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DISCLAIMER RELATING TO THIS REPORT 

 

Neither Risknology, Inc., its employees, nor any person acting on its behalf or otherwise in furtherance 
of its activities in performing this contract: 

1. Makes any warranty or representation, expressed or implied, with respect to the accuracy, 
completeness, or usefulness of the information contained herein, or that the use of any information, 
method, or process contained herein, may not infringe on privately owned rights; or 

2. Assumes any liability with respect to the use of, or for special, incidental, or consequential 
damages related to or arising directly or indirectly out of the use of any information, apparatus, or 
process disclosed herein. 

Risknology, Inc. has made every reasonable effort to perform the work contained herein in a manner 
consistent with high professional standards.  However, the work is dependent on the accuracy of 
information provided by Delfin LNG.  In addition, Risknology regards the work that it has done as being 
advisory in nature.  The responsibility for use and implementation of the recommendations contained 
herein rests entirely with Delfin LNG. 
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Executive Summary 

Risknology was tasked by Delfin LNG LLC to perform an LNG Spill Consequence Analysis to support the 
Delfin LNG Deepwater Port License Application process. The purpose of this report is to present the 
consequence analysis of flammable vapor clouds dispersion distances and thermal radiation distances 
from potential pool fires and hazards resulting from LNG spills on water, based on guidelines published 
by Sandia [1] [2] [3].  The analysis was conducted in PHAST 7.11, validated for LNG spill calculations. 

The analysis considers two possible types of breaches – accidental or intentional – involving a single or up 
to three LNG Cargo tanks through cascading damage. The LNG spill resulting from any of these events will 
form a pool of LNG on the water surface, which can cause a pool fire or form a dense flammable vapor 
cloud which will disperse downwind until it is diluted by air. 

Conclusions 

• Based on the results of this study, thermal radiation levels generating from a dimension case pool 
fire do not reach other FLNGVs, platforms, or the shipping fairway - even in the case of the 
largest, cascading, three-tank 12m2 breach. 

• The planning basis for the Delfin Deepwater Port Application process should acknowledge 
thermal hazard zones of 865 m and 2258 m for high and low thermal radiation levels, 
respectively, for operational planning.  These distances are based on fire modelling conducted 
using validated models and according to the latest guidance [3] applicable to LNG Deepwater 
Ports. 

• The vapor dispersion distance to lower flammability limit (LFL) using 5.5% concentration for the 
16m2 breach of a single tank resulting from an intentional event is approximately 5334 m which 
has the potential to affect other FLNGVs, depending on multiple weather parameters such as 
wind speed and wind direction, but will not reach other platforms located within 10 miles from 
the FLNGVs or the shipping fairway.  This conclusion should be considered in the context that the 
scenario is a very low probability event, given: 

o the fact that a large release of LNG is likely to be accompanied by an ignition source and 
result in a fire rather than dispersion of natural gas vapors over extended distances, 

o that if delayed ignition did occur at the location of encounter of an adjacent FLNGV, the flame 
front would burn back to its source and away from the neighboring facility, and  

o the exposure time of the neighboring facility to the flash fire thermal radiation would be 
insufficient to cause process escalation. 
 

• The vapor dispersion distance to lower flammability limit (LFL) using 5.5% concentration for the 
12m2 breach of three tanks resulting from a cascading event is approximately 6575 m.  This 
conclusion should be considered in the context that the scenario is an extremely low probability 
event and: 

o the event evolves by cascading from an initial breach and fire, therefore emergency 
notifications will prevent vessels using the shipping fairway of approaching the location 
impacted by an ongoing event at the Delfin port. 
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Table 1: Consequence Analysis for Dimensioning Scenarios 

Result 
Scenario 1  

Cascading 

Scenario 3 

Intentional 

Scenario 1 

Accidental 

Breach Size (m2) 12 16 2 

Number of Tanks 3 1 1 

Total Capacity (m3) 79,299 26,433 26,433 

Release Quantity (m3) 61,275 24,967 24,967 

Flammable Vapor Cloud Dispersion (meters) (No ignition) 

Distance to LFL – 5.5% (m) 6575 5334 2297 

Pool Fire Maximum Distance to Endpoint (meters) (using SNL 2012 guidance) 

Distance to “Low” Radiative Flux – 5 kW/m2 (m)  3078 2258 1136 

Distance to “High” Radiative Flux – 37.5 kW/m2 (m) 1188 865 434 

Maximum Pool Diameter (m) 1101 728 336 
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1 Introduction 

Delfin is required to carry out an evaluation of public safety associated with the project, where the public 
is defined as non-project-related people. The safety of Delfin personnel will be addressed by complying 
with the regulations applicable under the DWPA and other applicable laws and regulations. 

The hazards of interest to public safety for the Delfin project are outlined in various guidance documents 
generated by Sandia National Laboratories [1] [2] [3] for the evaluation of releases of LNG from LNG 
carriers and Deepwater Port Units.  These are the potential for exposure to flammable vapor clouds and 
exposure to thermal radiation from pool fires on the sea surface. 

The theoretical physical and thermal processes involved in an LNG spill are shown in Figure 1.  Modeling 
of potential LNG spills and resulting fires or explosions were analyzed. The modeling techniques 
employed, the assumptions made, and the results are presented below. 

 

Figure 1: Notional figure showing the LNG dispersion process 

 

1.1 Guidance for Evaluating LNG Spills Over Water 

In 2004, the DOE requested that Sandia develop guidance for risk-based analysis that would assess and 
quantify threats to public safety associated with increased marine LNG imports. The analysis included 
potential threats to an LNG facility and the potential hazards and consequences of a large spill from an 
LNG trading carrier. Sandia worked with the DOE, USCG, and other public and private groups and, in 
December 2004, released the report “SAND2004-6258” Guidance on Risk Analysis and Safety Implications 
of a Large Liquefied Natural Gas (LNG) Spill Over Water [1].  

