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Project Summary
Objective: Integrate probabilistic short- (0-6 hr ahead) and mid-term (day-ahead) 

solar power forecasts into operations of two ISOs: 

• CAISO

• MISO

2. Integrate probabilistic 

forecasts in ISO operations 

for ramp product &

regulation requirements

3.  Provide situational 

awareness via control 

room visualizations of 

probabilistic ramp forecasts 

& alerts
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Approach:

1. Advanced big data-driven “probabilistic” solar power forecasting technology

• IBM Watt-Sun & PAIRS: Big data information processing (Hadoop, HBase)

• Machine learning approaches to blend outputs from multiple models



Project Motivation:  (1) System Operations

 Growing PV Ramping & reserves issues

2040 PV Energy Fraction

Rooftop

Source: NREL’s Standard Scenarios 2016 from ReEDS model

Procurement needs up-to-date information on energy forecasts and their 

uncertainties to reflect the actual risks of load imbalances 

Utility
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 Current reserve procurement practice: based on 

historical data and off-line analysis

 Requirements that are too conservative for most 

conditions, but inadequate for other conditions



Project Motivation: (2) Solar Power Forecasts

Challenge: historic NWP model 

accuracy improvements (only) ~6% 

per decade
Source: P. Bauer et al., doi:10.1038/nature14956

Opportunity: Leverage “big” data platform & advanced machine learning-based 

analytics to complement NWP models 

 high-fidelity probabilistic forecasts, and adaptive & more accurate forecasts
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Expected Outcomes

1. Probabilistic solar power forecasting technology, ensuring better:

• Accuracy (>15-30% Brier Score compared to baseline (28 consecutive days))

• Reliability (>80-90% coverage index of probabilistic forecasts) 

2. Forecast access via IBM big data infrastructure & NREL visualizations:

• temporal horizons of 5-mins to days-ahead 

• spatial resolution of 1-4 km across the continental US 

3. Improved ramping & regulation reserve procurement across all time 

frames of market scheduling using probabilistic forecasts

4. ISO testing that shows annual savings of 10-25% (O($107)) in 

regulation & flexible ramping product procurement under high solar 

penetration conditions (reduced customer costs)
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Project Team
Collaboration of academia, a national laboratory, a private vendor, and ISOs

TEAM MEMBER EXPERTISE

Benjamin F. Hobbs, Ph.D., PI

Theodore M. and Kay W. Schad Chair of 

Environ. Mgmt., Johns Hopkins U

Chair of CAISO Market Surveillance Committee.

Decision analysis & economics for power markets,

planning, & operation

Hendrik F. Hamann, Ph.D.

Senior Manager and Distinguished 

Research Staff, Physical Sciences 

Department, IBM

Sensor-based physical modeling, big data analytics, high 

performance microprocessor and storage designs. 

Solar Forecasting FOA I awardee, NE-ISO BTM forecasts

Jie Zhang, Ph.D

Asst. Professor, Mech. Engineering,            

U Texas-Dallas

Optimization, complex systems, renewable energy 

forecasting, big data analytics & probabilistic design

Venkat K. Krishnan, Ph.D.

Senior Engineer, Power System Design & 

Studies Group, NREL

Co-optimized electricity markets, capacity expansion 

planning, statistical simulations, and data analytics

Amber L. Motley, California ISO Manager, Short Term Forecasting

Blagoy Borissov, MISO Manager, Forecast Engineering
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Co-ordination with Topic Area 1 team for validation: data formats and sharing, 

metrics for evaluating probabilistic solar power forecasts etc.



