DOE OFFICE OF INDIAN ENERGY Utility-Scale Energy Development

Megan Day, AICP National Renewable Energy Laboratory (NREL)

Tribal Role Options

Project Operator/ **M**&0

Equity Investor/ Generation Equipment

Owner

Lender/ **Debt Provider**

Off-taker (Power Purchaser/ User)

Project

Developer

Tribe

Renewable

Resource/Land

Owner/Land

Lessor*

* Also called Tribal Host

Project Development Steps

https://www.energy.gov/indianenergy/renewable-energy-online-learning

Agenda

- Resource
- Market and Offtakers
- Siting & Permitting
- Project Revenues and Production Potential

Tribal Energy Atlas

- Interactive, geospatial application
- Allows users to view resources, infrastructure, and other relevant data
- Allows users to query the data and conduct simple analyses
- Provides demographic, installed capacity, and utility-scale RE technical potential summaries by tribe
- Data download and feedback options
- <u>https://maps.nrel.gov/tribal-</u> <u>energy-atlas</u>

Office of Indian Energy

C)ata Lay	/ers	Legend		Query
4	Resou	irces			
	⊳ Wi	nd			
	⊳ So	lar			
	⊳ Ge	othern	nal		
	⊳ Hy	dro			
	⊳ Wo	oody B	iomass		
	⊳ Bio	ometha	ane		
\triangleright	Infrastructure				
\triangleright	Environmental				
\triangleright	Energy Expenditures				
\triangleright	Energy Efficiency				
\triangleright	Electricity & Natural Gas Prices				
\triangleright	Utilities				
4	Admi	nistrati	ve Boundarie	S	
	👻 Tri	bal Land	ls		00
	Co	unty Bor	ders		
	Sta	ate Bord	ers		
	Fe Fe	deral La	nds		
	Со	ngressio	nal Districts as o	f 2017	

Renewable Resource Characterization & Technical Potential

*See Technical Potential Worksheet for data sources, descriptions, and details

Tribal Energy Atlas

PVWatts

9

http://maps.nrel.gov/pvwatts

Basic PV Modeling

PVWatts Viewer National Renewable Energy Laboratory	Canada		Grid VisibilityTranspare	ncy: 🗹 🚽
Vancouver		PV Watts Tool Click on the Click on the Manne of the	or e map to identify a PVWatts OR Enter a zip code:	a (v.2) grid celt
	stroute a	Chicago 2	Boston	
San Francisco CAL Los	Denver	St where Stars	New York Washington D.C.	
PV Walls to A Det	k on Calculate if default value selecting your system specific aformation about system speci C derate factor other than the ate Factor Help for informati	es are acceptable, or ations. Click on Help fications. To use a DC default, click on ion.	my S X S S	Bermuda
Site Location:			Haiti maisa Ibean Sea	inican Republi
Cell ID:	U221361 Nebrosko		Adr	Caracas
Jatitude :	42.299		MP	- ATR
Longitude :	-98.763		_	
PV System Specification	<u>s</u> :			
DC Rating (kW):	4.0			
DC to AC Derate Factor:	0.77	DERATE FACTOR		
Array Type:	Fixed Tilt	*		
Fixed Tilt or 1-Axis Track	ing System:			
Array Tilt (degrees):	42.299 (Defa	ult = Latitude)		
Array Azimuth (degrees	t): 180.0 (Defa	ult = South)		
Energy Data:				
Cost of Electricity (cents/)	(Wh): 7.693			
- 04	ulate BELP Reset Form]		
0.				

Office of Indian Ene<u>rav</u>

Project Description

The PVWatts application is an interactive map-based interface to rapidly utilize the PVWatts calculator. The PVWatts calculator is a basic solar modeling tool developed at NREL to allow non-experts to quickly obtain performance estimates for grid-connected PV systems.

Project Impact

This project is focused on providing the general public with a basic solar performance modeling tool and is one of the most heavily visited page on the NREL website. Users can get an estimate of expected monthly and annual solar resource values for any location in the United States.

Users

Generally solar installers, but really anyone is able to use this to get a first cut of the potential output. Many national subsidy providers use PVWatts to determine the amount of subsidy a homeowner can receive.