Sandia carried out another study in 2008 [2] evaluating LNG spills from larger LNG carriers (greater than 
145,000 m3). Sandia concluded that there may be less control and surveillance of ship operations in 
offshore operations.  As such, Sandia observed that credible intentional scenarios can be larger than for 
near shore facilities.  Consistent with Sandia’s analysis in 2004, a pool fire was considered the most likely 
outcome from the breach of an LNG tanker due to the high probability of immediate ignition of the LNG 
during the event.  
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An expanded LNG safety research program was initiated by Congress with Sandia in 2008.  The purpose 
of this effort was to provide the most comprehensive and accurate information for assessing the public 
safety risks posed by LNG tankers transiting to LNG facilities, specifically those issues identified by 
Congress in the February 2007 Government Accountability Office Report (GAO Report 07-316), Public 
Safety Consequences of a Terrorist Attack on a Tanker Carrying Liquefied Natural Gas Need Clarification.  
Sandia National Laboratories (SNL) supported the DOE in this effort starting May 2008 through May 2011 
by conducting a series of large-scale LNG fire and cryogenic damage tests, as well as detailed, high 
performance computer model simulations of LNG vessel damage resulting from large LNG spills and fires 
on water.  

In their most recent report [3], Sandia reassessed threats and potential credible event scenarios for LNG 
marine transportation with marine safety, law enforcement, and intelligence agencies. The evaluations 
considered a wide range of possible threats. These included accidents, as well as intentional events such 
as attacks with shoulder-fired weapons, explosives, and attacks by small to medium size boats and 
aircraft. Potential threats and possible breach events are always site-specific and will vary depending on 
the location of the LNG vessel, such as inner harbor, outer harbor, or offshore Deep Water port.  

1.2 Project Background 

Risknology was tasked by Delfin LNG LLC to perform an LNG Spill Consequence Analysis for the Delfin LNG 
Deepwater Port (DWP) License Application.  The proposed DWP would be located in the federal water 
within the Outer Continental Shelf (OCS) West Cameron Area, 66 to 77 km off the coast of Cameron 
Parish, Louisiana, in water depths ranging from approximately 19 to 22 meters. The DWP would consist of 
four permanently moored floating liquefied natural gas vessels (FLNGVs). Each vessel would have a 
capacity of 211,460 m3.  A rendering of the project is shown in Figure 3. 
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Figure 2: Project Location 

 

Figure 3: Artist’s Rendering of Delfin Deepwater Port Layout 
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1.3 Methodology for Consequence Analysis  

The methodology followed for this report is as follows: 

 Project Description: In Section 2 the site specific information is presented, including weather 
information, location of neighboring platforms and shipping fairways. In addition, a general 
description of the FLNGV is included, with emphasis on the LNG storage system. 
 

 Scenario Development: Section 3 provides an overview of the scenarios that were evaluated for 
the consequence analysis, the assumptions that were considered for the modeling of each 
scenario, as well as the sequence of events derived from the loss of containment from the 
FLNGV. 
 

 Modeling Results: Section 4 includes the results calculated from the different spill scenarios, 
considering two possible types of breaches (accidental or intentional). 
 

 Validation: Section 5 documents the results of comparison of PHAST results to those 
documented in Sandia’s reports and also presents a range of results dependent upon extreme 
weather conditions. 
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2 Project Description 

The proposed DWP would consist of four moored floating liquefied natural gas vessels (FLNGVs), two 
existing offshore natural gas pipelines of the former U-T Operating System (UTOS) and the High Island 
Operating System (HIOS), and four new pipeline laterals connecting the HIOS pipeline to each of the 
FLNGVs.  The feed gas would be supplied through these new pipeline laterals to each of the FLNGVs 
where it would be cooled sufficiently to totally condense the gas to produce liquefied natural gas (LNG), 
and then would be stored in Gaztransport & Technigaz (GTT) Mark III membrane-type LNG storage tanks 
aboard each of the FLNGVs.   

The FLNGV would accommodate standard LNG trading carriers with nominal cargo capacity of up to 
170,000 m3 for side-by-side offloading of the LNG.  The FLNGVs would be self-propelled and would be 
able to disconnect from the DWP and navigate using their own propulsion in the event of a forecasted 
hurricane or other unique circumstances.  

2.1 Site Description 

The proposed DWP would be located in federal waters within the Outer Continental Shelf (OCS) West 
Cameron Area, West Addition Protraction Area (Gulf of Mexico), approximately 37.4 to 40.8 nautical 
miles (or 43 to 47 statute miles) off the coast of Cameron Parish, Louisiana, in water depths ranging from 
approximately 64 to 72 feet (19.5 to 21.9 meters) (see Figure 2).   

Figure 4 and Table 2 provide a graphic and list of platforms within ten miles of the proposed Delfin 
facilities.  The nearest of these is 4.11 miles away.  All of these platforms are unmanned. The shipping 
fairway, represented as a green stripe in Figure 4, is a shipping fairway located approximately 5,720 m 
from FLNGV 2 at its closest point. 
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Figure 4: Locations of platforms within 10 miles of FLNGVs 

 
 

Table 2: Distances to Platforms within 10 miles of FLNGVs 

Platform Company 
Manned or 
Unmanned 

Distance To 
FLNGV1 (mile) 

Distance to 
FLNGV2 (mile) 

Distance to 
FLNGV3 (mile) 

Distance to 
FLNGV4 (mile) 

Fieldwood Energy Offshore Unmanned 8.90 >10 >10 >10 

NA Unmanned 7.22 7.81 9.72 >10 

NA Unmanned 7.22 7.81 9.72 >10 

EPL Oil & Gas, Inc. Unmanned 4.19 5.23 6.77 7.73 

Forest Oil Cooperation Unmanned 4.11 6.09 4.13 6.44 

Century Exploration New 
Orleans, LLC 

Unmanned >10 >10 9.73 8.29 
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2.2 FLNGV Description 

