October	November	December
Task 1	Design and Fabricate PWM Modules to Operate in Bi-Polar Mode								
Task 2	Program the Stabilizing Controller								
Task 3	Install Pump in Loop								
Task 4	Conduct Experiments								
Task 5	Prepare Report and Present Poster at Meeting								

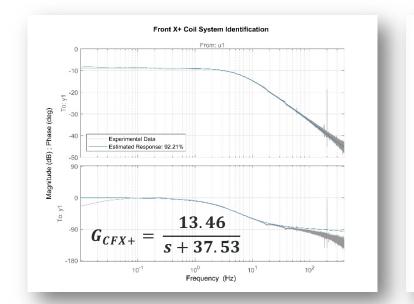
- Milestones
 - Design and fabricate bipolar model controllable voltage source
 - Program stabilizing controller for magnetic bearing levitation
 - Install testbed in water loop
 - Conduct experiments with both dry and submerged rotor/stator
- Deliverables
 - High-performance high-current open-source controllable voltage supply design
 - Peer-reviewed publication on the impact of fluid forces on rotordynamics
 - Report on the results of the experimental testing and analysis of the results
 - Power presentation at the Digital Environment for Advanced Reactors Workshop (June 5-6, 2018)

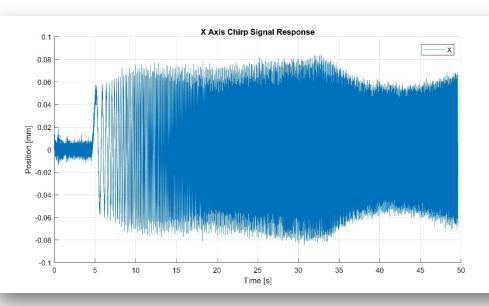
- Outcomes
 - Poster presentations at Digital Environments for Advanced Reactors Workshop
 - Engaged with industry, academia, and national laboratories to
 - Exchange information on currently available technologies .
 - Identify technical gaps needed for advanced reactors.

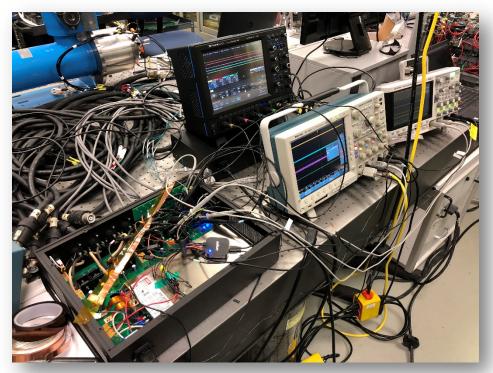

Embedded Instrumentation and Control for Extreme Environments



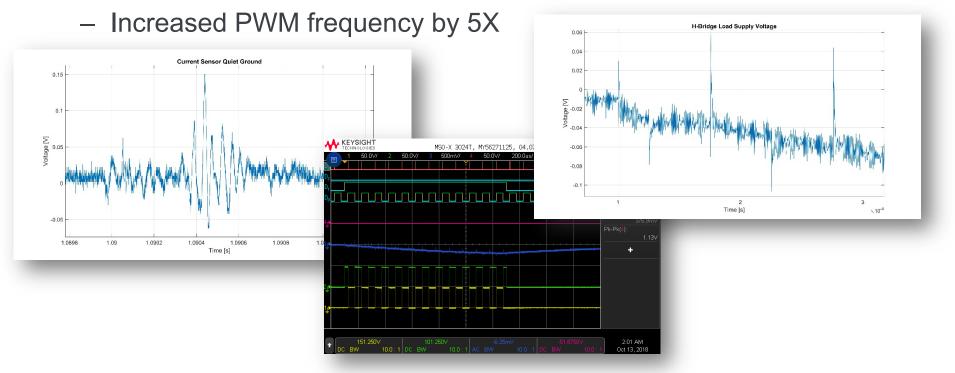
- Controllable Power Supply
 - Designed and fabricated
 - Electrical design, packaging, cables, and graphics




- Stabilizing Feedback Controller Synthesized
 - Cascade design
 - Simulink and real-time toolbox
 - 10 kHz control loop-speed
 - 700 Hz control current bandwidth
 - 150 Hz shaft motion bandwidth
 - State estimation using custom Extended Kalman Filter



- Initial System Identification Data Captured
 - Magnetic bearing/power supply dynamics
 - Horizontal axis bearing dynamics
 - Two power supply channel PWM controllers failed during these experiments
 - Currently identifying the root cause and repairing the power supplies.