Data Analysis and Visualization Group Project Lead: Dan Getman Dan.getman@nrel.gov

MARKET & OFFTAKERS

Utility-Scale Considerations

- Need an off-taker to buy electricity
 - A utility
 - A large corporation, industrial entity, or government agency (e.g., military base)
- Or, a developer who will work to find an off-taker and develop the project
- Utility motivated by Renewable Portfolio Standard (RPS) compliance, cost, etc.
- Non-utilities motivated for a number of reasons, including: cost savings, sustainability goals, and energy hedging

The Electricity Grid

It is not enough to identify a market for the electricity

Can you get the electricity to market?

- Existing transmission lines?
- Capacity on those lines?

Projected Transmission

Project Agreements

Key Contracts:

Power Purchase Agreement (PPA)

- A long term, financeable commitment to buy project output
- Generally addresses energy and attributes (like RECs)
- Allows developer to monetize tax or other policies
- Finding a power purchaser/off-taker is key for securing capital

Interconnection agreement

Allows electricity to flow into grid and dictates equipment and upgrades required to interconnect

Transmission agreement

- May be needed for access on third party controlled transmission lines

Market: Electricity Levelized Cost Comparison

Unsubsidized Levelized Cost of Energy Comparison

Source: Lazard's Levelized Cost of Energy Analysis Version 11.0; https://www.lazard.com/perspective/levelized-cost-of-energy-2017/

Utility-Scale Project Risks

	Risks	Risk Assessment Post Step 1
Development	 Poor or no renewable energy resource assessment Not identifying all possible costs Unrealistic estimation of all costs Community push-back and competing land use 	Screened good sites Reduced Reduced Reduced
Site	 Site access and right of way Not in my backyard (NIMBY)/build absolutely nothing anywhere (BANANA) Transmission constraints/siting new transmission 	Unchanged; Critical to have site control and community support
Permitting	 Tribe-adopted codes and permitting requirements Utility interconnection requirements Interconnection may require new transmission, possible NEPA 	<u>Reduced</u> <u>Reduced</u> <u>High risk, reduced</u>
Finance	 Capital availability Incentive availability risk Credit-worthy purchaser of generated energy 	High risk, unchanged <u>Reduced</u> Unchanged
Construction/ Completion	 Engineering, procurement, and construction (EPC) difficulties Cost overruns Schedule 	Assumed low, mitigable, or allocatable
Operating	 Output shortfall from expected Technology O&M Maintaining transmission access and possible curtailment 	Assumed low, mitigable, or allocatable

Sources: Adapted from Holland & Hart, RE Project Development & Finance & Infocast, Advanced RE Project Finance & Analysis NOTE: Underlining signifies that the risk assessment outcome changes during the step at hand.

SITING & PERMITTING

Considerations for Permitting, Regulations, and Laws

- A. Determine ownership before applying for federal, tribal, and state laws and regulations. <u>http://teeic.indianaffairs.gov/triballand/</u>
 - Two types of individually owned land: (1)trust land and (2)restricted fee land
 - Three types of tribally owned land: (1)trust land, (2)restricted fee land, (3)fee land purchased by Tribes
 - Consider whether the project will fall under as a government function for the Tribe or a profit-making enterprise?
- B. Consult with a lawyer early in the renewable energy development process to verify business model and eligibility of the project for federal incentives.
- C. What local tribal laws might apply for this renewable energy project? Projects are more likely to get external investment (if necessary) if there is evidence that tribal leadership is committed to the project. See

http://www1.eere.energy.gov/tribalenergy/guide/legal_issues.html.

Determine Type of Permitting Necessary

Environmental Regulations to Consider – NEPA

National Environmental Policy Act (NEPA)

- > All federal agencies must assess environmental impact of proposed actions
- Federal funding may trigger assessment for tribal projects (federal nexus, e.g. federal grants, BIA initiated/approved projects)
- Each federal agency may have their own particular NEPA procedure need to check with appropriate agency
- > Timeline: Approximately 1 to 3 years depending on project size and complexity (unlikely for community scale)
- Recommendations:
 - Draft the EIS concurrently with other applicable federal statutes and regulations
 - If necessary, work with NEPA experts to determine and prepare required analysis

