

Non-contact thermophysical characterization of solids and fluids for Gen3 concentrating solar power

Generation 3 Concentrating Solar Power Systems FOA: DE-FOA-0001697 Topic Area 2B - Gen3 Research and Analysis

> PI: Renkun Chen University of California, San Diego Email: <u>rkchen@ucsd.edu</u> http://chen.ucsd.edu

Team Members Prof. Perry Li (Univ. Arizona) Mr. David Wait (SolarReserve LLC)

Energy Efficiency & Renewable Energy

Objectives and Impacts

Problem Statement

- Challenging and time consuming to measure thermophysical properties of high-temperature HTFs, e.g., <u>molten salts</u> and <u>particles</u>.
- Lack of *in-situ* diagnostic tools to monitor thermophysical properties of HTFs

Objectives

- Develop a non-contact technique based on "modulated photothermal radiometry" or "MPR", to measure thermal conductivity (k) and specific heat (C) of heat transfer fluids (HTFs), solar receiver tubes, coatings, up to 800°C
- Use the tool for *in-situ* diagnostics *of* materials in CSP plants and of their corrosion behaviors.

Impacts to Gen3 CSP

- Facile and room-to-high temperature thermophysical measurements of emerging fluids (e.g., molten salts) and solids (e.g., particles) for Gen3 CSP systems.
- Transition of the diagnostics tool for laboratory and *in-situ* testing in other Gen3 awardees.

Working Principles of MPR

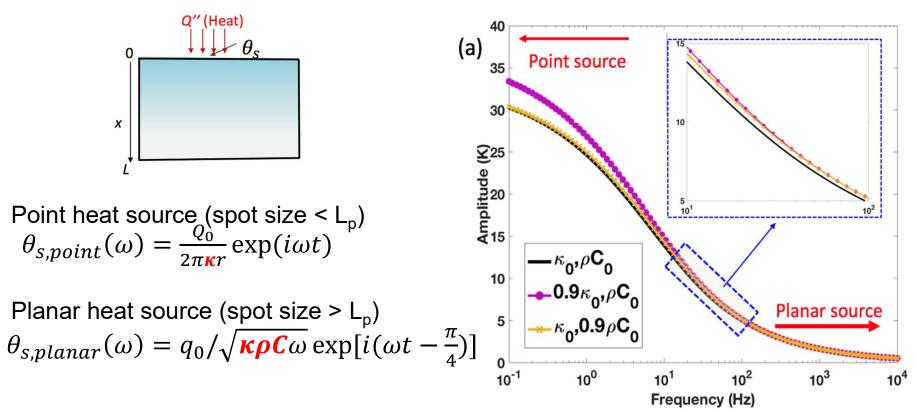
Key Principles and Merits

- By changing the modulation frequency and the thermal penetration depth of the heating beam, the surface temperature will be sensitive to *k* and *C* of different layers (HTF, tube, and coating).
- Lock-in technique for surface IR thermometry with mK resolution.
- Works for both rough and smooth surfaces (unlike thermoreflectance that requires a smooth surface)
- Suitable for high temperature measurements (IR emission is stronger at higher temperature)
- Non-contact, minimal sample preparation (fast), Low-cost

High speed IR detector Modulated heating beam
Tube: C_t , k_t , δ_t
HTF (C_i, k_j)
(molten salts, sc-CO ₂ , solid particles) 200-800 °C
Tube

Layer	Rep. materials	<i>k@600°C</i> (W/m-K)	<i>C@600°C</i> (J/m³-K)	<i>α@600°C</i> (m²/s)	Thickness (L)	Frequency (Hz)	Absorber coating
Solar coating	Black oxide	1- 10 (?)	~0.5 - 2×10 ⁶ (?)	0.2-3 ×10 ⁻⁶ (?)	>10 um	> ~60 kHz	Tube: C_t, k_t, δ_t
Tube shell	Inconel or Haynes	22	5×10 ⁶	4.3×10 ⁻⁶	0.5 mm	>~6	(C _f , k _f)
HTF	Molten salt	~0.5	2.8 ×10 ⁶	1.8×10 ⁻⁷	10 mm	0.1-6	

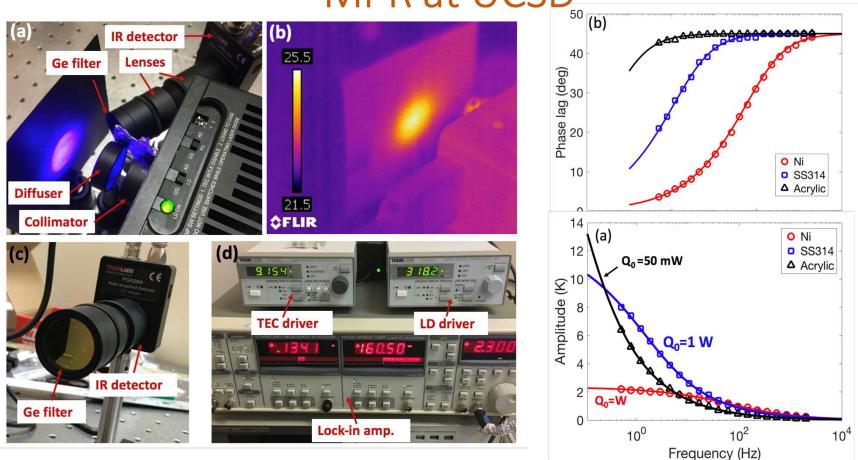
Thermal penetration depth: $L_p = \sqrt{2 \alpha / \omega}$