Each FLNGV would be fitted with Mark III membrane type LNG storage tanks in a double-row 
configuration as a cargo containment system.  In the nominal design case, each of the four FLNGVs would 
process approximately 500 million standard cubic feet per day (MMscfd), which would total 2.0 billion 
standard cubic feet per day (Bscf/d) of input feed gas for all four of the FLNGV.  Based on an estimated 
availability of 92 percent and allowance for consumption of feed gas during the liquefaction process, 
each FLNGV would normally produce approximately 3.0 million metric tonnes per annum [MMtpa]) for 
export in the form of LNG.  Together, in the nominal design case, the four FLNGV are designed to have 
the capability to export approximately 12.0 MMtpa in the form of LNG.  The natural gas would be 
liquefied and stored on the FLNGV until delivered to LNG trading carriers via ship-to-ship transfer through 
cryogenic hoses or loading arms. 

The LNG storage capacity of each FLNGV is approximately 211,000 m3. Each vessel shall have eight LNG 
tanks. The capacity of the eight LNG tanks is as described in Table 3 and depicted in Figure 5. 

 

Figure 5: Vessel Capacity Plan 
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A cross sectional view of one of the LNG tanks is illustrated in Figure 6. 

 

 

Figure 6: Cross sectional view of LNG tank hold section (looking aft) 

 

Table 3: LNG Cargo tank capacity  

Compartment Capacity (m3) 

No. 1 LNG Cargo Tank (P) 26,432.5 

No. 1 LNG Cargo Tank (S) 26,432.5 

No. 2 LNG Cargo Tank (P) 26,432.5 

No. 2 LNG Cargo Tank (S) 26,432.5 

No. 3 LNG Cargo Tank (P) 26,432.5 

No. 3 LNG Cargo Tank (S) 26,432.5 

No. 4 LNG Cargo Tank (P) 26,432.5 

No. 4 LNG Cargo Tank (S) 26,432.5 

Total 211,460 

 

2.3 Weather Conditions at Site 

The wind data for Delfin was taken from NOAA buoy 42035 which is located at 29.232 N 94.413 W 
(29°13'54" N 94°24'46" W). Risknology used the data for years 2009 to 2013.  

Table 4 illustrates the percentage of time for each specific wind speed and wind direction.  
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Table 4: Percentage of time for each wind speed and wind direction 
 

 
Wind Speed m/s 

Totals 
0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 

W
in

d
 D

ir
ec

ti
o

n
 D

eg
re

es
 

0-45 5.77E-03 1.36E-02 1.99E-02 2.42E-02 2.22E-02 1.41E-02 3.63E-03 4.79E-04 4.56E-05 1.04E-01 

45-90 8.90E-03 2.36E-02 3.43E-02 3.03E-02 1.78E-02 6.59E-03 1.73E-03 3.42E-04 6.85E-05 1.24E-01 

90-135 1.26E-02 4.97E-02 7.27E-02 5.37E-02 2.30E-02 5.61E-03 7.07E-04 9.13E-05 0.00E+00 2.18E-01 

135-180 1.32E-02 5.53E-02 9.45E-02 6.56E-02 2.76E-02 5.23E-03 3.88E-04 2.28E-05 0.00E+00 2.62E-01 

180-225 1.04E-02 3.06E-02 4.61E-02 3.43E-02 7.85E-03 1.21E-03 1.37E-04 2.28E-05 0.00E+00 1.31E-01 

225-270 7.30E-03 1.24E-02 1.29E-02 5.91E-03 1.37E-03 2.74E-04 1.14E-04 4.56E-05 0.00E+00 4.04E-02 

270-315 4.86E-03 9.08E-03 9.63E-03 7.05E-03 3.70E-03 1.99E-03 1.48E-03 4.79E-04 1.60E-04 3.84E-02 

315-360 5.27E-03 7.58E-03 1.22E-02 1.48E-02 1.68E-02 1.49E-02 9.17E-03 2.21E-03 1.14E-04 8.30E-02 

Totals 6.83E-02 2.02E-01 3.02E-01 2.36E-01 1.20E-01 4.99E-02 1.74E-02 3.70E-03 3.88E-04 1.00E+00 

 

Analysis of this wind data results in an average wind speed of 5.25 m/sec. 

Temperature and relative humidity data were obtained from the same weather buoy for the same period 

of time.  The average values for temperature was 21.5 C and relative humidity 78.2%.   
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3 Scenario Development 

The purpose of this report is to present the consequence analysis resulting from potential LNG spills on 
water, based on guidelines published by Sandia. 

The analysis considers two possible types of breaches – accidental or intentional - for a single or up to 
three LNG Cargo tank(s) spilling at a time in order to account for any cascading damages of adjacent 
tanks.  Each one of the accidental and intentional events has been assigned a credible breach size, which 
will be discussed later in this report. The LNG spill resulting from any of these events will form a pool of 
LNG on the water surface, which can cause a pool fire or form a dense flammable vapor cloud which will 
disperse downwind until it is diluted by air. 

This section includes a discussion of the modeling approach to the consequence analysis, as well as a 
discussion of the modeling parameters and boundary conditions used in the models.  Consequence 
analysis is defined as the determination of physical effects that can negatively impact either persons or 
property. 

3.1 Study Assumptions 

For the purpose of this study the composition of the LNG was assumed to be 100% methane.  

Atmospheric conditions can affect the formation of LNG pool, the dispersion of methane vapor clouds, 
and the intensity of pool fires resulting from LNG spills. According to Sandia guidelines experiments show 
that low wind speed and high stability class produce largest distances to LFL. For the purpose of this 
study, the ambient air temperature and water temperature used were 21.5 °C. The wind speed was 
considered to be 5.25 m/s with a stability class F.  The relative humidity used was 78.2%.    

3.2 Dimensioning Spills 

The breach analysis for this study follows the guidelines from Sandia, taking into consideration the 
specific sizes of the LNG tanks and the height of LNG above the water line in the tanks.  

