

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Development of Real-Time Characterization Tools and Associated Efforts to Assist Membrane Electrode Assembly Manufacturing Scale-Up Michael Ulsh, National Renewable Energy Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Fuel Cell Technologies Office Webinar

August 22, 2018

Question and Answer

• Please type your questions to the chat box. Send to: (HOST)

∽ Chat		×
Send to:	Everyone	~
Enter c	hat message here	Send

Support

- This Early Stage R&D activity is funded as a lab core competency by FCTO
- Other funding has also been received from:
 - DOE: AMO, VTO, FE
 - Industry

Outline

- Overview of the manufacturing context and challenges for membrane electrode assembly (MEA) materials
- Detailed discussion of work to develop real-time inline characterization techniques
- Overview of specialized in situ diagnostics developed to understand how defects in MEA materials affect cell performance and lifetime
- Overview of efforts to understand the foundational relationships between electrode materials (inks and coated layers), processing methods, and performance

Overview of the manufacturing context and challenges for MEA materials

Markets

- Markets for multiple applications are expanding
- Units, power output, revenue increasing
- Increased state activity

S. Satyapal, "Hydrogen and Fuel Cell Program Overview," Hydrogen and Fuel Cell Program Annual Merit Review, June 13, 2018.

Estimated Costs from Techno-economic Analysis

B. James, "2018 Cost Projections of PEM Fuel Cell Systems for Automobiles and Medium-Duty Vehicles," FCTO Webinar, April 25, 2018.

- Stack and system cost analysis assumes the use of high-volume manufacturing methods for MEA materials
- The modeled manufacturing technologies are not in all cases proven out at scale

Roll-to-roll Manufacturing

High-volume roll-to-roll (R2R) manufacturing methodologies are relevant for:

- Gas Diffusion Media
- Electrode
- Membrane
- Assemblies w/gaskets

Figure 80. Horizontal dual-sided simultaneous slot die coating of de-alloyed PtNi₃/C catalyst process flow diagram

B. James et al., "Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2016 Update ," January, 2017.

Figure 65. Membrane fabrication process diagram

Premise for NREL Activity

- Membrane electrode assemblies (MEAs) for PEM fuel cells must be made using scalable processes to enable high volume and low cost
- For PEM materials, these processes are typically atmospheric pressure and solution-based, given the heterogeneous polymeric and particle-based nature of the materials
- These materials, when cast, coated, sprayed, extruded, laminated, aligned, etc., tend to have a variety of macro- and micro-scale defects that <u>MAY</u> affect performance and lifetime

Challenges We Try to Address

- How can we detect defects in MEA materials in ways that are amenable to the fabrication process?
- How do we understand how defects formed during fabrication and handling affect performance?
- How do we understand how the parameters of the ink formulation and fabrication process affect performance?

Industry Collaborators

Approach: **Work with industry** to develop knowledge and techniques to improve quality and reduce manufacturing costs of MEA materials

- General Motors
- 3M
- W.L. Gore
- Proton OnSite
- Giner
- HyET
- Mainstream Engineering
- Pajarito Powders
- Umicore

- Ballard
- Altergy
- AquaHydrex
- Advent
- Ion Power
- BASF
- AvCarb
- Arkema
- UTC
- DuPont

Detailed discussion of work to develop real-time in-line characterization techniques

Why Worry About Quality?

 Preliminary analysis using Strategic Analysis Inc.'s well established automotive fuel cell cost model indicates that, even at 90% yield (vs. 100%), stack cost can increase close to 60%

 In their back-up power PEM cost analysis, LBNL (M. Wei, T. McKone, DOE Hydrogen Program Annual Merit Review, June 19, 2014) show a significant effect of stack yield on system cost