TECHNICAL APPROACH, TASKS 

& MILESTONES
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Major Research Thrusts

Thrust 
1

• Advanced big data-driven probabilistic forecasting

Thrust 
2

• Flexible ramping & dynamic regulation procurement 

Thrust 
3

• Advanced visualization for situational awareness

Thrust 
4

• Coordination with ISO and integration testing
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Thrust 1: Advanced big data-driven 

probabilistic forecasting system

Situation-dependent model for 

blending-based forecasts: 

• Apply deep machine learning with 

historical forecasts and weather data 

• Learn which model is better, when & 

where
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Technologies: 

• Uses big data information processing 

(Hadoop, HBase) technologies

• Applies machine learning 

approaches to blend outputs from 

multiple models



Relationship of SF-I and SF-II 

Four Enhancements to Watt-Sun

Thrust 1
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1. Replacement with PAIRS
• Automatic data fusion
• Fully scalable
• Supports tens of 

Petabytes
• Improved curation speed
• Scalable API  
• SDK
• Mapping service
• Enables “in-data” 

computation 

3. Deep learning 
for categorization

2. Navier-Stokes enhanced 
optical flow based            

short-term forecasting

4. Probabilistic 
forecasts



PAIRS Big Data Platform
Physical Analytics Integrated Data Repository and Services (PAIRS)

Lagrangian Weather Forecast Models Climate

Models Sky Cam GOES RAP HRRR SREF NAM GFS ECMWF CFS
Spatial
Res. & 

Coverage

Local
10 m

Global
4km

US
13km

US
3km

US
16km/ 40km

US
5km

Global
0.5 deg

Global
0.1 deg

Global
0.5 deg

Temporal
Resolution

1 min 15 min
15 min 

2D,
1 h 3D

15 min 
2D,

1h 3D

1 h (40 km); 
3 hr (16 km)

1 hr 3 h 1 h 6 h

Forecasting
Horizon

10 min 4 h 18 h 15 h 0-87 h 0-60 h
6-192 

h
0 -60 h 6 mo

Ensemble
Forecast

No No No No
CTL, P1, P2, 

P3, N1, N2, N3
No No N.A.

4
members

Harmonized data curation: Aligned to a global spatio-temporal                                         

reference & indexing system 

Thrust 1
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Innovation

• Multi-expert machine-learning systems for probabilistic 

forecasting: characterize errors & uncertainties

• Improve PAIRS to achieve higher data ingestion and curation 

rates of >50TB/day through parallel computation. Challenges due 

to sheer data volume: 
• Global forecast system data @1.5 TB/day

• Global ensemble forecast system data @3 TB/day

• GOES-R/16 satellite can generate up to 16 TB/day 

• Behind the meter (BTM) solar forecasting using ISO load data 

plus selective irradiance measurements across a region

Goal: Improve accuracy of short-term forecasts by 10-20% 

compared to the state of the art, including rare ramp events

Thrust 1
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Thrust # 1 Milestones
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Due Description Success Value

BP 1

Q1
Demo #1- Watt-Sun V0.0 probabilistic solar power forecasts.  

Purpose: demonstrate probabilistic scores capability

Mean Brier Score < 0.5 for 28 consecutive 

days (1 site using 4-hr forecasts)   

Q4
Demo #2- Improved Watt-Sun (V1.0) probabilistic solar power 

forecasts (4-hr ahead, every 15-min.)

• Average > 10% for 28 consecutive days 

for 3 point sites

• Brier accuracy > 10% better than best 

persistence-based baseline models

BP 2

Q7
V2.0- Advanced Watt-Sun probabilistic forecasts (4-hr & 24-hr 

ahead), shared with Topic Area 1 validation team. 

Average > 15% improvement for 28 

consecutive days for >6 point sites in 

CAISO & MISO

Q5
PAIRS platform advancement complete for continental US regions, 

(scalable data curation rate and multiple data sources integrated)

At least 10 TB/day for > 5 consecutive 

days.

BP 3

Q11
V3.0- Advanced Watt-Sun probabilistic forecasts (4-hr, 24-hr 

ahead) for 6 points, shared with Topic Area 1 validation team.

Average > 30% improvement for 28 

consecutive days in 3 separate months for 

>6 points sites in CAISO & MISO

List of key milestones related to forecast products. 