Simultaneous Measurement of k and C

- Using Modulated or Pulsed Photothermal Radiometry to measure k and C of thin films and bulks has already been demonstrated in the literature (e.g., refs 1-2).
- We can tune the spot and frequency to yield both k and C.

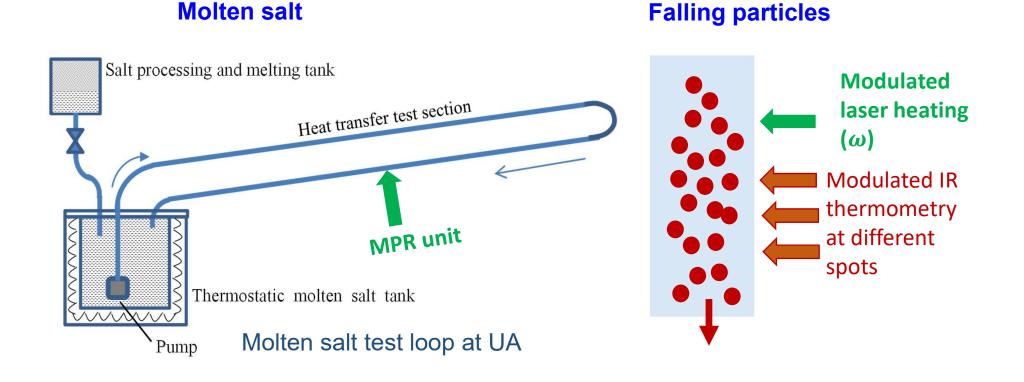
•

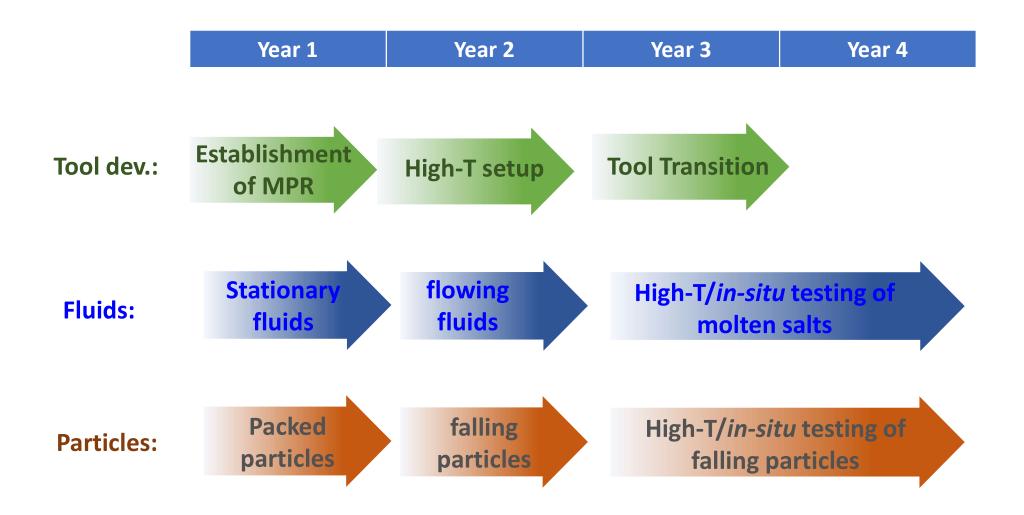
•


• Measurement sensitivity > 0.5 within suitable frequency range.

[1] "Measurement of Thermal Properties of Thin Films up to High Temperatures-Pulsed Photothermal Radiometry System and Si-B-C-N Films", Rev Sci Instrum, 2010.

[2] "Using Pulsed and Modulated Photothermal Radiometry to Measure the Thermal Conductivity of Thin Films" Thermochim Acta, 2013.


MPR at UCSD


	<i>k</i> (V	V/m-K)	C (kJ/m³-K)		
	Fitting	Ref	Fitting	Ref	
Ni	85	90	3754	3920	
SS 314	15.5	17.5	3471	3900	
Acrylic	0.25	0.2	1880	1750	

MPR can also measure flowing fluids and falling particles

- Governing equation (no viscous dissipation): $\alpha \nabla^2 T = \frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T$
- With the known velocity field \vec{v} , the equation can be exactly solved.
- We will test this idea on a molten salt test loop (U Arizona) and also on falling particles

Work Plan and Milestones

