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ACRONYMS AND ABBREVIATIONS 
 

 

 

Port Delfin LNG Project Delfin LNG, LLC’s liquefied natural gas project, including all onshore 
and offshore components 

Delfin LNG Delfin LNG, LLC; also the Applicant 

Port Delfin the offshore component of the Port Delfin LNG Project consisting of the 
floating liquefied natural gas vessels, foundations, and underwater 
elements 

DOF Delfin onshore facilities; the onshore component of the Port Delfin LNG 
Project, consisting of an onshore pipeline, a compressor station, a supply 
header, and a meter station, located in Cameron Parish, Louisiana 

DWP deepwater port 

DWPA Deepwater Port Act of 1974, as amended 

FERC Federal Energy Regulatory Commission; also the Commission 

FLNGV floating liquefied natural gas vessel 

FTA Free Trade Agreement 

HIOS High Island offshore system 

hp  horsepower 

kW kilowatt 

LNG  liquefied natural gas 

MARAD Maritime Administration 

NGA Natural Gas Act 

OCA Outer Continental Shelf 

SE-EPPC Southeast Exotic Pest Plant Council 

UTOS U-T offshore system 

USCG U.S. Coast Guard 
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1 INTRODUCTION 
Delfin LNG LLC (Delfin LNG; also the Applicant), a Louisiana limited liability company, is 

proposing to develop a deepwater port (DWP) terminal (referred to herein as Port Delfin) and associated 
offshore pipeline (collectively, the DWP) in the Gulf of Mexico to serve the liquefied natural gas (LNG) 
export market, all as more fully described in Delfin’s application for authorization from the Secretary of 
Transportation, as delegated to the Maritime Administration (MARAD) and the United States Coast 
Guard (USCG), pursuant to the Deepwater Port Act of 1974, as amended (DWPA).  The Delfin onshore 
facilities (DOF) and DWP are referred to collectively as the Project (Project).  

In connection with the Project, Delfin is seeking authorization from the Federal Energy 
Regulatory Commission (FERC) (or the Commission) under Section 7(c) of the NGA to site, construct, 
and operate the DOF, which includes onshore pipelines and associated metering and compression 
facilities, the primary purpose of which is to measure and deliver gas into the offshore pipeline for the 
DWP.  The DOF comprises the following facilities on the landward side of the mean, high water mark in 
Cameron Parish, Louisiana: 

Onshore UTOS Pipeline.  The UTOS pipeline is an existing approximately 1.1 mile section of 
the onshore portion of the former UT offshore system (UTOS)1 pipeline, located landward of the high 
water mark to Transcontinental Gas Pipe Line, LLC (Transco) Station 44, that will be reactivated.  Other 
existing appurtenant facilities associated with the former UTOS pipeline include a mainline block valve 
and blowdown site located south of Louisiana Highway 82.   

Meter Station.  Delfin proposes to install a new meter station located on the Transco Station 44 
property that will meter and regulate pipeline-quality gas, to be supplied by interconnections with existing 
natural gas pipelines at Transco Station 44, which include the ANR Pipeline Company, the Natural Gas 
Pipeline Company of America, the Tennessee Gas Pipeline, and Transco.  The meter station and 
interconnecting piping will be located entirely within the fence of the existing Transco Station 44 
property. The meter station would meter all supply gas entering the facility from the supply gas header.   

Supply Header.  A new supply header would connect the meter station at Transco Station 44 and 
the new compression site, consisting of 0.25 mile of new 42-inch pipeline to connect the former UTOS 
pipeline to the new metering facilities and 0.6 mile of new 30-inch twin pipelines. 

Compressor Station.  The compressor station would consist of the following equipment or 
facilities: 

 Four 32,000 horsepower ISO-rated (hp) Solar Titan 250 gas turbine-driven compressors  

 Three 600 kilowatt (kW) Waukesha VHP 3604 generators with Waukesha F3524GSI engines 

 Two control buildings 

 Office and warehouse buildings 

 Pig launcher 
                                                            
1  As set forth more fully in the Application, the UTOS pipeline system was formally abandoned by its prior owner, 

Enbridge, and no longer exists as a legal entity. The naming convention is retained for ease of reference but technically 
describes the “former UTOS” pipeline system that is now owned by Delfin Offshore Pipeline LLC, a wholly owned 
subsidiary of Delfin LNG LLC, “the Applicant.” 
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 Check meter. 

The location of the facilities is more fully set forth in Exhibit F to the Application. Section 1.3, 
RR 1, describes the DOF in greater detail. Figure 1.2-2 in RR 1 provides an aerial overview of the DOF.  

The entirety of the DOF facilities and associated temporary construction activities would be 
located within the boundaries of existing rights-of-way (ROWs) on land already devoted to energy 
infrastructure use.  Specifically, the meter station and interconnecting piping will be located within an 
approximately 200-foot by 150-foot fenced, graveled area on Transco’s Station 44.  The two new 30-inch 
supply header pipelines and associated pipeline ROW will stay within the boundaries of the PSI 
Midstream Partners, L.P. Cameron Meadows Gas Plant (PSI), on property to be owned by Delfin LNG, 
and the adjacent Transco Station 44 property, all in Cameron Parish, Louisiana. Delfin LNG has executed 
a letter of intent with PSI to purchase the property on which the compressor station would be located and 
anticipates entering into an easement agreement for the supply header on PSI-owned property.  Delfin 
LNG currently owns lease rights to construct and operate facilities at Transco Station 44. 

The Project’s offshore pipeline (which is not subject to Commission jurisdiction but is described 
here to provide context) includes the portion of the former UTOS pipeline beginning at the seaward side 
of the mean high water mark, connecting via a 700-foot bypass to the High Island Offshore System, LLC 
(HIOS) pipeline at West Cameron Block 167, and extending via the HIOS pipeline to the proposed Port 
Delfin and beyond (terminating at High Island Block A264).  No separate facilities delineate the point of 
jurisdictional distinction between the on-shore pipeline subject to the Commission’s jurisdiction and the 
remainder of the former UTOS pipeline that continues offshore and that will be part of the DWP.   

The Project would provide a new use for existing gas pipelines that were historically used to 
transport offshore natural gas production to shore.  Feed gas would be transported through the former 
UTOS pipeline now owned by Delfin LNG.  At the terminus of that pipeline, the gas would bypass the 
existing manifold platform located at WC 167 approximately 28.4 miles offshore in the Gulf of Mexico 
and continue on to the existing 42-inch-diameter HIOS pipeline.  The new WC 167 bypass would be a 
sub-sea 42-inch diameter pipeline approximately 700-feet long directly connecting the former UTOS to 
HIOS.   The UTOS portion of this pipeline system is currently idled, isolated, and preserved (in a manner 
such that it can be fully returned to active service), and was placed in this mode in accordance with all 
applicable regulations due to declining offshore production in the general area. The presently operating 
HIOS system is underutilized for similar reasons and HIOS, LLC (which is owned by Genesis Energy 
LP2) and Delfin LNG have entered into a Pipeline Services Agreement providing Delfin LNG the 
exclusive right to utilize the HIOS pipeline from WC 167 to HI A264 as part of its Project (with no other 
shippers). HIOS is filing an application, contemporaneously with this Amended Application, with the 
FERC to abandon its FERC-jurisdictional services over the pipeline to allow for this new use of its 
pipeline as part of the Project. 