(Publications, release of products via web links, etc. not shown in tables)



Thrust 2: Modeling coordinated reserve 

requirements using probabilistic forecasts
CAISO & MISO: Base reserve requirements on off-line analysis of historical data 

 Costly over-procurement, & risky under-procurement

 Need a robust, dynamic update of requirements based on latest probabilistic

forecasts and realistic error probability distributions

Cui, M., Zhang, J., et al. (2016), An Optimized Swinging Door Algorithm for Identifying Wind Ramping Events, IEEE Trans. Sust. Energy, 7(1), 150-162 

Swinging door algorithm Ramp and regulation services: 

intrinsic relationship

16

Probabilistic 

forecasts



Market Impact Assessment

• Ramp & regulation procurement passed 

on to ISO scheduling procedures 
• Align process with well-documented ISO 

procedures 

• Test on Modified IEEE 118-bus test 

system with high solar penetration
• Resource mix, load, and solar profiles that 

mimic ISOs

• Metrics: 
• Economic: Production costs, prices (average 

& spikes), make-whole payments

• Reliability: Quick starts, area control error, 

and Control Performance Standard 2

Start

End

YES
Run day-ahead 

security-constrained 
unit commitment

Run real-time 
security-constrained 

unit commitment

Run AGC/ACE 
calculation

NO

Run real-time 
security-constrained 
economic dispatch

System and generator 
data, day-ahead forecasts 
of load and solar power 

generations

Interval tDU?

Intra-day forecasts 
of load and solar 

power generation

Interval tRU?

Hour-ahead 
forecasts of load 
and solar power 

generation

Interval tRD?

YES

YES

NO

NO

Wind power, 
solar power, 

load, and 
netload data 

sets

OpSDA

Probabilistic 
ramp forecasts

Reserve 
requirements 

estimator

FESTIV model and 

forecast integration

Thrust 2
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Flexible Energy Scheduling 

Tool for Integration of Variable 

Generation (FESTIV) 



Thrust # 2 Milestones
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Due Description Success Value

BP 1

Q3

Solar production & net load ramp predictions from OpSDA

using V0.0 of Watt-Sun forecasts. Predictive intervals 

coverage probability (PICP) to measure reliability of ramp 

predictions.

Targets for key ramp features (magnitude, 

duration, rate) in solar power and netload:

• PICP>90% (1-hr or intra-hr forecasts)

• PICP>80% (day-ahead forecasts) 

For 3 points in high solar system for day-

ahead and hours-ahead forecasts.

Q4
Ramp product and regulation requirements estimates using 

V0.0 & 1.0 probabilistic forecasts 

Requirements with probabilistic solar 

forecasts 10% less than those with 

deterministic forecasts.

Q4

Integrate flexible ramp product procurement estimates from 

probabilistic net-load forecasts. IEEE 118 bus system 

simulations under high solar conditions 

10-25% yearly cost savings, based on 

incremental costs of ramp product 

procurement from solar forecasting errors

BP 2

Q8
Ramp product & regulation requirements estimate using 

V2.0 probabilistic forecasts 

Requirements with probabilistic solar 

forecasts 15% less than those with 

deterministic forecasts

Most important ones related to testing with IEEE 118 bus system listed. 

Go/No-Go # 1 For Thrust #4 testing on ISO scale systems



Thrust 3: Visualization of probabilistic ramp 

forecasts for situational awareness

2-hr
±yσExpected 

rampu
p

-r
am

p
d

o
w

n
-r

am
p

RTD RUC
1-hr look 

ahead
n-hr

RTD
Ramp 
alert

Will provide: 

1) Forecasted net-load ramps 

and their uncertainties

2) “Ramp alerts” at shorter 

time scales, when ramp 

forecast > available 

capability

5

5

Up

Down

10 MW ± 3 MW

20$

5 10 20 30 40 50 60

Site-specific solar ramp visualization

Forecast look-ahead time (minutes) 

Regional solar power ramp 

forecasts: Can identify 

economic curtailment options 

in event of ramping alerts
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Thrust # 3 Milestones
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Due Description Success Value

BP 1

Q2
Prototype #1- tool demonstration & functional 

specification with V0.0 Watt-Sun outputs. 

Demo of visualization to ISO and DOE, 

with Watt-Sun data at backend. 