Sandia estimated the accidental breach scenario to be less than 2m2. The intentional breach size was 
estimated to range between 2m2 and 12m2.  The release resulting from an intentional breach is most 
likely to be ignited due to the high probability of encountering an ignition source; however, the study 
does consider dispersion of vapor clouds in cases where they may not ignite immediately.  

In 2008, Sandia produced updated guidance considering LNG vessels with capacities of up to 265,000m3. 
In this updated guidance, offshore operations’ intentional breach sizes were increased to be between 5-
16m2.   

Both the total volume of LNG spilled and the flow rate of LNG through a breach in the tank depend on the 
location of the breach in the vessel.  Flow rate and spill volume are maximized if the breach is near the 
waterline of the vessel.  If the breach is below the waterline, the flow of LNG out of the tank is decreased 
due to the backpressure caused by the water above the breach, as well as by the flow of water into the 
tank.  If the breach is above the waterline then there is volume that is trapped, below the breach, that 
cannot be spilled from the tank and the head pressure on the LNG above the breach is decreased from 
loss of height which in turn reduces the flow rate.  Other phenomena, such as ice formation around the 
breach and increased LNG vaporization as the spill flows toward the water surface, are also likely to 
result in overall smaller LNG pools than a waterline release and consequently smaller hazards zones.  
Therefore, in all scenarios considered in this study, the tank breach is assumed to occur at the waterline.  
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The Delfin FLNG vessels are semi-permanently moored using a yoke system coupled to a specialized 
platform structure.  Disconnection requires advance preparation, specialized knowledge and training and 
sufficient crew following an engineered procedure.  As such, disconnection by unauthorized persons 
would be unlikely and attempts would be detected, therefore high jacking scenarios are not considered 
credible for the Delfin facility. 

3.3 LNG Spill Calculations 

Sandia provides a methodology to determine the LNG spill rate from the storage tank. The level of fill 
above the water line constitutes a main parameter in the calculations of flow rate out of the tank and the 
time it takes to drain the tank. The resulting times to empty the LNG storage tanks under various 
assumed breach scenarios is as shown in Table 5.  More detail is provided in Appendix A. 

Table 5:  Flow rates and times to drain 

Breach size 
(m2) 

Tanks 
Breached 

Average flow rate 
(kg/s) 

Tank Cross 
Sectional Area (m2) 

Time to 
drain (sec) 

1 1 2589.31 1016.7 3316 

2 1 5178.62 1016.7 1657 

5 1 12946.55 1016.7 663 

12 1 31071.71 1016.7 276 

16 1 41428.95 1016.7 207 

5 3 38839.64 1016.7 663 

12 3 93215.13 1016.7 276 

3.4 Vapor Cloud Dispersion Modeling 

The flammable vapor clouds were modeled using PHAST 7.11. PHAST uses a Unified Dispersion Model 
(UDM) model, which has been validated against field test results including gas dispersion from LNG spills 
onto water [4] [5]. 

LNG is less dense than water. If spilled and exposed to the atmosphere, it will absorb heat from the 
seawater and ambient air, initially forming a cold, heavier than air cloud that will be visible due to 
condensed moisture within the air. Because of the material’s density and the turbulence created by the 
rapid boiling, an LNG spill will spread and vaporize rapidly.  

3.5 Pool Fire Modeling 

Any rapid release of LNG onto water could result in a pool fire. In the event of a release, the LNG will float 
on top of the water and a pool will form. Heat from the seawater will warm the LNG pool and release 
vapors of natural gas to the atmosphere. A pool fire could occur in cases where methane, rising from the 
surface of the pool, combines with the proper mixture of oxygen and comes in contact with an ignition 
source. A large pool fire scenario is likely to be the highest risk in terms of the size of the thermal 
radiation hazard zone. Predictions regarding LNG pool fires are based on mathematical modeling and 
limited experiments, as there is no recorded instance of a large release of LNG on water or a resulting 
pool fire.  

Pool fire modeling was done using PHAST 7.11 using the latest pool fire model which assumes a delayed 
ignition where the pool has reached its maximum radius [10].   
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4 Modeling Results 

In this section Risknology provides the results from the different spill scenarios.  The results are 
presented in two subsections - for accidental and intentional breach scenarios. 

For vapor dispersion, a flammable vapor cloud will ignite between the flammability limits, if an ignition 
source is present within the flammable range.   

According to Sandia [1] the lower and upper flammability limits of methane are 5.5% and 14% by volume 
at a temperature of 25°C. Table 6 is taken from Sandia’s 2004 report.  

 

Table 6: Flammability Limits for Methane at 25°C 

FUEL 
Lower Flammability Limit (LFL) 

% by volume in air 
Upper Flammability Limit (UFL) 

% by volume in air 

Methane 5.5 14 

 

For pool fire scenarios, the radiation heat flux levels used in this study are 5 to 12.5 and 37.5 kW/m2. 

Table 7 provides a description of the type of damage resulting from exposure to each heat flux level. 

 

Table 7: Type of damage based on heat flux 

Incident heat flux kW/m2 Type of Damage 

35-37.5 
Damage to process equipment including steel tanks, chemical process 

equipment, or machinery 

25 Minimum energy to ignite wood at indefinitely long exposure without a flame 

18-20 Exposed plastic cable insulation degrades 

12.5-15 Minimum energy to ignite wood with a flame; melts plastic tubing 

5 
Permissible level for emergency operations lasting several minutes 

with appropriate clothing 
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4.1 Vapor Dispersion Zone 

Accidental Scenarios Results 

The vapor dispersion zones from an accidental breach of LNG tanks were calculated using PHAST for the 
following scenarios:  

 Accidental event leading to a 1-m2 hole size in a single tank of FLNGV 

 Accidental event leading to a 2-m2 hole size in a single tank of FLNGV 

The results from these events are summarized in Table 8 for lower flammability level (LFL) maximum 
distances.  Figure 7 portrays the distance surrounding each of the FLNGV locations for the larger 
accidental breach size. 