The primary purpose of the Project is to provide a safe and reliable facility to liquefy natural gas 
that Delfin LNG’s customers will export to free trade agreement (FTA) and non-FTA nations.  Port 
Delfin would consist of four moored, floating, LNG vessels (FLNGVs) capable of receiving the pipeline-
quality feed gas from the offshore pipeline, cooling it to produce LNG, storing the LNG within internal 
tanks onboard each of the FLNGVs, and loading the LNG onto trading carriers through ship-to-ship 
transfer for export.  The purpose of the DOF is to receive gas from the interstate pipeline grid and deliver 
it into the DWP.  

                                                            
2  Genesis Energy LP recently acquired Enterprise Products Partners’ offshore pipelines and services in the Gulf of Mexico.  

Genesis operations include inshore and offshore pipeline transportation, marine transportation, and supply and logistics. 
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2 CHINESE TALLOW TREE 
Under Louisiana Revised Statute 3:1791, one noxious plant is listed, the Chinese tallow tree 

(Sapium sebiferum).  The presence of the Chinese tallow tree was noted throughout the proposed forested 
areas of the DOF during field surveys conducted in December 2014 and January 2015.  Active control of 
this species is required to prevent it from dominating the areas that will be disturbed during 
construction.  The noxious plant control measures in this plan will be implemented and procedures will 
be coordinated with concurrence of the landowners. 

Due to the presence of the Chinese tallow tree at the DOF, there is concern that this invasive 
species will establish and spread along portions of the construction footprint, including the construction 
areas during site restoration and revegetation.  This document presents the control plans that Delfin LNG 
has developed to prevent establishment and spread of the Chinese tallow tree in areas that will be 
disturbed during construction activities. 

The following sections provide detailed information about the Chinese tallow tree, including 
identification, growth cycle, and control methods that will be implemented by year. 

2.1 Status and Background Information 

The Chinese tallow tree is an aggressive woody invader of wetland, coastal, and disturbed 
habitats and has been shown to reduce native species diversity and richness and alter ecosystem structure 
and functionality in natural areas.  The Chinese tallow tree was introduced into the United States from 
Japan and China, first as a seed oil crop in the late eighteenth century and then later as an ornamental. 

The Chinese tallow tree is an early successional tree with life history traits that enable it to thrive 
in unstable or unpredictable environments; these traits include high fecundity, relatively small size, short 
generation time, and the ability to disperse propagules widely.  It is a superior competitor in its new 
range, has virtually no specialist herbivore or pathogen loads, can readily occupy “vacant niches,” and 
can alter ecosystem processes such as nutrient cycling and stand structure.  In Louisiana, the Chinese 
tallow tree has been shown to convert herbaceous coastal prairies into closed canopy tallow forests within 
a decade of establishment, if not controlled (Bruce et al. 1995).  The species description and control 
information provided below was adapted from the Southeast Exotic Pest Plant Council (SE-EPPC) 
guidelines (2008). 

2.1.1 Summary 
The Chinese tallow tree is a small to medium-sized deciduous tree in the Euphorbiaceae (Spurge) 

family.  It is monoecious, producing male and female flowers on the same plant.  As with many 
species in the Euphorbia family, t h e  tallow tree is toxic to animals and humans.  The white sap may 
be a skin irritant.  It is native to China and Japan where the waxy outer covering of the seed is used for 
machine oil, soap making, fuel oil, and many other uses. 

The Chinese tallow tree represents a significant invasive species problem in many areas of 
Louisiana and across the southern United States.  It adversely affects the diversity of native plants 
by invading and eventually dominating habitats ranging from marshes, to coastal prairies, to river 
bottoms, to upland forests, as well as disturbed sites and abandoned agricultural fields.  The tree prefers 
wet soils but is very adaptable. 
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The Chinese tallow tree can turn areas into a single-species forest.  It has been widely planted as 
an ornamental tree in many parts of Louisiana, but this practice is discouraged.  The rapid forestation 
of the Chinese tallow tree has contributed significantly to the degradation of wetlands along the Gulf 
Coast.  It is believed that the tree may alter soil chemistry, allowing the species to self-perpetuate once 
established. 

Insects, diseases, and other natural enemies have little if any impact on Chinese tallow tree.  
Cattle and horses will not graze on it.  Although it is subject to freeze damage, freezes rarely kill the 
roots.  Cold temperatures, however, will prevent this tree from becoming a significant problem in 
northern portions of its range in the United States. 

Research is being conducted to find ways to effectively control Chinese tallow trees without 
causing environmental harm.  Fire can successfully eliminate small trees, but large trees tend to re-sprout 
in burn areas and fire may exacerbate infestations (McCormick 2005).  Knocking down the trees with 
grading equipment is not effective if roots remain to allow prolific sprouting.  The entire tree system 
should be removed when possible.  Debris should be segregated for off-site disposal.  Herbicides will 
provide temporary control, but repeated applications are necessary. 

2.1.2 Characteristics 
Height. Chinese tallow tree can reach a height of 15 meters at maturity. 

Leaves. The leaves are rhombic ovate, 4 to 7 centimeters long and 3.5 to 6 centimeters wide.  
The tip of the leaf is acuminate (pointed) with a rounded to truncate (flattened) base.  The leaf surface is 
glabrous with smooth margins and prominent venation.  The leaf stalks are 2 to 5 centimeters long with 
two prominent glands just below the leaf.  Leaves are placed alternately on the stem. 

Flowers. The terminal flowers are in greenish-yellow spike-like bundles.  The staminate (male) 
flowers occur in fascicles of 3 to 15 on the upper portion of the flower.  The solitary pistillate (female) 
flowers are on pedicels at the base of the spike. 

Fruit. The 1- to 1.3-centimeter capsule has three locules (compartments) turning from green to 
black upon maturity.  The capsule walls are eventually shed, exposing the seeds. 

Seeds. The three seeds per capsule are round, white, and 7 to 8 millimeters in size. 

2.1.3 Life History 
Growth initiates in early spring and flowers are produced from March through May.  Flowering 

can begin when the trees are 1 meter tall, which may be as early as three years of age, depending on 
growing conditions.  The male and female seed clusters mature at different times.  Variation is seen 
between sub-populations as to which type matures first.  This contributes to the high genetic diversity of 
this species.  The seeds mature in late summer to fall.  Seeds are produced annually and each tree has the 
potential of bearing 100,000 seeds.  Trees remain productive throughout their lives, which is commonly 
up to 25 years, although trees of 100 years of age have been recorded.  Seeds are distributed primarily 
via birds and water.  Trees readily re-sprout from stumps and rootstocks. 

2.1.4 Origin and Distribution 
The Chinese tallow tree was introduced into the United States in the 1700s in South Carolina.  

It was distributed in the Gulf Coast in the 1900s by the U.S. Department of Agriculture in an attempt 
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to establish a soap-making industry.  Current distribution includes all of the Southeastern United States 
from Texas to Florida and from North Carolina to Arkansas, and it was recently discovered in California. 

2.1.5 Similar Species 
The Chinese tallow tree resembles several species of poplar (Populus sp.) trees.  The main 

distinguishing feature is that the tallow tree has smooth margins on the leaves while poplar leaves are 
serrated. 

2.1.6 Habitat 
Tallow tree prefers mesic to hydric soils, but it can tolerate a wide range of soil conditions.  It is 

commonly found in bottomlands, old fields, coastal prairies, and riparian areas.  It can become 
established in shaded areas and is capable of spreading into undisturbed as well as disturbed areas; it is 
tolerant of periodic flooding and exposure to saltwater. 