Importance Reflected in FCTO MYR&D Plan

From the MYR&D Plan Manufacturing Section*

Task 5: Quality Control and Modeling and Simulation		Task 1: Membrane Electrode Assemblies		
5.1	Establish models to predict the effect of manufacturing variations on MEA performance. (4Q, 2016)	1.1	Develop processes for highly uniform continuous lamination of MEA components. (4Q, 2017)	
5.2	Demonstrate improved sensitivity, resolution, and/or detection rate for MEA inspection methods. (4Q, 2016)	1.2	Develop processes for direct coating of electrodes on membranes or gas diffusion media. (4Q, 2017)	
5.3	Validate and extend models to predict the effect of manufacturing variations on MEA performance. (4Q, 2017)	1.3	Develop continuous MEA manufacturing processes that increase throughput and efficiency and decrease complexity	
	Design and commercialize an in-line QC device for PEMFC MEA		and waste. (4Q, 2017)	
5.4	4 materials based on NREL's optical reflectance technology. (4Q, 2017)		Demonstrate processes for direct coating of electrodes on membranes. (4Q, 2019)	
5.5	Develop correlations between manufacturing parameters and manufacturing variability, and performance and durability of MEAs. (4Q, 2018)	1.5	Demonstrate processes for highly uniform continuous lamination of MEA components. (4Q, 2019)	
5.6	Demonstrate methods to inspect full MEAs and cells for defects prior to assembly into stacks in a production environment. (4Q, 2018)	1.6	Develop fabrication and assembly processes for PEMFC MEA components leading to an automotive fuel cell stack that costs \$20/kW. (4Q, 2020)	
5.7	Develop areal techniques to measure platinum (and other catalyst metals) quantitatively in an MEA. (4Q, 2018)	L		
5.8	Implement demonstrated in-line QC techniques on pilot or production lines at PEMFC MEA material manufacturers. (4Q, 2020)			
5.9	Develop imaging-based methods for 100% inspection of PGM loading in electrodes. (4Q, 2020)	* N UDI	IYR&D Plan Manufacturing Section currently being dated to reflect new office structure and milestones	

Enable Quality Inspection During R2R

Manufacturing Fuel Cell Manhattan Project Presented by the Benchmarking and Best Practices Center of Excellence, ACI Technologies, 2012.

Inspection Requirements:

- Rapid measurement and data processing
- Implementable in an in-line fashion
- Non-destructive
- Areal (100% inspection or nearly so)

Overview of QC Techniques

Material	Defects	Detection	Resolution (x-y)	Status
Membrane	Pinholes, bubbles, scratches, agglomerates, etc.	Optical reflectance/transmission	micrometers	Demonstrated on web-line
	Thickness variation (mapping)	Optical absorption	micrometers	Demonstrated on motion prototype
		Optical reflectance (interference fringe)	millimeters	In development
		Thermal scanning	millimeters	In development
GDL	Scratch, agglomerate, fibers	IR/direct-current	millimeters	Demonstrated on web-line
Electrode	Surface defects	Optical reflectance	micrometers	Demonstrated on motion prototype
	Voids, agglomerates, cracks, thickness/loading indirectly	IR/direct-current (for CCMs or decals)	millimeters	Demonstrated on web-line
		IR/reactive impinging flow (for GDEs or CCMs)	millimeters	Demonstrated on web-line
	Loading (mapping)	Optical reflectance/transmission	millimeters	In development
	Shorting	Through-plane IR/direct- current		Demonstrated on web-line
	Membrane integrity	Through-plane reactive excitation	pinholes as small as 90 µm	Demonstrated on static test-bed

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

IR techniques for catalystcoated membrane (CCM) electrode uniformity/defects and shorting

IR/Direct-current (IRDC) Excitation Technique

Methodology:

- Apply voltage across electrode layer
- Resulting current causes resistive heating
- Rapid (~sec), areal measurement of thickness uniformity

1cm², 25% reduction

32.5 30.0 27.5 25.0 22.5

1cm², 50% reduction

All samples: 25 cm² active area, 5 second excitation at 21V DC; % reduction of the thickness of the catalyst layer within the area of the defect

Setup for IRDC on NREL Web-line

IRDC Defect Detection Examples

Simulated

coating die

droplets from

Carbon debris applied to GDE, under a laminated membrane

Electrode coating lumps on decal

IRDC Effect of Line Speed

We modulated excitation conditions to give equivalent detection over a range of line speeds

> IRDC was demonstrated on an industry partner R2R CCM manufacturing line

Through-plane IRDC Technique

Methodology

- Apply voltage to rollers on both sides of CCM or MEA
- Shorting pathways allow current, causing resistive heating
- Rapid, areal identification of shorting locations

Gittleman et al., "Membrane Durability: Physical and Chemical Degradation", in *Modern Topics in Polymer Electrolyte Fuel Cell Degradation*, Elsevier, 2011, pp. 15-88.

Kundu et al., *Journal of Power Sources*, **157** (2006) 650–656.

Through-plane IRDC Defect Detection Examples

IR techniques for gasdiffusion electrode (GDE) electrode uniformity/defects, membrane integrity and measuring membranes in multi-layer constructions

Reactive Impinging Flow (RIF) Technique

Methodology

- Use a non-flammable reactive gas mixture to react on catalyst
- Use an array of jets (knife) to impinge reacting flow onto GDE
- Non-uniformities in electrode will result in differences in thermal response
- Rapid, areal measurement of thickness/loading uniformity

Setup for RIF on NREL Web-line

RIF on NREL R2R Coated GDE Web

- Created uniformity map of entire coated sample
- Temperature rise correlated well with small variation in loading

Through-plane Reactive Excitation (TPRE)