Table 8: LFL distances for 1 and 2 m2 single tank accidental breach 

Hole Size 
(m2) 

Tanks 
Breached 

Discharge 
Coefficient 

Distance to LFL 
55000 ppm (m) 

1 1 0.6 1792 

2 1 0.6 2297 

 

In the absence of a site-specific ship collision analysis, Delfin selected the larger of the guidance cases as 
the dimensioning accidental release case.  The Sandia guidance recognizes that ship collision risks are 
manageable with current policies and practices. 
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Figure 7: LFL effect zone (in blue) for accidental 2m2 single-tank breach from the FLNGVs  



Delfin LNG Spill Consequence Analysis Risknology, Inc. 

015-919.1-DELF-QRA-RPT-005  17 May 2016 

Intentional Scenario Results 

The vapor dispersion zones from an intentional breach of LNG tanks were calculated using PHAST for the 
following scenarios: 

 Intentional event leading to a 5-m2 breach in a single tank of FLNGV  

 Intentional event leading to a 12-m2 breach in a single tank of FLNGV  

 Intentional event leading to a 16-m2 breach in a single tank of FLNGV 

The results from these calculations are summarized in Figure 8 for distances to the lower flammability 
limit (LFL).  

Table 9: LFL distances for intentional breach events 

Hole Size 
(m2) 

Tanks 
Breached 

Discharge 
Coefficient 

Distance to LFL 
55000 ppm (m) 

5 1 0.6 3917 

12 1 0.6 5368 

16 1 0.6 5334 

 

Without an evaluation of site-specific intentional threats by security specialists, as is conducted in the 
first phase of a the US Coast Guard Independent Risk Assessment process following permitting, the 
proposed Delfin project elected to utilize definitions of the worst credible intentional releases congruent 
to those used in the proposed Port Ambrose LNG Deepwater Port project [13].  

Figure 8 presents the vapor dispersion distance from the largest single tank breach surrounding each of 
the FLNGV locations. It can be seen from Figure 8 that the LFL contours caused by an intentional event 
could potentially reach other Delfin FLNGVs, however other oil and gas production platforms and public 
use areas (e.g. Shipping Fairway) are not affected. Therefore, the Risk Management Process would 
ensure that the other Delfin facilities are notified to take appropriate action in the event of a major loss 
of containment. 
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Figure 8: LFL effect zones (in blue) for intentional 16m2 single-tank breach from the FLNGVs 
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Cascading Scenario Results 

According to the 2008 Sandia report, a multiple tank breach (considering up to three tanks spilling at the 
same time) is not considered a likely LNG spill, even for intentional threat scenarios. However such 
scenario is evaluated to provide a conservative estimation of possible cascading damage concerns. The 
threat scenarios provided in the Sandia guidance were developed in collaboration in intelligence agencies 
and included threats such as “attacks with explosives, attacks by boats and airplanes with and without 
explosives, underwater mines and explosives, as well as more sophisticated techniques”.  

The breach analysis performed by Sandia also takes into account that there is less waterway control and 
surveillance of ship operations on offshore locations. It should be noted that for offshore operations, 
Sandia recognizes that the remote location of the LNG facilities would represent a minimal impact to 
public safety or property from even the largest spill. 

The vapor dispersion zones from a cascading breach of LNG tanks were calculated using PHAST for the 
following scenarios: 

 Cascading event leading to a 5-m2 breach in three tanks of FLNGV 

 Cascading event leading to a 12-m2 breach in three tanks of FLNGV 

 
The results from these calculations are summarized in Table 10 for distances to the lower flammability 
limit (LFL).  

Table 10: LFL distances for cascading breach events 

Hole Size 
(m2) 

Tanks 
Breached 

Discharge 
Coefficient 

Distance to LFL 
55000 ppm (m) 

5 3 0.6 5615 

12 3 0.6 6575 

 

Without an evaluation of site-specific intentional threats by security specialists, as is conducted in the 
first phase of the US Coast Guard Independent Risk Assessment process following permitting, the 
proposed Delfin project elected to utilize a worst credible cascading event of a 12 m2 three-tank breach. 

Figure 9 shows the vapor dispersion distances to LFL for the three tank 12m2 breach spilling 
simultaneously from an FLNGV. Figure 9 includes the LFL contours originating from each FLNGV.    This 
distance reaches the shipping fairway, but does not reach any other oil and gas production platforms.  As 
the event evolves by cascading from an initial breach and fire, emergency notifications will prevent 
vessels using the shipping fairway of approaching the location impacted by an ongoing event at the Delfin 
port. 
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Figure 9: LFL effect zones (in blue) for cascading 12m2 three-tank breach from the FLNGVs 
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4.2 Thermal Exclusion Zone 

Accidental Scenarios Results 

Similar to the vapor dispersion analysis, the hazard distances for pool fires from an accidental breach of 
LNG tanks were calculated using PHAST for the following scenarios:  

 Accidental event leading to a 1-m2 hole size in a single tank of FLNGV 

 Accidental event leading to a 2-m2 hole size in a single tank of FLNGV 

The results from these events are summarized in Table 11 for heat radiation levels. Figure 10 portrays the 
distance surrounding each of the FLNGV locations for the larger accidental breach size. 