2.2 Control Plan 

2.2.1 Control Field Personnel Qualifications 
The Chinese tallow tree control plan requires mechanical (cutting and hand pulling) and 

potentially chemical treatment to effectively remove this species during site preparation.  Chinese tallow 
tree control field personnel will be trained to identify Chinese tallow tree and use the prescribed 
mechanical and chemical treatment procedures.  Additionally, these individuals will have the applicable 
training and registration to purchase, handle, and apply regulated herbicides used for Chinese tallow tree 
control. 

An accompanying health and safety plan will be developed and implemented in conjunction with 
this control plan.  The control methods specified in this plan will be implemented as appropriate.  Control 
of Chinese tallow tree within the permitted construction workspace will be in accordance with landowner 
agreements. 

2.2.2 Mechanical Control 
Grading and topsoil segregation construction techniques typically leave Chinese tallow trees 

systems behind, which allows for prolific re-sprouting.  The entire tree system should be removed when 
possible.  Vegetative debris containing Chinese tallow tree or its seeds should be segregated from other 
plant material for off-site disposal.  Rootstock should be ground if on-site disposal is required. 

Field personnel will cut any remaining Chinese tallow trees found within the workspaces at 
ground level with power equipment or manual saws (SE-EPPC 2008).  Debris will be gathered and 
transported to an approved off-site disposal facility. 

Cutting is most effective when trees have begun to flower to prevent seed production. Because 
Chinese tallow tree spreads by suckering, re-sprouts are common after treatment.  Cutting is an initial 
control measure and will require either an herbicidal control or repeated cutting of re-sprouts. 

2.2.3 Herbicidal Control 
Reports indicate that spring herbicide application may not be successful, and late summer to early 

fall herbicide applications should be employed to translocate (i.e., transport the herbicide into the root 
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system by natural circulation within the plant) the herbicide into the plant most effectively (The Nature 
Conservancy 2011). 

Herbicide applications should be used when the species has been cut and removed but the stump 
is left in place.  Stump treatments can be used as long as the ground is not frozen.  It is common practice 
to use diesel or other oil as an application medium for several herbicides; however, Delfin LNG will not 
use diesel for herbicide applications.  This stump treatment method would likely be utilized in wetland 
areas where it is desirable to leave woody plant root systems in place for soil stabilization during 
construction.  Herbicides used and treatment method are as follows: 

Glyphosate:  Horizontally cut stems at or near ground level.  Immediately apply a 50 percent 
solution of glyphosate and water to the cut stump, covering the outer 20 percent of the stump (SE-EPPC 
2008).  Since glyphosate is non-selective, it is very important to protect the surrounding desirable plants.  
Thus, a sponge or similar discrete application method will be used to apply the glyphosate solution.  The 
water mixed with glyphosate must be free of dirt because this herbicide binds tightly to soil clay and 
organic matter and the effectiveness of the application would be reduced. 

Triclopyr:  Horizontally cut stems at or near ground level.  Immediately apply a 50 percent 
solution of triclopyr and water to the cut stump, covering the outer 20 percent of the stump (SE-EPPC 
2008).  In areas where desirable grasses are growing under and around Chinese tallow, the SE-EPPC 
(2008) reports that triclopyr can be used without non-target damage. 

2.2.4 Chinese Tallow Sapling Control 
Chinese tallow is effectively controlled by removal of young seedlings; hand- or machine-pulling 

of seedlings and saplings provides excellent control.  Plants should be pulled as soon as they are large 
enough to grasp but before they produce seeds.  Seedlings are best pulled after a rain when the soil is 
loose.  The entire root must be removed since broken fragments may re-sprout (SE-EPPC 2008). 

2.2.5 Chinese Tallow Control Frequency 
Because Chinese tallow is a successful invasive species, there is always a potential for the plant 

to establish.  However, the goal of this plan is to allow native and other desirable plants sufficient 
opportunity to establish within areas disturbed during construction. 

Prior to construction.  A pre-construction survey within the construction footprint was 
conducted.  Chinese tallow trees were noted throughout the site. 

During construction.  Delfin LNG will conduct cutting and on-site burning or off-site disposal 
of debris during construction preparation activities. 

During construction demobilization.  Delfin LNG will apply chemical (herbicide) treatment 
as described above during construction demobilization.  Delfin LNG will record treatment locations and 
herbicide(s) volumes used during this effort. 

Post-construction – Late-summer.  Delfin LNG will apply a final chemical (herbicide) 
treatment to stumps and roots exhibiting sprouts.  In addition, saplings will be removed by pulling as 
described above.  Delfin LNG will record treatment locations and herbicide(s) volumes used during this 
effort. 
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Appendix A 
Herbicide Information Sheets 

 

Glycosphate and Triclopyr 
(Source: Tu, Hurd, and Randall 2001) 
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GLYPHOSATE 
 
M. Tu, C. Hurd, R. Robison & J.M. Randall 
 
 

Herbicide Basics 
 
Chemical formula: N- 
(phosphonomethyl) glycine 
 

Herbicide Family: 
None generally recognized 
 

Target Species: most annual 
and perennial plants 
 

Forms: salts 
 

Formulations: SL, EC 
 

Mode of Action: amino acid 
synthesis inhibitor 
 

Water Solubility: 
900,000 ppm 

 

Adsorption potential: high 
 

Primary degradation mech: 
slow microbial metabolism 
 

Average Soil Half-life: 
47 days 

 

Mobility Potential: low 
 

Dermal LD50 for rabbits: 
>5,000 mg/kg 

 

Oral LD50 for rats: 
5,600 mg/kg 

 

LC50 for bluegill sunfish: 
120 mg/L 
 

Trade Names: RoundUp®, 
RoundUp-Pro®, Rodeo®, 
GlyPro®, Accord®, 
Glyphomax®, Touchdown®

 
 

Manufacturers: Monsanto, 
Cenex/Land O’Lakes, Dow 
AgroSciences, Du Pont, 
Helena, and Platte. 

Synopsis 
 

Glyphosate is a non-selective, systemic herbicide that can 
control most annual and perennial plants.  It controls weeds 
by inhibiting the synthesis of aromatic amino acids necessary 
for protein formation in susceptible plants.  Glyphosate is 
strongly adsorbed to soil particles, which prevents it from 
excessive leaching or from being taken-up from the soil by 
non-target plants.   It is degraded primarily by microbial 
metabolism,   but   strong   adsorption   to   soil   can   inhibit 
microbial metabolism and slow degradation.   Photo- and 
chemical degradation are not significant in the dissipation of 
glyphosate from soils.  The half-life of glyphosate ranges 
from several weeks to years, but averages two months.  In 
water, glyphosate is rapidly dissipated through adsorption to 
suspended and bottom sediments, and has a half-life of 12 
days to ten weeks.  Glyphosate by itself is of relatively low 
toxicity to birds, mammals, and fish, and at least one 
formulation  sold  as  Rodeo®  is  registered  for  aquatic  use. 
Some surfactants that are included in some formulations of 
glyphosate, however, are highly toxic to aquatic organisms, 
and these formulations are not registered for aquatic use. 
Monsanto’s patent for glyphosate expired in 2000, and other 
companies are already selling glyphosate formulations. 
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Herbicide Details 
 
Chemical Formula: N-(phosphonomethyl) glycine 
 
Trade Names: Monsanto discovered and held the patent for glyphosate, and was for many years, 
the only company that manufactured and sold this herbicide. The patent expired in 2000, 
however, and already several other companies are making and selling glyphosate formulations. 
Some of the current trade names include: Roundup Ultra®, Roundup Pro®, Accord®, Honcho®, 
Pondmaster®, Protocol®, Rascal®, Expedite®, Ranger®, Bronco®, Campain®, Landmaster®, and 
Fallow Master® by Monsanto; Glyphomax® and Glypro® by Dow AgroSciences; Glyphosate 
herbicide by Du Pont; Silhouette® by Cenex/Land O’Lakes; Rattler® by Helena; MirageR® by 
Platte; JuryR® by Riverside/Terra; and Touchdown® by Zeneca. As of November 2001, Rodeo® 

(previously manufactured by Monsanto) is now being manufactured by Dow AgroSciences and 
Monsanto is now producing Aquamaster®. 
 
