# **Gen 3 Particle Pilot Plant (G3P3):**

Integrated High-Temperature Particle System for CSP

Sandia Proprietary – Do Not Disseminate

PI: Clifford K. Ho
Concentrating Solar Technologies Dept.
Sandia National Laboratories
Albuquerque, New Mexico
ckho@sandia.gov, (505) 844-2384

SAND2018-6688 PE







Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Exceptional service in the national interest







## Introduction to the Team



| Role                                  | Proposed Team Members                                                                                                                                                                                                                                                                                   |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| PI / Management                       | Sandia National Labs (PI, PMP, financial, facilities)                                                                                                                                                                                                                                                   |  |  |  |  |
| R&D /<br>Engineering                  | <ul> <li>Sandia National Laboratories</li> <li>National Renewable Energy Laboratory</li> <li>Georgia Institute of Technology</li> <li>King Saud University</li> <li>German Aerospace Center</li> <li>CSIRO</li> <li>U. Adelaide</li> <li>Australian National University</li> <li>CNRS-PROMES</li> </ul> |  |  |  |  |
| Integrators /<br>EPC                  | <ul> <li>EPRI</li> <li>Bridgers &amp; Paxton / Bohannan Huston</li> <li>INITEC Energia</li> </ul>                                                                                                                                                                                                       |  |  |  |  |
| CSP Developers                        | <ul><li>SolarDynamics</li><li>SolarReserve</li></ul>                                                                                                                                                                                                                                                    |  |  |  |  |
| Component<br>Developers /<br>Industry | <ul> <li>Carbo Ceramics</li> <li>Solex Thermal Science</li> <li>Vacuum Process Engineering</li> <li>FLSmidth</li> <li>Materials Handling Equipment</li> <li>Allied Mineral Products</li> <li>Matrix PDM</li> </ul>                                                                                      |  |  |  |  |
| Utility                               | Saudi Electric Company                                                                                                                                                                                                                                                                                  |  |  |  |  |

### Overview



- Objectives and Value Proposition
- G3P3 System Overview
- Gaps and Risks
- Conclusions

## G3P3 Objectives



- De-risk, design, construct, and operate a multi-MW<sub>t</sub> particle receiver system
  - Heat working fluid (e.g., sCO2 or air) to ≥ 700 °C
  - 6 hours of energy storage
  - > 2,000 hours of on-sun operation
  - Meet SunShot cost and performance goals
- Leverage international expertise and CSP activity
- Accelerate commercialization of G3P3 technology



## Value Proposition



- Proposed particle receiver system has significant advantages over current stateof-the-art CSP systems
  - Sub-zero to over ~1000 °C operating temperatures
  - No freezing and need for expensive trace heating
  - Use of inert, non-corrosive, inexpensive materials
  - Direct storage (no need for additional heat exchanger)
  - Direct heating of particles (no flux limitations on tubes)



### Overview



- Objectives and Value Proposition
- G3P3 System Overview
- Gaps and Risks
- Conclusions

## Gen 3 Particle Pilot Plant (G3P3)



**Integrated System** 





## Gen 3 Particle Pilot Plant (G3P3)



#### **Integrated System**





Baseline Design

### Overview



- Objectives and Value Proposition
- G3P3 System Overview
- Gaps and Risks
- Conclusions

## Gaps and Risks



- Particles
- Receiver and Feed Bin
- Particle Storage
- Particle Heat Exchanger
- Particle Lift and Conveyance
- Balance of System



### **Particles**



- Cost
  - ≤ \$1/kg
- Durability
  - Low wear/attrition
- Optical properties
  - High solar absorptance
- Flowability, low erosion
- Inhalation hazards (e.g., silica, PM2.5)

HSP 40/70







HSP 30/50

#### Receiver



- Thermal efficiency
  - Minimize convective/radiative heat loss
- Particle mass flow control
  - Maintain particle outlet temperature
- Damage/overheating of refractory receiver walls
- Particle emissions / inhalation hazards



## Particle Receiver Designs





Free-Falling (SNL)



Obstructed Flow (KSU, GT)



Centrifugal (DLR)









Mitigate risks associated with thermal efficiency, cost, and capacity

Fluidized Bed (CNRS/PROMES)

# Receiver Innovations Multistage Release



## Increases particle curtain opacity

- Mitigates
   dispersion with
   longer drop
   distances
- Reduces particle loss and impact of wind
- Scalable to commercial systems 10 – 100 MW<sub>e</sub>

From Jin-Soo Kim (CSIRO)