Site Due Diligence

Consideration	Applicability	Resources
Wetlands/ Waterways	• Are there wetlands, water bodies, washes, arroyos, drainage considerations, or floodplain on site?	http://www.fws.gov/wetlands /Data/Mapper.html https://msc.fema.gov/portal/ search
Soils	 Soil conditions impact structural design and site feasibility. Caliche or bedrock may require costly drilling. Sandy soils may require deeper post embedment to meet wind and snow loading requirements. Corrosive soils can require measures to protect embedded posts. 	<u>http://websoilsurvey.sc.egov.</u> usda.gov/App/WebSoilSurvey. <u>aspx</u>
Wildlife/habitat/ flora	• Check for critical habitat, riparian areas, and endangered species of flora or fauna that may be impacted.	http://ecos.fws.gov/crithab/fl ex/crithabMapper.jsp?
Driveway/access	 Is a new driveway required? If so, is access available? (Limited access highways may not allow a driveway.) Can equipment and materials be safely delivered to the site with no obstructions such as overhead utilities, trees, or vehicle weight limits? 	Check local, state, or federal department of transportation or equivalent

Site Due Diligence (cont.)

Consideration	Applicability	Resources
Easements/ Encumbrances/ Rights-of-way	 Are there easements or rights-of-ways for pipelines, utilities, or rail roads that will be crossed or impacted? Are there plans for road expansions or improvements, new pipelines, or future utility rights-of-ways at any time during the life of the project? 	Check with land management authorities, transportation plans, USGS maps
Cultural resources	• Are there known cultural resources on or near the site? If not, are further studies required?	Tribal Historic Preservation Office <u>http://nrhp.focus.nps.gov/nat</u> <u>reg/docs/Download.html</u> (Google Earth layer)
Land use and building permits	 Building permit requirements Land use/zoning permits – Is the facility allowed as a primary or accessory use? Is a special or conditional use permit or re-zoning required? Rights-of-way permits, including interconnection line, driveway, drainage 	Local tribal government
Storm water	 Is the site one acre or more? If so, a construction storm water permit and mitigation measures are required. Are measures such as retention ponds or swales required for erosion and sediment control or storm water mitigation during and after construction? 	http://water.epa.gov/polw aste/npdes/stormwater/E PA-Construction-General- Permit.cfm

Reducing Site Risks

For utility-scale projects on tribal lands to be competitive in the electricity market and attract investors, they must have a site with minimal development risks. Once a site is selected, actions to reduce development risk include:

- Documentation there are no cultural resources on the site through a phase I review or phase II transect study
- Documentation there are no threatened and endangered species impacts through a desktop review (at a minimum) and site visit
- BIA approval for land use/lease
- Letters of support for project development signed by tribal chair, village president, staff leaders
- Completed interconnection study for selected site(s)
- Exemptions from certain tribal taxes, clarity on how others will be assessed
- Attractive and clear lease terms and conditions
- Clarity on where legal disputes will be resolved Requiring developers to resolve disputes in tribal courts may present too great of a risk to entice sufficient interest in an RFP.

PROJECT REVENUES AND PRODUCTION POTENTIAL

Advanced Tool: NREL's System Advisor Model

Available at: https://sam.nrel.gov/

NREL's System Advisor Model (SAM) is a free computer program that **calculates a renewable energy system's hourly energy output** over a single year and **calculates the cost of energy** for a renewable energy project over the life of the project.

- Solar, wind, geothermal, and other renewable and fossil technologies available
- These calculations are done using detailed performance models, a detailed cash flow finance model, and a library of reasonable default values for each technology and target market

²⁶ Technologies in SAM

Photovoltaics

Concentrating PV

Solar Water Heating

Geothermal

Parabolic Trough

Power Tower

Linear Fresnel

Dish-Stirling

Small Wind

Utility-Scale Wind

Biomass Power

Conventional

²⁷ NREL Tools Links

Map Apps at NREL http://maps.nrel.gov MapSearch http://www.nrel.gov/gis/mapsearch/ **REAtlas** http://maps.nrel.gov/reatlas IMBY http://mercator.nrel.gov/imby SAM http://sam.nrel.gov **HyDRA** http://maps.nrel.gov/hydra **RE** Atlas http://maps.nrel.gov/re_atlas Solar Prospector http://maps.nrel.gov/prospector OpenPV http://openpv.nrel.gov/gallery **PVDAO** http://maps.nrel.gov/pvdaq LCOE Calculator http://www.nrel.gov/analysis/tech_lcoe.html GeoREServ API http://rpm.nrel.gov/docs/georeserv/ REEDS http://www.nrel.gov/analysis/reeds/ **PV JEDI** http://www.nrel.gov/analysis/jedi/ OpenEl http://openei.org Smartgrid.gov http://smartgrid.gov

Thank you

Questions?

Megan Day <u>Megan.day@nrel.gov</u> 303-275-3261