Manufacturers: Current manufacturers include Monsanto, Cenex/Land O’Lakes, Helena, Platte, 
Riverside/Terra, Dow AgroSciences, and Zeneca. 
 
 
 
Use Against Natural Area Weeds: Glyphosate is a broad-spectrum, nonselective systemic 
herbicide that kills or suppresses many grasses, forbs, vines, shrubs, and trees.  Care should be 
taken, especially in natural areas, to prevent it from being applied to desirable, native plants, 
because it will likely kill them.  In terrestrial systems, glyphosate can be applied to foliage, green 
stems, and cut-stems (cut-stumps), but cannot penetrate woody bark (Carlisle & Trevors 1988). 
Only certain formulations of glyphosate (e.g., Rodeo®) are registered for aquatic use, as glyphosate 
by itself is essentially non-toxic to submersed plants (Forney & Davis 1981), but the adjuvents 
often sold with glyphosate may be toxic to aquatic plants and animals. 
 
Glyphosate is one of the most commonly used herbicides in natural areas, because it provides 
effective control of many species.  Natural area weeds that have been controlled with glyphosate 
include: bush honeysuckle (Lonicera maackii), cogon grass (Imperata cylindrica), common 
buckthorn (Rhamnus cathartica), glossy buckthorn (Frangula alnus), Japanese honeysuckle 
(Lonicera japonica), and smooth brome (Bromus inermis).  In TNC preserves, glyphosate has been 
used to control dewberries (Rubus spp.), bigtooth aspen (Populus grandidentata), and black cherry 
(Prunus serotina) at Kitty Todd preserve in Ohio, sweetclover (Melilotus officinalis) in Indiana 
preserves, leafy spurge (Euphorbia esula) and St. John’s wort/Klamath weed 
(Hypericum perforatum) in Michigan preserves, and bindweed (Convolvulus arvensis) and 
velvetgrass (Holcus lanatus) in Oregon and Washington preserves. 
 
In aquatic or wetland systems, glyphosate has successfully controlled common reed (Phragmites 
australis) in Delaware, Michigan, and Massachusetts preserves, purple loosestrife (Lythrum 
salicaria) in Indiana and Michigan preserves, reed canarygrass (Phalaris arundinacea) in 
Illinois preserves, and glossy buckthorn (Frangula alnus) and hybrid cattail (Typha x glauca) in 
Michigan preserves. 
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Mode of Action: Glyphosate kills plants by inhibiting the activity of the enzyme 5- 
enolpyruvylshikimic acid-3-phosphate synthase (EPSP), which is necessary for the formation of 
the aromatic amino acids tyrosine, tryptophan, and phenylalanine.  These amino acids are 
important in the synthesis of proteins that link primary and secondary metabolism (Carlisle & 
Trevors 1988).  EPSPs are present in the chloroplast of most plant species, but are not present in 
animals.  Animals need these three amino acids, but obtain them by eating plants or other 
animals. 
 
Glyphosate is therefore, relatively non-toxic to animals (Monsanto Company 1985).  Certain 
surfactants or other ingredients that are added to some glyphosate formulations are toxic to fish 
and other aquatic species (EXTOXNET 1996). 
 
Glyphosate can also act as a competitive inhibitor of phosphoenolpyruvate (PEP), which is one 
of the precursors to aromatic amino acid synthesis.  It also affects other biochemical processes, 
and, although these effects are considered secondary, they may be important in the total lethal 
action of glyphosate. 
 
Dissipation Mechanisms: 
Summary: Glyphosate is degraded primarily by microbial metabolism.  Glyphosate is believed to 
be susceptible to photodegradation (Lund-Hoie & Friestad 1986), but the extent to which this 
occurs is uncertain.  Glyphosate is not significantly degraded by other chemical mechanisms in the 
field.  Glyphosate is strongly adsorbed to soil, which can slow microbial metabolism but prevents 
excessive movement in the environment.  Glyphosate is non-volatile (T. Lanini, pers. obs). 
 
Volatilization 
Glyphosate does not volatilize readily when applied in the field (T. Lanini, pers. obs.). 
 
Photodegradation 
Although originally thought to be unaffected by sunlight (Rueppel et al. 1977), later studies found 
glyphosate to be susceptible to photodegradation (Lund-Hoie & Friestad 1986; Carlisle & Trevors 
1988).  Lund-Hoie and Friestad (1986) reported a half-life of four days for glyphosate in 
deionized water under UV light. 
 
Microbial Degradation 
Glyphosate is degraded primarily by microbial metabolism.  Two steady rates of degradation 
have been identified (Rueppel et al. 1977).  It has been hypothesized that the more rapid rate of 
degradation represents the metabolism of unbound glyphosate molecules, while the slower rate 
represents the metabolism of glyphosate molecules bound to soil particles (Nomura & Hilton 
1977; Rueppel et al. 1977).  The degradation of glyphosate is slower in soils with a higher 
adsorption capacity.  Degradation rate was also affected by the particular microbial community 
of each soil (Carlisle & Trevors 1988; Malik et al. 1989).  The primarily metabolite of 
glyphosate is aminomethylphosphonic acid, which is non-toxic and degraded microbially at a 
somewhat slower rate than the parent compound (Nomura & Hilton 1977; Rueppel et al. 1977; 
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Carlisle & Trevors 1988).   A number of other minor, biodegradable metabolites have also been 
identified. 
 
Adsorption 
Glyphosate is water-soluble, but it has an extremely high ability to bind to soil particles. 
Adsorption of glyphosate increases with increasing clay content, cation exchange capacity, and 
decreasing soil pH and phosphorous content (Sprankle et al. 1975a,b; Hance 1976; Nomura & 
Hilton 1977; Rueppel et al. 1977; Glass 1987).  Glyphosate is adsorbed to soil particles rapidly 
during the first hour following application and slowly thereafter (Sprankle et al. 1975b).  Strong 
adsorption to soil particles slows microbial degradation, allowing glyphosate to persist in soils and 
aquatic environments.  Because glyphosate rapidly binds to soils, it has little or no herbicidal 
activity (“killing power”) once it touches soil (Sprankle et al. 1975a; Hance 1976; Nomura & 
Hilton 1977).  Glyphosate can also be inactivated by adsorption if mixed with muddy water. 
 
Adsorption prevents glyphosate from being mobile in the environment except when the soil 
particles themselves are washed away (Sprankle et al. 1975b; Rueppel et al. 1977; Roy et al. 
1989a).  Comes et al. (1976) found that glyphosate sprayed directly into a dry irrigation canal 
was not detectable in the first irrigation waters flowing through the canal several months later, 
although glyphosate residues remained in the canal soils.  In most cases, glyphosate is quickly 
adsorbed to suspended and bottom sediments (Feng et al. 1990). 
 