BP 2

Q6
Prototype #2- tool demonstration & functional 

specification with V1.0 Watt-Sun outputs.
Same 

BP 3

Q12

Final Version - tool demonstration and functional 

specification with V3.0 Watt-Sun outputs. Demo of ramp 

alerts, regional ramps, and identification of possible 

economic solar curtailment under ramp deficit conditions

Same

Milestones also target definitions of visualization tool’s functional requirements, software 

layers, input-output requirements, forecast update rates, scripting language, & qualitative 

comparisons to existing EMS visualizations 



Thrust 4: Co-ordination with ISOs 

to test forecast integration

Testing 1- Market simulations of ISO systems under different 

scenarios (e.g., baseline, %solar energy, gen retirements, gas prices, 

%reserves)

• Using large-scale, extensively reviewed power system models & 

data

Testing 2- Testing & demonstration in coordination with ISO in-

house simulation capabilities and/or market dispatch data

• Forecasting methods & performance to be validated with ISO data 

(internal validation)

• Operator consultations
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Integration Benefit Assessment

Using the most up-to-date information will allow requirements to 

better reflect the actual risks of load imbalances, and avoid over-

conservativism

• CAISO real-time ramp product costs ~$25M/yr
o Likely increase with day-ahead procurement

• CAISO regulation services ~$80M/yr (2016-2017)

o ~Doubled recently due to more variable renewables

Preliminary ISO reports on deployment uncertainties  ~10-25% 

reduction in ramp forecast error appears achievable if forecast 

information can be better reflected

 ~$10M-$25M/yr savings

CAISO Department of Market Monitoring, "Report on Market Issues and Performance", various years & quarters

Thrust 4
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Thrust # 4 Milestones
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Due Description Success Value

BP 2

Q6

Technical feasibility of probabilistic forecasts:

• integration forecast formats

• frequency of updates for DA & RT integration 

• reserve requirements formats.

Logistical feasibility: Integration with ISO energy 

management systems (dispatch, unit commitment).

Report developed with ISO collaboration 

Q8
ISO system simulations and cost-benefits of forecast 

integration under different scenarios 

Identify conditions achieving >10-25% yearly 

cost savings in flexible ramping product 

procurement (compared to baseline)

BP 3

Q10

Testing: Forecast & ramping product/regulation estimation 

integration for several days; observe: 

• generation dispatches

• clearing prices 

• system costs. 

Report to ISO and DOE, with ISO feedback

Q12

Final report on feasibility & economic impacts from testing 

integration of probabilistic solar power forecasts for 

coordinated ISO ramp product & regulation procurement 

(ISO and/or NREL in-house simulations). 

• >12% cost savings compared to baseline. 

• Report to ISO and DOE, with ISO 

comments and pathways for market 

adoption

Most important ones related to integration success listed. 

Go/No-Go # 2



Summary: Impact & Significance

• Probabilistic forecasting approach will significantly transform 

the forecasting software market (for solar power, load and wind) 

• First-of-a-kind integration testing of probabilistic forecast 

integration in a ISO environment: 

 Pave way for grid transformation

 Facilitate meeting SunShot goals (100s GW of solar; lower customer costs)

• Enhance, but not reformulate, existing ISO optimizations by 

supplying probabilistic forecasts in the form of reserve 

procurement targets & visualization aids. 

 Creates a low risk, fast-track, & high impact pathway for integrating 

probabilistic forecasts
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Extra Slides
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Multiple information and data sources are being 

fused to create a super forecast

 Persistence: 
— Real-time power data

— Weather station data

 Lagrangrian Forecast Models:
− Sky camera model

− Satellite-based (GOES), advection 

models

− Time-series models

 Weather Forecast Models:
− Rapid Refresh (RAP)

− Hi-Resolution Rapid Refresh (HRRR)

− Short-Range Ensemble Forecast (SREF) 

− North American Mesoscale Forecast 

(NAM)

− Global Forecast System (GFS)

− European Center for Medium range 

Weather  Forecasting (ECMWF)

 Climate Models:
− Climate Forecasting System (CFS)
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Improving accuracy using situation dependent, machine-
learnt, multi-model blending

Example, NAM solar irradiance forecast 
o Depends strongly GHI and solar zenith 

angle.
o The two parameters create four 

categories of situations below.

