

Solar Forecasting II

The Solar Energy Technologies Office

energy.gov/solar-office

Charlie Gay Director 12 July 2018

Solar Energy Technologies Office Staff

energy.gov/solar-office

Solar Energy Technologies Office (SETO) SubPrograms and Project Managers

Systems Integration Dr. Guohui Yuan, Program Manager

Concentrating Solar Power Dr. Avi Shultz, Program Manager (Acting)

Photovoltaics Dr. Lenny Tinker, Program Manager

Technology to Market Garrett Nilsen, Program Manager Balance of Systems (Analytics /Soft Costs) Garrett Nilsen, Program Manager (Acting)

EERE Funding Table by Subprogram (FY 2018 Structure)		
(\$ Thousands)	FY 2017	FY 2018
Solar Energy Technologies	207,600	241,600
Photovoltaic Research and Development	64,000	70,000
Balance of Systems Soft Cost Reduction	15,000	11,000
Concentrating Solar Power	55,000	55 ,000
Systems Integration	57,000	71,200
Innovations in Manufacturing Competitiveness	16,600	34,400

Cumulative Global PV Installations (GW) and Average Module Price (\$/W)

World's Largest Thin Film PV Plant 550 MW Riverside County, CA

Global price benchmark for fixed-axis PV power plants

USD per watt (real 2016)

energy.gov/solar-office

There are Many Technology Pathways to \$0.03/kWh

Scenarios assume: 7% WACC, 2.5% inflation, \$4/kW-yr O&M, 21% capacity factor

Utility Scale Global Capacity Weighted Average, Global Median, U.S. & India, 2015-2022E

Record-Low PPA Prices for Utility-Scale Solar

Source: GTM energy.gov/solar-office

10

Solar Supplies Nearly 2% of U.S. Electricity

Sources: International Energy Agency, "2015 Snapshot of Global Photovoltaic Markets"; "Solar Thermal Electricity Global Outlook 2016"; National Renewable Energy Laboratory, "U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017". energy.gov/solar-office

The U.S. Market is Moving Beyond California

U.S. Installation Breakdown

• At the end of 2017 the U.S. had installed approximately 53 GW of PV installations, 60% of which were utility-scale.

U.S. Market by Segment

Gigawatts (DC)

energy.gov/solar-office

Source: Bloomberg New Energy Finance (2H 2017 U.S. Renewable Energy Market Outlook)

U.S. Department Of Energy

Challenges : Curtailment

California Independent System Operator Data

Includes utility-scale solar only. Does not include behind-the-meter.

Realized price scalar (% of ATC) +50% +40% +30% +20% +10% -10% -20%

Measured against Day-Ahead, SP15 power prices.

2013

2012

2014

-30%

-40% -50%

2011

2017

2018 (Q1)

2016

2015

15

Distributed Energy Resources Net Energy Metering Renewable Portfolio Standards Variable and Uncertain Generation Fast Ramping Requirements **Distributed Storage Community Solar Community Choice Aggregators** Need for Flexibility **Autonomous Microgrids** Grid Defection Self-Generation

Stagnant or Declining Demand Aging Infrastructure **Negative ISO Clearing Prices Physical and Cyber Threats Transmission Right-of-Way Access Confusion among Regulators Confusion among Investors Electric Vehicle Loads** Carbon Tax ? **Retail Choice** Virtual Power Plants **Reduced Grid Inertia**

Flexible & Dispatchable Solar ... Key to Market Expansion & Value Retention

Solar 1.0: Traditional

- Solar is part of mid-day load offsets peak or near-peak demand
- Energy-Only Value

Solar 2.0: Dispatchable

- Solar mitigates value erosion through plant controls
- Adds Grid Reliability Services
 & Flexibility Value

Solar 3.0: Fully Dispatchable

- Storage (hours, not days) timeshifts solar - dispatchable
- Adds Firm Generation Capacity Value

Source: First Solar energy.gov/solar-office

Role of Artificial Intelligence

Ke Jie "AlphaGo sees the whole universe of Go, while I could only see a small area around me... it's like I play Go in my backyard, while AlphaGo explores the universe.

Machine Learning can be used to automatically manage electricity distribution and learn to forecast energy use.

Department Of Energy

Key Topics – PV Impact on Power Grid & Best Practices

Source: First Solar energy.gov/solar-office Integrate forecasting into daily operation

Hours to Days

Scheduling

- Update operating procedures - balancing area, frequent updates, ramping support
- Adopt diverse resource portfolio to reduce risks and increase grid flexibility

Power Systems Planning & Design

Years

Autonomous Energy Grids (AEGs)

Central-station based Grid

Optimized for secure, resilient and economic operations

https://www.nrel.gov/docs/fy18osti/68712.pdf

Key Features of AEGs

- Autonomous Makes decisions without operators
- **Resilient** Self-reconfiguring, cellular building blocks, able to operate with and without communications
 - Secure Incorporates cyber and physical security against threats
- Reliable and Affordable Self optimizes for both economics and reliability
- Flexible Able to accommodate energy in all forms including variable renewables