Chemical Decomposition 
Glyphosate is not readily hydrolyzed or oxidized in the field (Rueppel et al. 1977; Anton et al. 
1993; Zaranyika & Nyandoro 1993). 
 
Behavior in the Environment 
Summary: Glyphosate binds readily with soil particles, which limits its movement in the 
environment. It is degraded through microbial metabolism with an average half-life of two 
months in soils and two to ten weeks in water.  In plants, glyphosate is slowly metabolized. 
 
Soils 
Glyphosate is highly water soluble, but unlike most water-soluble herbicides, glyphosate has a 
very high adsorption capacity.  Once glyphosate contacts soil it is rapidly bound to soil particles 
rendering it essentially immobile (Roy et al. 1989a; Feng & Thompson 1990).  Unbound 
glyphosate molecules are degraded at a steady and relatively rapid rate by soil microbes (Nomura 
& Hilton 1977; Rueppel et al. 1977).  Bound glyphosate molecules also are biologically degraded 
at a steady, but slower rate.  The half-life of glyphosate in soil averages two months but can range 
from weeks to years (Nomura & Hilton 1977; Rueppel et al. 1977; Newton et al. 1984; Roy et al. 
1989a; Feng & Thompson 1990; Anton et al. 1993).  Although the strong adsorption of 
glyphosate allows residues to persist for over a year, these residues are largely immobile and do 
not leach significantly.  Feng and Thompson (1990) found that >90% of glyphosate residues were 
present in the top 15 cm of soil and were present as low as 35 cm down the soil column in only 
one of 32 samples.  Adsorption to soil particles prevents glyphosate from being taken-up by the 
roots of plants. 
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Water 
 
Because glyphosate binds strongly to soils, it is unlikely to enter waters through surface or sub- 
surface runoff except when the soil itself is washed away by runoff, and even then, it remains 
bound to soil particles and unavailable to plants (Rueppel et al. 1977, Malik et al. 1989).  Most 
glyphosate found in waters likely results from runoff from vegetation surfaces, spray drift, and 
intentional or unintentional direct overspray.  In most cases, glyphosate will dissipate rapidly 
from natural water bodies through adsorption to organic substances and inorganic clays, 
degradation, and dilution (Folmar et al. 1979; Feng et al. 1990; Zaranyika & Nyandoro 1993; 
Paveglio et al. 1996).  Residues adsorbed to suspended particles are precipitated into bottom 
sediments where they can persist until degraded microbially with a half-life that ranges from 12 
days to 10 weeks (Goldsborough & Brown 1993; EXTOXNET 1996).  At least one study found 
that >50% of the glyphosate added directly to the waters of an irrigation canal were still present 
14.4 km downstream (Comes et al. 1976). 
 
Vegetation 
Glyphosate is metabolized by some, but not all plants (Carlisle & Trevors 1988).  It is harmless 
to most plants once in the soil because it is quickly adsorbed to soil particles, and even when 
free, it is not readily absorbed by plant roots (Hance 1976).  The half-life of glyphosate on 
foliage has been estimated at 10.4 to 26.6 days (Newton et al. 1984).  Roy et al. (1989b) found 
14% and 9% of applied glyphosate accumulated in the berries of treated blueberry and raspberry 
bushes, respectively.  These residues dissipated from the fruit with a half-life of <20 days for 
blueberries and <13 days for raspberries (Roy et al.1989b). 
 
Environmental Toxicity 
Birds and Mammals 
Glyphosate is of relatively low toxicity to birds and mammals (Evans & Batty 1986).  The LD50 
of glyphosate for rats is 5,600 mg/kg and for bobwhite quail, >4,640 mg/kg.  EPA’s Re- 
registration Eligibility Decision states that blood and pancreatic effects and weight gain were 
noted during subchronic feeding studies with rats and mice (EPA 1993).  Other studies show 
developmental and reproductive impacts to animals given the highest dose. 
 
Newton et al. (1984) examined glyphosate residues in the viscera of herbivores following 
helicopter application of glyphosate to a forest in Oregon and found residue levels comparable to 
those found in litter and ground cover (<1.7 mg/kg).  These residue levels declined over time and 
were undetectable after day 55 (Newton et al. 1984). Although carnivores and omnivores 
exhibited much higher viscera residue levels (5.08 mg/kg maximum), Newton et al. (1984) 
concluded that carnivores were at lower risk than herbivores due to the lower relative visceral 
weights and a proportionally lower level of food intake. 
 
Batt et al. (1980) found no effect on chicken egg hatchability or time to hatch when an egg was 
submerged in a solution of 5% glyphosate.   Sullivan and Sullivan (1979) found that black-tailed 
deer showed no aversion to treated foliage and consumption of contaminated forage did not 
reduce total food intake.  Significant impacts to bird and mammal populations due to large-scale 
habitat alterations following treatment of forest clearcuts with glyphosate have been reported 
(Morrison & Meslow 1984; Santillo et al. 1989a,b; MacKinnon & Freedman 1993). 
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Aquatic Species 
Glyphosate itself is of moderate toxicity to fish.  The 96-hour LC50 of technical grade glyphosate 
for bluegill sunfish and rainbow trout are 120 mg/L and 86 mg/L, respectively.  Fish exposed to 5 
mg/L of glyphosate for two weeks were found to have gill damage and liver damage was 
observed at glyphosate concentrations of 10 mg/L (Neskovic et al. 1996).  The technical grade of 
glyphosate is of moderate toxicity to aquatic species, and the toxicity of different glyphosate 
formulations can vary considerably.  For example, Touchdown 4-LC® and Bronco® have low 
LC50s for aquatic species (<13 mg/L), and are not registered for aquatic use. On the other hand, 
Rodeo® has relatively high LC50s (>900 mg/L) for aquatic species and is permitted for use in 
aquatic systems.  The surfactant in Roundup® formulations is toxic to fish, however, Rodeo® has 
no surfactant, and is registered for aquatic use. 
 
The surfactant X-77 Spreader®, which is often used in conjunction with Rodeo®, is 
approximately 100 times more toxic to aquatic invertebrates than Rodeo® alone (Henry et al. 
1994).  The surfactant MONO818® is included in Roundup® formulations because it aids the 
break-down of surface tension on leaf surfaces, but it may also interfere with cutaneous 
respiration in frogs and gill respiration in tadpoles (Tyler 1997 a,b).  In addition, MONO818® is 
highly toxic to fish (Folmar et al. 1979; Servizi et al. 1987).  The LC50 of MONO818® is 2-3 
mg/L for sockeye, rainbow, and coho fry (Folmar et al. 1979; Servizi et al. 1987; Tyler 1997 
a,b). The LC50 of Roundup® for bluegill sunfish and rainbow trout is only slightly higher at 6-14 
mg/L and 8-26 mg/L, respectively.  Similarly for Daphnia, the 96-hour LC50 of glyphosate 
alone is 962 mg/L, but the LC50 of Roundup® drops to 25.5 mg/L (Servizi et al. 1987). 
Roundup® is therefore not registered for use in aquatic systems. 
 
Despite these toxicity levels, Hildebrand et al. (1980) found that Roundup® treatments at 
concentrations up to 220 kg/ha did not significantly affect the survival of Daphnia magna or its 
food base of diatoms under laboratory conditions.  In addition, Simenstad et al. (1996) found no 
significant differences between benthic communities of algae and invertebrates on untreated 
mudflats and mudflats treated with Rodeo® and X-77 Spreader®. It appears that under most 
conditions, rapid dissipation from aquatic environments of even the most toxic glyphosate 
formulations prevents build-up of herbicide concentrations that would be lethal to most aquatic 
species. 
 