- Power supply fault diagnosis and correction
 - Measured 18 points in the power circuit
 - Large inductances and energy in magnetic bearing coils causing capacitive noise in TTL lines and grounds
 - Some floating grounds picked up excessive noise
 - Current sensor output lowpass filter cutoff frequency greatly increased by the ground noise
 - Caused large noise in the current feedback controller output

- Improving the System Performance
 - Reducing ground noise
 - Fixing current sensor low-pass filter
 - Adding hardware filters to reduce capacitive coupling
 - Increased sensor sample rates in software by 20X

• Papers

- 1. Melin, A. M. and Kisner, R. A., "Design and Analysis of Embedded I&C for Loop-Scale Magnetically Suspended Pump," *Nuclear Technology*, Vol. 202, Issue 2-3, pp. 180-190, April 2018.
- 2. Melin, A. M. and Kisner, R. A., "Design and Analysis of Embedded I&C for Loop-Scale Magnetically Suspended Pump," NPIC & HMIT, ANS National Meeting, San Francisco, April 2018.
- 3. Melin, A. M. and Kisner, R. A., "Design and Analysis of Embedded I&C for Loop-Scale Magnetically Suspended Pump," NPIC & HMIT, ANS National Meeting, San Francisco, June 2017.
- 4. Melin, A. M., Kisner, R. A., Fugate, D. L., Holcomb, D. E., "Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor," NPIC & HMIT Conference, Charlotte, NC, 2015.
- 5. Melin, A., et al., *Invited Paper,* "Advanced Instrumentation for Extreme Environments," *IEEE Instrumentation and Measurement Magazine*, 2013.

Technical Reports

- 1. Melin, A. M., Kisner, R. A., Blaise, B., Meert, C., Reed, F. K., "Embedded Sensors and Controls to Improve Component Performance and Reliability Final Report," *ORNL Report,* ORNL/TM-2018/811, April 2018.
- 2. Melin, A. M., Kisner, R. A., "Embedded Sensors and Controls to Improve Component Performance and Reliability Loop-scale Testbed Design Report," *ORNL Report*, ORNL/TM-2016/563, October 2016.
- 3. Melin, A. M., et al., "Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report," *ORNL Report,* ORNL/TM-2015/584, 2015.
- 4. Melin, A. M., Kisner, R. A., and Fugate, D. L., "Embedded Sensors and Controls to Improve Component Performance and Reliability System Dynamics Modeling and Control System Design," ORNL Report, ORNL/TM-2013/415, September 2013.
- 5. Kisner, R. A., Fugate D. L., Melin A. M., Holcomb, D., Wilson, D., Silva, P., and Cruz-Molina, C., "Evaluation of Manufacturability of Embedded Sensors and Controls with Canned Rotor Pump System," ORNL Report, ORNL/TM-2013/269, July 2013.
- 6. Kisner, R., Melin, A., et al., "Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report," *ORNL Report*, ORNL/TM-2012/433, 2012.

Technology Impact

- Nuclear reactor components need to operate reliably in extreme environments.
 - Embedded I&C in reactor components will
 - Improve reliability and performance
 - Enable real-time health monitoring and predictive maintenance
 - Gather data for improved reactor systems and component models
 - Enable devices to operate in more extreme environments
- This technology is the foundation for ultra-high temperature (> 450 C, 842 F) electromagnetic devices (pumps, motors, magnetic bearings, inductive position sensors...)
 - These will be critical components for new reactor designs such as molten salt reactors.

Technology Impact

- Nuclear Industry Impacts
 - Canned rotor pump designs can reduce pump size, cost, and maintenance.
 - Ultra-high temperature components can operate in more reactor environments.
 - Show improvements from embedded I&C
- Commercialization
 - ORNL is partnering with Hayward Tyler and ARPA-E to develop a canned rotor molten salt pump with the following components operating at 650-700 C
 - Magnetic bearings for shaft levitation
 - Synchronous reluctance motor for shaft rotation
 - Radial, axial, and rotational position sensors
 - Electromagnetic coils

Conclusion

- Developed new high-current high-bandwidth controllable power supply for ORNL submerged magnetic bearing testbed.
- Developed a stabilizing controller for the testbed and performed system identification experiments.
- Engaged with nuclear industry showcase current embedded I&C research and discuss future implementation of digital I&C in nuclear reactors.
- Successfully won an ARPA-E research grant with Hayward Tyler and TEUSA to develop and test a 650-700 C molten salt pump based on this research.

For any future questions please contact me at melina@ornl.gov