Methodology

- Expose membranecontaining assembly to hydrogen-containing gas
- Hydrogen advects through pinhole and reacts on catalyst, resulting in thermal response
- Rapid, areal detection of failure of membrane integrity

TPRE Pinhole Detection Examples

Profile - Line **Thermal response** with 0.5 lpm H₂ flow, 25. 23.5°C 5 sec pulse: 1 °C 27.4 temp rise achieved in 2 sec; Max temp rise 25.9 > 2 °C 25.3 24.8 24.3 23.7 23.2 MEA with 120 µm pinhole 90 µm diameter pinhole in 18 µm thick membrane, 28.1 tested with GDE 27.6 (0.2 mg/cm² Pt) 27.0 26.5 26.0 25.4 24.9 Half-cell with 24.3 pinholes created 23.8 using 25 µm tool $(\Delta T \approx 0.2 \ ^{\circ}C)$

23.

23.4

Thermal Scanning Technique

Methodology

- Use thermal excitation of active layer/substrate
- Measure peak/decay
- Link measurement to thermal model to back out physical properties, e.g. thickness, porosity

Measured membrane thickness in half-cell (membrane on GDE) samples

Optical techniques for membrane defects, membrane thickness imaging, and electrode surface defects

Optical Defect Inspection

Methodology

- Use transmission and reflectance imaging in specular or diffuse modes
- Use flexible inspection apparatus on web-line
 - Easy control/repeatability of light and detector angles
 - Filtered hood to eliminate external light and minimize contamination
- Develop defect detection and classification algorithms
- Provide full width/full length high resolution product roll imaging (mapping)

Membrane Defect Detection Examples

- PFSA and other membrane chemistry
- Wide range of thickness
- Reinforced
- Discrete and areal defects
- Automated full-roll metrics

Optical QC to detect defects in membrane material

Objective:

U.S. DEPARTMENT OF ENERGY

- Build and demonstrate a prototype system that simultaneously measures:
 - Defects in a moving membrane web
- Membrane thickness over the full web width Accomplishment:
- Scaled up NREL technique to detect pinholes in membrane material; defects detected down to 10 µm at 100 ft/min Plans:
- Scale system to real-time measurements of thickness over 24-inch web
- Demonstrate reliability of packaged system for defect ٠ detection on two industrial weblines

The MantisEye film inspection station

R2R film inspection station with Automated Dynamics machine vision system commissioned February 28

Membrane Thickness Imaging

Methodology

- Use interference fringes in reflectance spectra
- Perform Fourier Transform to find thickness in each pixel
- Relevant for membranes
 - With and without reinforcement
 - While membrane is still attached to liners

Defects in Electrodes

• Detection of a variety of defect types in various electrode structures (10 ft/min)

Rupnowski et al., ASME PowerEnergy 2015-49212.

GDE 2.3-CCM 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Overview of specialized in situ diagnostics developed to understand how defects in MEA materials affect cell performance and lifetime

Example: Effects of Membrane Pinhole

- No observable impact in total cell initial performance (vs. pristine)
- However, we observe initial performance loss local to the pinhole (segmented cell), and
- Increased degradation in performance over time (drive cycle), and
- Earlier failure (accelerated stress test)

Optical image of mechanically punctured pinhole prior to spraying electrode (left), LBNL XCT image after MEA fabrication (right)

Status: Electrode Irregularity Studies

Parametric Study (Impact of XX on)	Initial Performance: Total Cell	Initial Performance: Local	Prolonged Performance: Total Cell	Lifetime: Total Cell
Irregularity Size (0.125, 0.25, 0.5, 1 cm²)				
Membrane Thickness (25, 50 μm)				
Irregularity Location (Inlet, Center, Outlet)				
MEA Configuration (GDE, CCM)				
Catalyst Loading (0.15/0.15, 0.2/0.2 mg Pt/cm²)				
Irregularity Shape (Square, Rectangle, Circle)				
Catalyst Layer Thickness Variations (Thin, Bare Spots)				
Irregularity Aspect Ratio				
Slot Die Coating/Manufacturing Defects (Droplet, Scratch, Cut)				

Little/No Impact Moderate Impact Significant Impact Ongoing Work

We need this suite of tools to fully understand the effects of electrode irregularities

Example: Impact of Membrane Thickness

- Cathode centered bare spots
- Comparing effect on 25 μm vs. 50 μm membranes
- Not much difference in initial performance
- Impact during drive cycle much greater for thinner membrane
- Time to failure: NRE212 > NRE211 pristine > NRE211 with irregularity

cm⁻²

2

Crossover Current Density / mA

Example: Effect of Electrode Thin Spots

- Compare effects of thin spots in the cathode to bare spots
- Irregularities are 2.5% of 5 cm² active area, 50% thickness reduction (vs. 100%)
- Thin spots cause similar performance degradation as bare spots
- Both thin and bare spots cause minor reduction in performance on 50 µm membrane
- Both thin and bare spots cause catastrophic loss of performance on 25 µm membrane