Other Non-Target Organisms 
Roberts and Berk (1993) investigated the effects of Roundup® on chemoattraction of the protozoa 
Tetrahymena pyriformis and found that it significantly interfered with chemoreception but not 
motility.  Doses of glyphosate <10 ppm were stimulatory to soil microflora including 
actinomycetes, bacteria, and fungi, while concentrations > 10 ppm had detrimental impacts on 
microflora populations in one study (Chakravarty & Sidhu 1987).  While some short-term studies 
(< 30 days) found glyphosate caused significant impacts to microbial populations, Roslycky 
(1982) found that these populations rebound from any temporary increase or decrease within 214 
days.  Similarly, Tu (1994) found that microorganisms recovered rapidly from treatment with 
glyphosate and that the herbicide posed no long-term threat to microbial activities. 

20160203-5288 FERC PDF (Unofficial) 2/3/2016 4:49:00 PM



Glyphosate 7e.7 

Weed Control Methods Handbook, The Nature Conservancy, Tu et al. 

 

 

 

 
Application Considerations: 
Glyphosate can be applied using conventional, recirculating, wet apron, hooded and hand- 
operated sprayers; controlled drop, rope-wick, roller, and carpet applicators; mistblowers; 
injectors; and wipe-on devices (Carlisle & Trevors 1988).  Feng et al. (1990) found that 10 meter 
buffer zones limited unintentional effects through chemical drift and off-target deposits into 
streams during application, while Marrs et al. (1993) concluded that 20 meters was a safe buffer 
width.  Liu et al. (1996) found that increasing the glyphosate concentration was more effective in 
controlling weeds than increasing the droplet size.  Thielen et al. (1995) concluded that the cations 
of hard water, including Ca++ and Mg++, can greatly reduce the efficacy of glyphosate when 
present in a spray solution.  Addition of ammonium sulfate or other buffer can precipitate out 
heavy elements in “hard” water if added before the herbicide is mixed with water. 
 
When glyphosate is used as an aquatic herbicide, do not treat the entire water body at one time. 
Treat only one-third to one-half of any water body at any one time, to prevent fish kills caused 
by dissolved oxygen depletion. 
 
Safety Measures: 
Some glyphosate formulations are in EPA toxicity categories I and II (the two highest 
categories) for eye and skin exposure.  Care should be taken and protective clothing worn to 
prevent accidental contact of these formulations on skin or eyes. 
 
Human Toxicology: 
EPA classified glyphosate as a “Group E” carcinogen or a chemical that has not shown evidence 
of carcinogencity in humans (EPA 1993). 
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TRICLOPYR 
 
M. Tu, C. Hurd, R. Robison & J.M. Randall 

 
Herbicide Basics 
 

Chemical formula: [(3,5,6- 
trichloro-2-pyridinyl)oxy] acetic 
acid 
 

Herbicide Family: 
Pyridine (Picolinic acid) 

 

Target Species: Broadleaf herbs 
and woody species 
 

Forms: salt & ester 
 

Formulations: EC, SL 
 

Mode of Action: Auxin mimic 
 

Water solubility: 430 ppm (acid), 
23 mg/L (ester), 2,100,000 mg/L 
(salt) 
 

Adsorption potential: Intermediate 
(higher for ester than salt) 
 

Primary degradation mech: 
Microbial metabolism, photolysis, 
and hydrolysis 

Average Soil Half-life: 30 days 

Mobility Potential: Intermediate 

Dermal LD50 for rabbits: 
>2,000 mg/kg 

 

Oral LD50 for rats: 
713 mg/kg 
 

LC50 for bluegill sunfish: 
148 mg/L 
 

Trade Names: Garlon® and 
Access® 
 

Manufacturers: Dow Agro- 
Sciences and Platte 

 
 
Synopsis 
 

Triclopyr is a selective systemic herbicide used to 
control  woody  and  herbaceous  broadleaf  plants 
along right-of-ways, in forests, and in grasslands and 
parklands. It has little or no impact on grasses. 
Triclopyr controls target weeds by mimicking the 
plant hormone auxin, causing uncontrolled plant 
growth.   There are two basic formulations of 
triclopyr - a triethyamine salt, and a butoxyethyl ester.   
In soils, both formulations degrade to the parent   
compound,   triclopyr   acid.      Degradation occurs 
primarily through microbial metabolism, but 
photolysis and hydrolysis can be important as well. 
The average half-life of triclopyr acid in soils is 30 
days.   Offsite movement through surface or sub- 
surface runoff is a possibility with triclopyr acid, as 
it is relatively persistent and has only moderate rates 
of adsorption to soil particles.  In water, the salt 
formulation is soluble, and with adequate sunlight, 
may  degrade  in  several  hours.    The  ester  is  not 
water-soluble and can take significantly longer to 
degrade.  It can bind with the organic fraction of the 
water column and be transported to the sediments. 
Both the salt and ester formulations are relatively non-
toxic to terrestrial vertebrates and invertebrates. The 
ester formulation, however, can be extremely toxic to 
fish and aquatic invertebrates. Because the salt cannot 
readily penetrate plant cuticles, it is best used as part 
of a cut-stump treatment or with an effective 
surfactant.  The ester can be highly volatile and is best 
applied at cool temperatures on days with no wind.  
The salt formulation (Garlon 3A®) can cause severe 
eye damage. 
 
 

 
 
Triclopyr acid     Triethylamine salt              Butoxyethyl ester 
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Herbicide Details 
 
Chemical Formula: [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid 
 
Trade Names: There are two basic formulations of triclopyr: a triethylamine salt (triclopyr amine 
or salt), and a butoxyethyl ester (triclopyr ester).  The amine formulation is sold under the trade 
name Garlon 3A® and is marketed in garden shops and hardware stores as Turflon Amine® or as 
Brush-B-Gone®.  The ester formulation is sold under the trade name Garlon 4® and is marketed in 
garden shops and hardware stores as Turflon Ester®.   Other trade names include Access®, 
Crossbow®, ET®, PathFinder II®, Redeem®, and Remedy®.  These products also may be mixed 
with picloram or 2,4-D to increase their versatility. 
 
Manufacturers: Dow Agrosciences (formerly known as DowElanco or Dow Chemical), Platte 
 
Use Against Natural Area Weeds: Triclopyr is used to control broadleaf herbs and woody 
species (WSSA 1994).  It is particularly effective at controlling woody species with cut-stump or 
basal bark treatments.  Susceptible species include the brooms (Cytisus spp., Genista spp., and 
Spartium spp.), the gorses (Ulex spp.), and fennel (Foeniculum vulgare).  Triclopyr ester 
formulations are especially effective against root- or stem-sprouting species such as buckthorns 
(Rhamnus spp.), ash (Fraxinus spp.), and black locust (Robinia pseudoacacia), because triclopyr 
remains persistent in plants until they die. 
 