 

Table 11: Distances to flux radiation levels for accidental scenarios 

Hole Size 
(m2) 

Tanks 
Breached 

Discharge 
Coefficient 

Surface 
Emissive 
Power 

(kW/m2) 

Distance in (m) 

to 5  
kW/m2 

to 12.5 
kW/m2 

to 37.5 
kW/m2 

1 1 0.6 220 870 604 331 

2 1 0.6 220 1136 789 434 

 

 

Figure 10: Effect zone (in blue) for 5 kW/m2 radiation contour from a pool fire caused by accidental 2m2 
single-tank breach from the FLNGVs  
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Intentional Scenario Results 

The hazard distances for pool fires from an intentional breach of LNG tanks were calculated using PHAST 
for the following scenarios:  

 Intentional event leading to a 5- m2 breach in a single tank of FLNGV  

 Intentional event leading to a 12- m2 breach in a single tank of FLNGV  

 Intentional event leading to a 16- m2 breach in a single tank of FLNGV 

The results from these events are summarized in Table 12 for heat radiation levels. 

Table 12: Distances to flux radiation levels for intentional scenarios 

Hole Size 
(m2) 

Tanks 
Breached 

Discharge 
Coefficient 

Surface 
Emissive 
Power 

(kW/m2) 

Distance in (m) 

to 5  
kW/m2 

to 12.5 
kW/m2 

to 37.5 
kW/m2 

5 1 0.6 220 1576 1034 529 

12 1 0.6 220 2200 1451 753 

16 1 0.6 220 2194 1447 751 

 

The 5 kW/m2 is a maximum heat flux value commonly used for establishing fire protection distances for 
people in open areas.  

Distances to thermal radiation endpoints for the largest intentional single tank breach of 16 m2 is shown 
in Figure 11.   

None of the pool fire hazard scenarios evaluated reached another FLNGV, neighboring platform or the 
shipping fairway, therefore the analysis suggests that there would be a minimal impact to public safety 
from even a large spill from the FLNGVs. 
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Figure 11: Effect zone (in blue) for 5 kW/m2 radiation contour from a pool fire caused by intentional 
16m2 single-tank breach from the FLNGVs  
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Cascading Scenario Results 

The hazard distances for pool fires from an intentional breach of LNG tanks were calculated using PHAST 
for the following scenarios:  

 Cascading event leading to a 5-m2 breach in three tanks of FLNGV 

 Cascading event leading to a 12-m2 breach in three tanks of FLNGV 

The results from these events are summarized in Table 13 for heat radiation levels. 

 

Table 13: Distances to flux radiation levels for cascading breach events 

Hole Size 
(m2) 

Tanks 
Breached 

Discharge 
Coefficient 

Surface 
Emissive 
Power 

(kW/m2) 

Distance in (m) 

to 5  
kW/m2 

to 12.5 
kW/m2 

to 37.5 
kW/m2 

5 3 0.6 220 2394 1581 825 

12 3 0.6 220 2991 1985 1048 

 

The 5 kW/m2 is a maximum heat flux value commonly used for establishing fire protection distances for 
people in open areas.  

Distances to thermal radiation endpoints for the largest cascading three-tank breach of 12 m2 is shown in 
Figure 12. 

None of the pool fire hazard scenarios evaluated reached another FLNGV, neighboring platform or the 
shipping fairway, therefore the analysis suggests that there would be a minimal impact to public safety 
from even a large spill from the FLNGVs. 
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Figure 12: Effect zone (in blue) for 5 kW/m2 radiation contour from a pool fire caused by cascading 
event leading to a 12-m2 breach in three tanks of the FLNGVs 
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5 Validation and Sensitivity Analysis 

Comparison to Sandia Results 

A comparison was made between the results generated by PHAST with the same weather conditions as 
used in the Sandia guidance for the Delfin analysis and those of the Sandia 2008 report and the updated 
modeling guidance given in Sandia’s 2012 guidance.   The PHAST calculations are in very good agreement 
with the results given in the Sandia guidance.  The dispersion distances range from being within range to 
being over predicted by 4%.  The thermal radiation impact distances ranged from 0.3 – 11% over 
prediction and 5.6% under prediction for the lower radiation level, and from 1.3 – 9% over prediction and 
3.9% under prediction for the higher radiation level.  Using the updated Sandia guidance results in a 
reduction of 12-15% of the hazard distance calculated using PHAST for similar LNG pool sizes. 

Sensitivity Analysis to Weather Conditions 

Air temperatures over the open Gulf of Mexico exhibit narrow limits of variability. The average 
temperature over the center of the Gulf is about 29°C in the summer; winter temperatures range 
between 17°-23°C. The relative humidity over the Gulf is high throughout the year, minimum humidity’s 
occur during the late fall and winter when cold, continental air masses bring dry air into the northern 
Gulf.  The recording stations from Brownsville, Texas, to Key West, Florida, show the relative humidity 
varies annually from a high of 87% at 6:00 a.m. to a low of 44% at 12 noon.  A 10 m/sec. wind speed 
corresponds to the 95th percentile at the site. 

A sensitivity analysis examining the effect of historical 

 minimum temperature of 17°C, 

 minimum relative humidity of 44%, and 

 maximum wind speed of 10 m/s 

individually and in combination, was performed. 

For dispersion distance, relative humidity was the most significant parameter, resulting in a change in 
downwind dispersion distance increase over the baseline from 20-157% depending on release size.  This 
is because the moisture content in the air provides a massive heat sink to transfer heat to the natural gas 
vapor, and at lower levels of moisture content, the gas remains colder – and therefore heavier – longer 
and can travel downwind further before buoyant forces lift the plume.   

The next most significant parameter influencing dispersion distance was wind speed, with the potential 
effect of increasing the distance from 8-97%.  Base wind speed provides the driving force for transport of 
the vapor cloud downwind, as long as other competing mechanisms do not reduce the cloud 
concentration through mixing or diffusion. 

The least influential parameter influencing dispersion was the air temperature.  Reduction of the 
temperature from the average of 21.5 C to the minimum of 17 C resulted in no calculated increase in 
dispersion distance. 