#### **Free Falling**



#### **Staged Falling**



**Patent Pending** 

# Receiver Innovations Aperture Covers / Wind Diverters



- Quartz glass transmits solar radiation but creates a barrier to thermal radiation loss, wind, and convection loss
- Soiling of glass windows and reflective losses are challenges
  - Use quartz half-shells with spacing
  - Integrate with air curtain to reduce soiling



Mitigate risks of radiative/convective heat losses and particle losses while reducing reflective losses and soiling







**Patent Pending** 

### **Receiver Innovations**



#### **Automated Particle Mass Flow and Temperature Control**





Mitigate risk of variable DNI on particle outlet temperature



Automated Particle Flow and Temperature Control

**Patent Pending** 

16

## **Receiver Innovations**



#### Automated Particle Mass Flow and Temperature Control



## Storage System



- Demonstrate charging and while minimizing heat loss
  - Robust, cost-effective insulation
  - Thermomechanical stresses
- Evaluate abrasion on interior of storage bin at temperature
  - Abrasion-resistant materials
  - Low-cost materials
- Particle-level sensing
- Scaling issues



# Particle-to-sCO<sub>2</sub> Heat Exchanger



- Risks
  - Heat transfer to high-pressure working fluid
    - Bulk thermal conductivity very important for moving packed beds
    - Fluidization?
  - Thermomechanical stresses / fatigue
  - Frosion
  - Cost
- Sandia, Solex and VPE have developed a moving packed-bed heat exchanger design for particle-to-sCO<sub>2</sub> heat transfer



## Particle Lift



- Low particle abrasion and attrition
- High efficiency
- Insulation
- Sufficient flow capacity and control







# **Balance of System**



- System instrumentation and controls
  - Diagnostics
  - Bypass valves for startup/shutdown
  - Isolation valves for maintenance and emergency shutdown
  - Particle mass flow monitoring
  - Particle level sensing
- Duct work
  - Differential thermal expansion
  - No need for hermetic seals



### Overview



- Objectives and Value Proposition
- G3P3 System Overview
- Gaps and Risks
- Conclusions

# Gen 3 Particle Pilot Plant (G3P3)



- Significant advantages
  - Direct heating of particles
    - Wide temperature range (sub-zero to >1000 °C)
    - Inexpensive, durable, non-corrosive, inert
  - Demonstrated ability to achieve >700 °C on-sun with hundreds of hours of operation
- Gaps and risks
  - Particle attrition and wear; dust formation
  - Heat loss (receiver, storage, heat exchanger, lift)
  - Particle-to-working-fluid heat transfer
  - Thermomechanical stresses in heat exchanger and storage tanks
  - Materials erosion









On-sun testing of the falling particle receiver at Sandia National Laboratories

23

## Questions?







Cliff Ho, (505) 844-2384, <u>ckho@sandia.gov</u>



## **BACKUP SLIDES**

# Economics of Commercial Scale System 🛅



#### SAM Modeling of LCOE for 100 MW<sub>e</sub> Particle Power Tower

Particle receiver and storage costs from [15] were used except where noted. All other costs assume SunShot targets.



## G3P3-USA











## Properties of Alternative Particles



| Material               | Composition                                                                                                  | Properties         |                                  |                                     |                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|-------------------------------------|----------------------------------------------------------|
|                        |                                                                                                              | Density<br>(kg/m³) | Specific Heat (J/kg-K)           | Advantage                           | Dis-advantage                                            |
| Silica sand            | SiO <sub>2</sub>                                                                                             | 2,610              | 1,000                            | Stable,<br>abundant,<br>low cost    | Low solar absorptivity and conductivity; inhalation risk |
| Alumina                | $Al_2O_3$                                                                                                    | 3,960              | 1,200                            | Stable                              | Low absorptivity                                         |
| Coal ash               | SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , +<br>minerals                                            | 2,100              | 720 at<br>ambient<br>temperature | Stable,<br>abundant,<br>No/low cost | Identify suitable ash, attrition                         |
| Calcined Flint<br>Clay | SiO <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> ,<br>TiO <sub>2</sub> ,Fe <sub>2</sub> O <sub>3</sub>      | 2,600              | 1,050                            | Mined abundant                      | Low<br>absorptivity,<br>attrition                        |
| Ceramic<br>particles   | $75\% \text{ Al}_2\text{O}_3$ ,<br>$11\% \text{SiO}_2$ ,<br>$9\% \text{Fe}_2\text{O}_3$ , $3\% \text{TiO}_2$ | 3,300              | 1,200 (at<br>700°C)              | High solar absorptivity, stable     | Relatively higher cost                                   |



Mitigate risks of attrition, high cost, and low heat absorption