Even though offsite movement of triclopyr acid through surface or sub-surface runoff is a 
possibility, triclopyr is one of the most commonly used herbicides against woody species in 
natural areas.  Bill Neil, who has worked extensively on tamarisk/saltcedar (Tamarix spp.) 
control, concluded that Pathfinder II®, a triclopyr ester formulation by DowElanco, is the most 
cost effective herbicide for combating saltcedar.  On preserves across the U.S., triclopyr has 
provided good control of tree-of-heaven (Ailanthus altissima), salt cedar (Tamarix spp.), glossy 
buckthorn (Frangula alnus), common buckthorn (Rhamnus cathartica), sweet fennel (Foeniculum 
vulgare), Brazilian peppertree (Schinus terebinthifolius), and Chinese tallow tree (Sapium 
sebiferum).  TNC preserves in Hawaii have successfully used triclopyr to control blackwood 
acacia (Acacia melanoxylon), bush honeysuckle (Lonicera maackii), Chinese banyan (Ficus 
microcarpa), corkystem passionflower (Passiflora suberosa), eucalyptus (Eucalyptus globulus), 
Florida prickly blackberry (Rubus argutus), Mexican weeping pine (Pinus patula), Monterey pine 
(Pinus radiata), strawberry guava (Psidium cattleianum), tropical ash (Fraxinus uhdei), and 
velvet leaf (Miconia calvescens).  Triclopyr can also be used in forest plantations to control brush 
without significant impacts to conifers (Kelpsas & White).  Spruces (Picea spp.) can tolerate 
triclopyr, but some species of pine (Pinus spp.) however, can only tolerate triclopyr during the 
dormant fall and winter months (Jotcham et al. 1989). 
 
Mode of Action: Triclopyr is an auxin mimic or synthetic auxin.  This type of herbicide kills the 
target weed by mimicking the plant growth hormone auxin (indole acetic acid), and when 
administered at effective doses, causes uncontrolled and disorganized plant growth that leads to 
plant death.  The exact mode of action of triclopyr has not been fully described, but it is believed 
to acidify and “loosen” cell walls, allowing cells to expand without normal control and 
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coordination.  Low concentrations of triclopyr can stimulate RNA, DNA, and protein synthesis 
leading to uncontrolled cell division and growth, and, ultimately, vascular tissue destruction. 
Conversely, high concentrations of triclopyr can inhibit cell division and growth. 
 
 
 
Dissipation Mechanisms: 
Summary: Both the ester and amine formulations are degraded by sunlight, microbial metabolism, 
and hydrolysis.  In soils, both the ester and amine formulations will degrade rapidly to the parent 
compound, triclopyr acid.  The acid and ester formulations bind well with soils, and therefore, are 
not likely to be mobile in the environment.  The salt however, does not readily adsorb and can be 
mobile. The ester can be highly volatile (T. Lanini, pers. com.). 
 
Volatilization 
Ester formulations of triclopyr can be highly volatile, and care should be taken in their 
application.  The potential to volatilize increases with increasing temperature, increasing soil 
moisture, and decreasing clay and organic matter content (Helling et al. 1971). 
 
Photodegradation 
Both the ester and salt formulations are degraded readily in sunlight to the parent compound, 
triclopyr acid, which is also photodegradable.  A study of photolysis found the half-life of 
triclopyr acid on soil under midsummer sun was two hours (McCall & Gavit 1986). 
Photodegradation can be particularly important in water.  Johnson et al. (1995) found triclopyr 
acid dissolved in water had a half-life due to photolysis of one to 12 hours. 
 
Microbial Degradation 
Microbial metabolism accounts for a significant percentage of triclopyr degradation in soils.  In 
general, warm, moist soils with a high organic content will support the largest microbial 
populations and the highest rates of herbicide metabolism (Newton et al. 1990).  Johnson et al. 
(1995a) found that microbial degradation of triclopyr was significantly higher in moist versus dry 
soils, and higher at 30º C than at 15º C (DT50 is 46 days versus 98 days in dry soils, and 57 days 
versus 199 days in moist soils, respectively.  Additionally, the presence of sunlight plays a role in 
the rates of microbial metabolism of triclopyr. Johnson et al. (1995a) found that microbial 
metabolism was slowed when soil was deprived of light. 
 
Chemical Decomposition 
Hydrolysis of both the salt and ester to the acid form occurs readily in the environment and within 
plants (Smith 1976).  McCall and Gavit (1986) reported that the ester was converted to an acid 
with a half-life of three hours, and that the rate of hydrolysis in water increased with an increase in 
pH. 
 
Adsorption 
Adsorption temporarily or permanently immobilizes triclopyr, but adsorption is not degradation. 
Adsorption is more important for the immobilization of the ester than of the salt formulation. The 
ester binds readily with the organic component of the soil, with adsorption rates increasing as 
organic content increases and soil pH decreases (Pusino et al. 1994; Johnson et al. 1995a). The 
salt form is soluble in water and binds only weakly with soil (McCall & Gavit 1986).  The 
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strong bond between the ester and soils accounts for the relatively low mobility of the ester in 
soils, whereas the salt form is much more mobile (McCall & Gavit 1986).  In practice, however, 
both compounds are degraded rapidly to triclopyr acid, which has an intermediate adsorption 
capacity. 
 
 
 
Behavior in the Environment 
Summary: In soils, both formulations are degraded by photolysis, microbial metabolism, and 
hydrolysis to the parent compound, triclopyr acid.  Triclopyr acid has an intermediate adsorption 
potential, limiting movement of the acid in the environment.  The acid degrades with an average 
half-life of 30 days.  In water, the salt will remain in the water column until it is degraded, which 
can occur in as little as a few hours under favorable conditions.  The ester formulation, however, 
is not water-soluble and can take significantly longer to degrade in water.  Within plants, both 
the salt and ester formulations are hydrolyzed to the acid form, and transported through the plant. 
Residues can persist in the plant until the tissues are degraded in the environment. 
 
Soils 
Both the ester and salt formulations degrade rapidly in soils to triclopyr acid, and thereafter, 
behave similarly in soils.  Adsorption, photodegradation, microbial metabolism, and volatility, 
can all play a role in the dissipation of triclopyr from soils.  The reported half-life of triclopyr in 
soils varies from 3.7 to 314 days, but averages 30 days, depending on the formulation applied and 
the specific soil and environmental conditions.  If soil conditions are warm and moist, microbial 
metabolism can be the primary means of degradation (Newton et al. 1990). 
 
Johnson et al. (1995a) reported an average half-life of triclopyr acid in four laboratory soils of 138 
days, but this time varied significantly with soil temperature.  At 15ºC half-lives ranged from 64-
314 days, while at 30ºC half-lives were 9-135 days (Johnson et al.  1995).  In Southwest Oregon, 
Newton et al. (1990) found 24-51% of triclopyr residues remained after 37 days in a dry and cool 
climate.  Following an increase in warmth and moisture, however, dissipation increased 
dramatically and triclopyr residues exhibited a half-life of 11-25 days.  In a study of triclopyr 
persistence in soil and water associated with rice production, triclopyr had a half-life of less than 
ten days in the three soil types tested (Johnson et al. 1995b).  In a pasture near Corvallis, Oregon, 
the half-life of triclopyr acid was estimated to be 3.7 days (Norris et al. 1987). 
 