Question: Which model is more 
accurate, when, where, under what 
weather situation?
o Apply functional analysis of variance 

to understand 1st,2nd,3rd, ….order 
errors

o Model accuracy can depend strongly                                                                                       
on “weather situation” category.

o “Weather situation” is determined 
using a set of parameters including 
forecasted ones on which model 
error depends on strongly.

Irradiance 
forecast (W/m2)

Zenith
(Deg)

Forecast 
Error

(W/m2)
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Reduction of forecast error using situation dependent 
machine learning based multi-model blending 

After model blending, “situation dependent “ bias error is essentially  
eliminated.

Three models: RAP 11z (0-15hr), HRRR 11z (0-15hr), NAM 6z (5 to 20 hr ahead)

Average d for Seven Surfrad Stations. 

Blending with Situation 
Categorization

Regression without Categorization

Erro
r [W

/m
2]
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Local, regional, and probabilistic forecasts

Targeted

Quantile

Actual 

Quantile

99% 99.4%

90% 92.2%

10% 9.9%

1% 0.8%

Quantile Reliability 

Regional Forecast for ISO-NE
• South East Massachusetts Region
• 158 PV Plants, Total 10.4 MW
• 24-48 hr ahead forecasts at 3:30am EST daily
• MAPE 5.0% (2014-5-1 to 2014-10-31) 

Probabilistic Forecasting
Built into the machine learning approach using 
“Weighted absolute deviations” type loss 
function as training target.

Single Plant – Fixed 
Systems

• Smyrna, TN
• 1MW Nameplate Capacity
• 24 to 48 hr ahead forecasts
• MAPE 11% (2014-5-1 to 2014-10-

31) 

NOAA BND Surfrad Station
05/2013 to 01/2014

Single Plant – 1D Tracking System
• TEP FRV Site, Marana, AZ 
• 20MW AC Capacity
• 24 to 48 hr ahead forecasts
• MAPE 11% (2014-5-1 to 2014-10-31) 

Metrics
24-48 hr, 2nd 

Yr
Correlation 
coef.

0.936

RMSE (MW) 79

NRMSE by 
capacity

0.0757

MaxAE (MW) 466

MAE (MW) 52.6

MAPE by 
capacity

0.0504

MBE (MW) -7.2

KSIPer (%) 6.648

Std dev. (MW) 78.8

Skewness 0.539

Kurtosis 3.35

4RMQE (MW) 124

N4RMQE 0.119

95th percent 131

Metrics
24-47 hr
,2nd Yr

Correlation 
coef.

0.854

RMSE (MW) 3.4

NRMSE by 
capacity

0.17

MaxAE (MW) 18.5

MAE (MW) 2.23

MAPE by 
capacity

0.111

MBE (MW) -0.194

KSIPer (%) 20.076

Stdev. (MW) 3.43

Skewness 1.41

Kurtosis 4.9

4RMQE (MW) 5.69

N4RMQE 0.282

95th 
percent(MW)

6.36

Metrics
24-47 hr 2nd 

Yr
Correlation 
coef.

0.766

RMSE (MW) 0.15

NRMSE by 
capacity

0.155

MaxAE (MW) 0.48

MAE (MW) 0.111

MAPE by 
capacity

0.115

MBE (MW) 0.0211

KSIPer (%) 12.601

Stdev. (MW) 0.148

Skewness 0.296

Kurtosis 0.238

4RMQE (MW) 0.203

N4RMQE 0.21

95th percent 
(MW)

0.301
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Improvements and Uniqueness

 Machine learning 
performance of 
this technology is 
(almost) 
independent of  
data size

 Time to result is 
independent of 
how much data is 
processed

 Conventional 
systems require 
more time for 
larger data sizes

This work 
(PAIRS)
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IBM  Cloud Imaging  
System

without mechanical 
shutter 

“Fish eye” 
lens

24 bit camera
with several gain

stages

 Sky camera with fish eye lenses detects arrival  incoming 
clouds

− Field of view ~ 2 miles, no mechanical parts

 Multiple sky cameras increases prediction horizons and 
allow cloud height detection