0.2 mg Pt/cm² nominal loading

Reduction in performance over time

Overview of efforts to understand the foundational relationships between electrode materials, processing methods, and performance

Study Transition from Lab-Scale to Scalable Electrode Production

Used to demonstrate new materials and for fundamental studies

Conditions

- Dilute ink (~0.6 wt% solids)
- Ultrasonic mixing
- Sequential build up of layers
- Heated substrate
- Vacuum substrate

Needed to demonstrate scalability of materials, MEA/cell designs, and industrial relevance Conditions

- Concentrated ink (~4.5-15 wt% solids)
- Shear mixing
- Single layer
- Room temp. substrate
- Convective drying

Rheology of Carbon and Pt/C Inks

The influence of Pt appears to be dependent on the surface or internal location of Pt

- Addition of ionomer stabilizes carbon particles
- Transition from shear thinning to Newtonian
- Same trend for Pt/Vulcan
- However, ionomer does not stabilize Pt/HSC in same way

Rheology of Unsupported Low Temperature Electrolysis Catalysts

- Iridium oxide (IrOx) catalyst, without ionomer, displays similar agglomeration behavior to Pt/Vu, though at much higher weight fractions
- Addition of ionomer has the same stabilizing effect as for Pt/Vu
 - Only a small amount of ionomer is needed to stabilize the catalyst particles against agglomeration

Gravure Coating Parametric Studies

Contributors

- NREL
 - Peter Rupnowski
 - Brian Green
 - Guido Bender
 - Adam Phillips
 - Scott Mauger
 - Sunil Khandavalli
 - Min Wang
 - KC Neyerlin
- LBNL
 - Adam Weber
 - Lalit Pant

- UC Irvine
 - Iryna Zenyuk
- ANL
 - Debbie Myers
 - Jae Hyung Park
 - Nancy Kariuki
 - Rajesh Ahluwalia
 - Firat Cetinbas
- Georgia Tech
 - Tequila Harris
- Colorado School of Mines
 - Jason Porter

Question and Answer

• Please type your questions to the chat box. Send to: (HOST)

∽ Chat			×
Send to:	Everyone	\sim	
Enter c	hat message here		Send

Thank you

Michael Ulsh michael.ulsh@nrel.gov Eric Parker DOEFuelCellWebinars@ee.doe.gov

Nancy Garland Nancy.garland@ee.doe.gov

hydrogenandfuelcells.energy.gov

Technical Back-Up Slides

RIF Defect Detection Examples

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

reduction

Defects in Membranes on an Electrode

 Detection of a variety of defect types in electrode-containing structures and MEAs (10 ft/min)

- Yellow boxes indicate automated detection
- Pinhole images are at 10X magnification

Left: 50 µm debris (microscope); Right: specular reflectance imaging

Overview of In Situ Techniques

Does an irregularity in an MEA component material impact:

(a) initial performance, (b) performance over time, and/or (c) location or timing of failure?

Initial performance (local and total cell)

- PCB-based 50 cm² segmented cell with 121 segments
- Measure spatial and total cell performance at wet and dry conditions
- Analyze performance effects induced by irregularities using absolute and differential methods

Prolonged performance

- Use the "New European Drive Cycle"
- Measure total cell polarization data after every 72 cycles
- Analyze performance degradation induced by irregularities

Onset of failure

- Use a combined chemical/mechanical AST (based on DOE protocols)
- Use 50 cm² cell in NREL-developed test hardware for in situ testing and quasi-in situ spatial H_2 crossover
- Monitor failure development with OCV and H₂ crossover limiting current as indicators
- Determine "end of life" using 2020 FCTT crossover target as criteria
- Analyze impact of irregularity on location of failure(s) and lifetime

Effect of Solvent

- High water-content solvent causes stronger interparticle repulsion
- Stronger repulsion leads to smaller agglomerates in the ink and smaller particles in the coated electrode
- Smaller particle size leads to improved oxygen transport and performance

H₂/Air, 150kpa/150kpa, 80°C, 100%RH

High water content in Pt/HSC inks appears to lead to a morphology that improves performance

RIF on R2R Screen-printed GDEs

- Demonstrated detection of thick and thin electrode defects
- Demonstrated detection of loading variations sample-tosample

TPRE Web-line Experiment

- Use RIF with nonflammable gas to enable advection of hydrogen through pinhole and catalytic reaction
- Proved concept, but observed small thermal response