Because of the importance of photodegradation and a decrease in the size of microbial 
populations with soil depth, triclopyr located deeper in the soil column (>15 cm) degrades more 
slowly than residues near the surface (Johnson et al. 1995a).  Traces of triclopyr residues have 
been found at soil depths of 45 cm as late as 477 days after application (Newton et al. 1990). 
Sandy soils that are highly permeable may therefore, retain triclopyr longer.  Most studies, 
however, found that triclopyr generally does not tend to move in significant quantities below the 
top 15 cm of soil (Norris et al. 1987; Newton et al. 1990; Stephenson 1990; Johnson et al. 1995a). 
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Water 
In water, the two formulations can behave very differently.  The water-soluble salt is degraded in 
the water column through photolysis and hydrolysis (McCall & Gavit 1985).  The ester, however, 
is not water-soluble and can be persistent in aquatic environments.  The ester binds to organic 
particles in the water column and precipitates to the sediment layers (McCall & Gavit 1986).  
Bound ester molecules will degrade through hydrolysis or photolysis to triclopyr acid (Smith 
1976), which will move back into the water column and continue to degrade.  The rate of 
degradation is dependent on the water temperature, pH, and sediment content. 
 
Triclopyr acid has an intermediate soil adsorption capacity.  Thus, movement of small amounts of 
triclopyr residues following the first significant rainfall are likely (McCall & Gavit 1986), but 
further leaching is believed to be minor (Newton et al. 1990; Stephenson et al. 1990; Thompson et 
al. 1991).  Movement of triclopyr through surface and subsurface runoff in areas with minimal 
rainfall is believed to be negligible (Newton et al. 1990; Stephenson et al. 1990).  In southwest 
Oregon, Norris et al. (1987) found that neither leaching nor long-distance overland water flow 
contributed significant amounts of the herbicide into a nearby stream, and concluded that the use 
of triclopyr posed little risk for non-target organisms or downstream water users.  Triclopyr can, 
however, enter waterways via aerial drift and inadvertent overspray.  When the acid was applied to 
rice paddy fields, residues remained in the water column and were not found in significant 
amounts in the soil (Johnson et al. 1995b).  Degradation in water was rapid and showed a half- life 
of four days. 
 
Vegetation 
Both the ester and salt formulations are hydrolyzed to the acid after entering plant tissue.  The 
acid tends to remain in plants until they die or dop leaves and begin to decay (Newton et al. 
1990).  Newton et al. (1990) reported that triclopyr in evergreen foliage and twigs showed 
remarkable persistence.  Although concentrations of triclopyr in the soil will decrease quickly 
and remain low through the winter, levels can rise again in the spring if a new supply of 
contaminated foliage falls from defoliating crowns (Newton et al. 1990). The residues of some 
herbicides in fruit have been shown to persist up to one month (Holmes et al. 1994).  There is 
therefore a potential for long-term exposure of triclopyr to animal species that eat wild fruit.  In 
non-target plants, triclopyr soil residues can cause damage via root uptake (Newton et al. 
1990). 
 
Environmental Toxicity 
Birds and Mammals 
Triclopyr is regarded as only slightly toxic to birds and mammals.  The oral LD50 for rats is 630-
729 mg/kg.  The LD50s for mallard ducks and bobwhite quail are 1,698 mg/kg and 2,935 mg/kg, 
respectively.  Newton et al. (1990) predicted that triclopyr would not be present in animal forage in 
doses large enough to cause either acute or chronic effects to wildlife, and concluded that the 
tendency for triclopyr to dissipate quickly in the environment would preclude any problems with 
bioaccumulation in the food chain. Garlon 3A® can cause severe eye damage to both humans and 
wildlife, due to the high pH of its water-soluble amine salt base.  Care must be taken during mixing 
and application to prevent accidental splashing into eyes. 
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In a study of the potential effects of herbicide residues on forest songbirds, sub-lethal doses of 
triclopyr ester (500 mg/kg in the diet for 29 days) were found to cause weight loss and behavior 
alterations in zebra finches (Holmes et al. 1994).  In a 1987 study of triclopyr metabolism using 
one cow, all traces of triclopyr were eliminated from the cow’s urine within 24 hours, and no 
residues were detected in its milk or feces.  This study, however, did not track whether any 
triclopyr was absorbed into the cow’s tissues, or whether the triclopyr recovered in the urine was 
still active (Eckerlin 1987). 
 
Aquatic Species 
Triclopyr acid and the salt formulation are slightly toxic to fish and aquatic invertebrates.  The 
LC50 of the acid and the salt formulation for rainbow trout are 117 mg/L and 552 mg/L, 
respectively, and for bluegill sunfish 148 mg/L and 891 mg/L, respectively.  The ester 
formulation is highly toxic to fish and aquatic invertebrates, with an LC50 (96-hour) of 0.74 
mg/L in rainbow trout and 0.87 mg/L in bluegill sunfish (WSSA 1994; EPA 1998).  The 
hydrophobic nature of the ester allows it to be readily absorbed through fish tissues where is it 
rapidly converted to triclopyr acid.  The acid can be accumulated to a toxic level when fish are 
exposed to sufficient concentrations or for sufficient durations. 
 
The extent to which the toxic effects of the ester are reduced by degradation is poorly 
understood.  Studies have shown that the ester formulation degrades rapidly to less toxic forms 
(Thompson et al. 1991).  Kreutzweiser et al. (1994) however, has shown that there is a 
significant chance of acute lethal effects to fish exposed to low level residues for more than six 
hours.  In addition, delayed lethal effects were seen in fish exposed to high concentrations for a 
short duration.  Considering that Thompson et al. (1991) concluded that organisms subjected to 
direct overspray were exposed to a high level of herbicide for short periods of time while 
organisms downstream were exposed to low levels for longer periods, the findings of 
Kreutzweiser et al. (1994) are of concern. 
 
Nevertheless, most authors including the authors of the fish mortality study have concluded that 
if applied properly, triclopyr would not be found in concentrations adequate to kill aquatic 
organisms.  As a measure of precaution, however, Kreutzweiser et al. (1991) suggest that some 
water bodies remain at risk of lethal contamination levels including shallow and slow moving 
water bodies where dissipation is slow, and heavily shaded streams that experience reduced 
photodegradation. 
 
Other Non-Target Organisms 
Triclopyr inhibited growth of four types of ectomycorrhizal fungi associated with conifer roots at 
concentrations of 1,000 parts per million (ppm) and higher (Estok et al. 1989).  Some evidence of 
inhibition of fungal growth was detected in bioassays with as little as 100 ppm triclopyr. Typical 
usage in forest plantations, however, results in triclopyr residues of only four to 18 ppm on the 
forest floor (Estok et al. 1989). 
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Application Considerations: 
Application Under Unusual Conditions: 
Several natural area managers have found that Garlon 4® and 3A® are effective when applied in 
mid-winter as a cut-stump treatment against buckthorns (Rhamnus cathartica and R. frangula). It 
is often easier to get to these plants when boggy soils around them are frozen.  Randy Heidorn, 
Deputy Director for Stewardship of the Illinois Nature Preserve Commission (INPC), 
recommends three protocols to increase the safety of triclopyr ester application in winter: 
(1) use a mineral oil based carrier; 
(2) make sure that at the time of application, no water is at or above the ground surface, and no 
snow or ice is present that might serve as a route to spread the herbicide following a thaw, and; 
(3) initiate a monitoring program to assess ambient water concentrations of triclopyr ester in 
communities that seasonally have water at or above the ground surface with little or no discharge 
(i.e. bogs). 
 
Safety Measures 
The salt formulation in Garlon 3A® can cause severe eye damage because of the high pH of its 
water-soluble amine salt base.  Care should be taken to prevent splashing or other accident 
contact with eyes. 
 
Human Toxicology 
Because studies into the carcinogenicity of triclopyr have produced conflicting results, EPA has 
categorized triclopyr as a “Group D” compound, or a chemical that is not classifiable as to human 
carcinogenicity.  The salt formulation in Garlon 3A® can cause severe eye damage. 
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