Sky TransparencySkyCam Image

Lagrangrian forecasts using sky cameras

Measured 

Forecast

Error
6 min optical flow based forecasts for 6 consecutive days 

Time [hours]

P
o
w

e
r 

[k
W

]
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Short-term optical flow based forecasting with Navier-
Stokes Modeling using GOES Satellites

Conventional Cloud Propagation:
• Using (filtered) NWP wind field 

Inaccurate wind (error in cloud height estimate)
• Using wind field from optical flow

Neglecting wind dynamics in hour-ahead.

New method keeps accurate wind field 
determined by optical flow, but captures 
basic wind dynamics.

1. Optical flow estimates 
wind field using two 
consecutive cloud images 
(optical depth)

2.Fit an initial condition of 
2D Navier-Stokes Equation 
to two consecutive optical 
flows

3.Forecast optical flow and 
use it to predict cloud 
images Forecast horizon [min]

2x 
improveme
nt
over 
advection-
based 
forecasts

D
N

I M
A

E 
[W

/m
2
]

Result for 
CONUS wide 
forecasts and 
cloudy days
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In Vendor trials we reduced forecast error by 
more                             than 30% over the next 

best forecasts

1.935 MW Fixed Array in Italy

Competito

rs 

IBM

30 % reduced error
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We scaled the technology to continental wide 
forecasting and beyond.

• > 35 % improved accuracy with respect 
to next best model at 1600 sites across 
the United States

• SMT provides gridded forecasts

• Continuously learns and improves

Publically available web access to forecasts of 1600 
sites across the US 

http://server01.mmthub.com:9080/forecast/
User id: demo; Password: demo

34
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Load forecasting for ISO-New England

• IBM provides point forecasts for 665 sites in 9 dispatch zones

• Trains the model on 665 sites 

• IBM scales forecast using estimated PV capacity for each dispatch 
zone

• ISO-NE feeds the forecasted data as an input into a neural 
network for load predictions
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Estimated PV capacity in ISO-NE

35

Measurement station in ISO-NE
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IBM’s World Wide Weather Monitoring 
Network using Weather Underground
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What is next? GPS-RO

•GPS Radio Occultation (GPS-RO) is an technique for measuring 3D 
weather variables (temperature, humidity etc) of the Earth’s 
atmosphere from space
•Explore opportunities to leverage GPS-RO for enhanced machine-
learning
•Early results show drastic improvements 
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Visualization Design

Integration of visualizations 

with forecasts & other data 

streams  separating 

framework into multiple 

interacting logical layers, each 

with a clearly defined API

Thrust 3

The front-end visualization: typical stack of web technologies (HTML; 

JavaScript; Cascading Style Sheet)

Web stack technologies we used previously: Node.js, Ruby on Rails, and 

PostgreSQL to create the logical layers of the back end
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Simulation Tools
Tool Capability Role

Flexible Energy 

Scheduling Tool 

for Integration of 

Variable 

generation 

Simulate decisions for:

• DA SCUC

• RT SCUC

• RT SCED

• AGC

• Thrust #2: UC/ED impacts & cost-benefit 

analysis using IEEE system

• Ramp & regulation procurement extracted from 

probabilistic net-load forecast, using OpSDA

algorithm

PLEXOS & 

PSST production 

costing 

simulation

Access to large-scale, extensively 

reviewed power system models & 

data 

• Western Wind & Solar 

Integration Study (Phase 2)

• Calif Low Carbon Grid Study

• Eastern Renewable 

Generation Integration Study)

• Thrust #4: UC-ED impacts & cost-benefit 

analysis using ISO scale systems under different 

scenarios

In-house ISO 

simulations 

and/or dispatch 

data

Testing of probabilistic solar & 

net-load forecasts integration in 

ISO in-house simulation settings

• Thrust #4: Work with CAISO & MISO to 

integrate and/or evaluate estimates of ramping & 

regulation products procurements using 

probabilistic forecasts, & visualizations

Thrust 4
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