The combined effects of both relative humidity and wind speed resulted in a slightly greater increase on 
dispersion distance than relative humidity alone, from 14-164% over 20-157%. 
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For thermal radiation at the lowest flux level of 5 kW/m2, the effect of each of the three parameters, 
individually and in combination resulted in an increase in the thermal flux endpoint of from 3-8%, which 
is well within the error of prediction of the model. 
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6 Conclusions 

• Based on the results of this study, thermal radiation levels generating from a dimension case pool 
fire do not reach other FLNGVs, platforms, or the shipping fairway - even in the case of the 
largest, cascading, three-tank 12m2 breach. 

• The planning basis for the Delfin Deepwater Port Application process should acknowledge 
thermal hazard zones of 865 m and 2258 m for high and low thermal radiation levels, 
respectively, for operational planning.  These distances are based on fire modelling conducted 
using validated models and according to the latest guidance [3] applicable to LNG Deepwater 
Ports. 

• Intentional and cascading scenarios resulted in greater distances to lower flammability limits of 
vapor clouds as well as all flux radiation levels. This is due to the greater breach sizes assumed for 
the intentional events. 

• The vapor dispersion distance to lower flammability limit (LFL) using 5.5% concentration for the 
16m2 breach of a single tank resulting from an intentional event is approximately 5334 m which 
has the potential to affect other FLNGVs, depending on multiple weather parameters such as 
wind speed and wind direction, but will not reach other platforms located within 10 miles from 
the FLNGVs or the shipping fairway.  This conclusion should be considered in the context that the 
scenario is a very low probability event given: 

o the fact that a large release of LNG is likely to be accompanied by an ignition source and 
result in a fire rather than dispersion of natural gas vapors over extended distances, 

o that if delayed ignition did occur at the location of encounter of an adjacent FLNGV, the flame 
front would burn back to its source and away from the neighboring facility, and  

o the exposure time of the neighboring facility to the flash fire thermal radiation would be 
insufficient to cause process escalation. 
 

• The vapor dispersion distance to lower flammability limit (LFL) using 5.5% concentration for the 
12m2 breach of three tanks resulting from a cascading event is approximately 6575 m.  This 
conclusion should be considered in the context that the scenario is an extremely low probability 
event and: 

o the event evolves by cascading from an initial breach and fire, therefore emergency 
notifications will prevent vessels using the shipping fairway of approaching the location 
impacted by an ongoing event at the Delfin port. 
 

• Sensitivity analysis has been performed, at the request of USCG, using the historically low values 
for temperature and relative humidity and a high value for wind speed.  The combined effects 
resulted in an increase on dispersion distance from 14-164% and in an increase in the 5 kW/m2 

thermal flux endpoint of from 3-8%. 
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Table 14: Consequence Analysis for Dimensioning Scenarios 

Result 
Scenario 1  

Cascading 

Scenario 3 

Intentional 

Scenario 1 

Accidental 

Breach Size (m2) 12 16 2 

Number of Tanks 3 1 1 

Total Capacity (m3) 79,299 26,433 26,433 

Release Quantity (m3) 61,275 24,967 24,967 

Flammable Vapor Cloud Dispersion (meters) (No ignition) 

Distance to LFL – 5.5% (m) 6575 5334 2297 

Pool Fire Maximum Distance to Endpoint (meters) (using SNL 2012 guidance) 

Distance to “Low” Radiative Flux – 5 kW/m2 (m)  3078 2258 1136 

Distance to “High” Radiative Flux – 37.5 kW/m2 (m) 1188 865 434 

Maximum Pool Diameter (m) 1101 728 336 
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Appendix A: LNG Spill Calculations 

Table A- 1 includes the definition of the different variables in the equations used.  

Table A- 1: Definition of variables used to calculate spill parameters 
 

Variable Definition 

At Cross sectional area of tank 

Ah Cross sectional area of hole 

m Mass of liquid in tank 

u velocity 

uo Effective velocity out of hole 

ht Height of the top surface of the liquid 

hi Initial height of liquid 

Cd Discharge coefficient 

V Volume of liquid 

 

The flow into the pool will change with time as the level in the tank changes since it is the hydrostatic 
pressure in the tank that drives the flow through the hole. Therefore the flow into the pool is equal to the 
flow from the tank which can be determined by calculating the change in liquid mass in the tank with 
time. Applying the continuity equation to the tank, the time rate of change of mass in the tank is 

𝑑𝑚

𝑑𝑡
= (𝜌𝐴𝑢)𝑖𝑛 − (𝜌𝐴𝑢)𝑜𝑢𝑡      (1) 

The variables are defined in Table A- 1, subscript (t) denotes conditions at the liquid surface in the tank 
and subscript (o) denotes the conditions at the hole. Since there is no addition of liquid into the tank the 
equation becomes 

𝑑𝑚

𝑑𝑡
= −(𝜌𝐴𝑢)𝑜𝑢𝑡       (2) 

and relating the mass of liquid in the tank at any time to its volume (which is area x height) and density, 
the equation becomes 

𝑑𝜌𝐴𝑡ℎ

𝑑𝑡
= −(𝜌𝐴𝑢)𝑜𝑢𝑡 .       (3) 

The discharge velocity at any time can be related to the height of the liquid in the tank at that time using 
Bernoulli’s equation,  

1

2
𝜌𝑢𝑡

2 + 𝑃𝑡 + 𝜌𝑔ℎ𝑡 =
1

2
𝜌𝑢𝑜

2 + 𝑃𝑜 + 𝜌𝑔ℎ𝑜.     (4) 

The boundary conditions are that the pressure at the surface of the liquid and the hole is atmospheric, 
the velocity of the surface is approximately zero and there is no depth in the liquid at the discharge point, 
the equation becomes 

𝜌𝑔ℎ𝑡 =
1

2
𝜌𝑢𝑜

2       (5) 
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and the discharge velocity is a function of the liquid height through 

𝑢𝑜 = 𝐶𝑑√2𝑔ℎ𝑡       (6) 

where a discharge coefficient has been added to account for losses at the hole. 

The height of the fluid at any time can be determined by using Equation (6) in (3) and integrating with 
initial conditions h=hi at t=0, to be  

𝑡 = √
2

𝑔

𝐴𝑡

𝐶𝑑𝐴ℎ
(√ℎ𝑖 − √ℎ)    (7) 

so the time to drain will be  

𝑡 = √
2

𝑔

𝐴𝑡

𝐶𝑑𝐴ℎ
(√ℎ𝑖) .     (8) 

As is clear in Equation (6) there is a linear relationship between the discharge velocity and the depth of 
the liquid. Therefore the average flow rate into the pool will be half of the initial rate so the average 
change of liquid volume with time is 

(
𝑑𝑉

𝑑𝑡
)
𝑎𝑣𝑔

= 1

2
𝐶𝑑𝐴ℎ√2𝑔ℎ𝑖  .    (9) 

 

For this analysis, it is assumed that the complete hole size area is available for the release of LNG which is 
stored in LNG cargo tanks at a temperature of -163 °C at a pressure of 1 bar.  Based on the Sandia Report, 
the hole sizes calculated from accidental breaches are less than 2 m2 and intentional scenarios range 
from 5 to 16 m2; therefore Risknology calculated the release consequences from the hole sizes shown in 
Table A- 2. The total time for discharge and average discharge flow rate were calculated based on 
guidance from Sandia as in the pool formation section. Based on a schematic drawing of the LNG vessel 
shown in Figure 6, Risknology considered a 18.78 m hydrostatic head of LNG above waterline and a 
discharge coefficient of 0.6 for all breaches analyzed. The parameters provided in Table A- 2 were used in 
PHAST dispersion modeling software in order to calculate the vapor dispersion along with heat radiations 
distances from potential pool fires.  

Table A- 2: Flow rates and times to drain 

Breach 
size 
(m2) 

Tanks 
Breached 

Average flow rate 
(kg/s) 

Tank Cross 
Sectional Area 

(m2) 

Time to 
drain (sec) 

1 1 2589.31 1016.7 3313 

2 1 5178.62 1016.7 1657 

5 1 12946.55 1016.7 663 

12 1 31071.71 1016.7 276 

16 1 41428.95 1016.7 207 

5 3 38839.64 1016.7 663 

12 3 93215.13 1016.7 276 
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Additional Response to Sandia National Laboratories Memorandum  

dated Sept. 16, 2016 Regarding the Report: 

Delfin LNG Project Spill Consequence Analysis; Revision 5 dated May 9, 2016 

A project response to the Sandia National Laboratories comments of August 24, 2016 was provided by 
Delfin and Risknology on September 8, 2016 to USCG and Sandia National Laboratory (SNL).  The data 
and information provided was believed to be sufficient to resolve understanding of the modeling 
approach and provide the required consequence analysis.  An additional request for supplemental data 
was provided from USCG/SNL on September 19.  A teleconference meeting was held September 20, 
2016 with USCG, SNL, Delfin and Risknology to review additional data requested.  Final agreement on 
the additional data required by the USCG was defined in email communication between Delfin and the 
USCG. The required information is, for all 7 release scenarios: 

• Thermal radiation distances for threshold flux values (5, 12.5 and 37.5 kW/m2) calculated using 
specified conditions which compare to previous project submittals, and generate worst credible 
consequences (10 m/sec wind speed, 17C temperature and 44% relative humidity) 

• Vaporization rates, burn rates, fire durations 

PHAST ver. 7.2, provided by DNVGL was used to perform the additional evaluation.  Table 1 presents a 
combination of previously provided results and supplemental calculated values associated with seven 
(7) pool fire scenarios for the proposed Delfin project which are defined in Reference 1 of the report.  
The table presents for each scenario; equilibrium pool spread dimension (the radius at which the mass 
flux into the pool equals the vaporization rate mass flux out of the pool), burn rate of the vapor fuel 
source term averaged over the complete consumption of the spilled mass, spill duration, burn duration 
and flame angle (used in the solid flame model).  The release coefficient for all releases was 0.6, and the 
surface emissive power for all releases was 220 kW/m2). 

 

Table 1: Calculated Quantities for Pool Fire Scenarios 

 

Hole Size 
[m2]

Number 
Tanks 

Breeched

Maximum 
Vaporization 

Rate 
[kg/sec]

Average 
Burn Rate 
[kg/sec]

Spill Mass 
[kg]

Spill 
Duration 

[sec]

Burn 
Duration 

[sec]

Pool 
Diameter 

[m]

Flame 
Angle 

[degrees]

Distance to 
5 kW/m2 

[m]

Distance to 
12.5 kW/m2 

[m]

Distance to 
37.5 kW/m2 

[m]

1 1 4220 11940 1E+07 2461 878 207 46.0 943 664 424

2 1 10792 24346 1E+07 1230 431 295 43.8 1239 872 553

5 1 53295 61511 1E+07 428 170 470 40.9 1775 1251 788

12 1 79491 149016 1E+07 205 70 732 38.1 2491 1761 1102

16 1 77332 148015 1E+07 154 71 730 38.1 2486 1757 1100

5 3 44478 186577 2.6E+07 492 138 819 37.4 2715 1920 1200

12 3 79491 338071 2.6E+07 205 76 1105 35.4 3409 2417 1507
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PHAST ver. 7.2, provided by DNVGL, is a set of integrated physical models for use in hazard analysis, 
including;  

• liquid and multi-phase discharge, which represents calculates droplet formation and liquid 
rainout, pool spreading and vaporization 

• unified dispersion model (UDM) which represents jet, heavy and passive dispersion phases, 
buoyancy, interaction with the substrate, plume lift-off, and capping at the mixing/inversion 
layer 

• models for thermal radiation from fire and explosion overpressure effects.  The fire physics 
include jet fire, based on API and frustum models, and pool fire, based on Roberts (HSE) and 
TNO (Yellow Book) models.  The explosion physics include TNT, TNO Multi-Energy and Baker 
Strehlow models. 
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