PI: Asegun Henry, Massachusetts Institute of Technology

Co-PI: Kenneth Sandhage, Purdue University

Co-PI: Kenneth McGowan & Bob Cullen, Westmoreland Advanced Materials

Technology Addressed

Tanks and Piping for 750°C Molten Chloride Salts

Innovative Aspect

The usage of ceramic castable cements to make inexpensive tanks and piping. Castable cements simply require the addition of water to form an emulsion, which can then be poured into a mold of any desired shape and then cured.

Impact

• Cheaper materials that are compatible with molten salts allow for a less expensive infrastructure and enable achievement of the SunShot goals for the cost of storage

Background and Proposed Work

- Currently envisioned materials (H230 and 740H) for the infrastructure are ~ 4X more expensive than SS316. Castable cements are much less expensive.
- Demonstrate a lab scale tank and flanged pipe section, to prove that flowing salt doesn't corrode
- Optimize the castable chemistry and microstructure to minimize penetration
- Test a cast flanged pipe section for leakage under pressure
- Develop a cost model for the tank and pipes

	Key Milestones & Deliverables
Year 1	 Demonstrate the system is fully constructed and working with a molten salt and a flow rate between 0.1- 5 gpm Demonstrate that a castable chemistry can limit penetration by the salt to less than 1 cm over 30 years
Year 2	 Demonstrate that the castable cement tank and pipe section do not leak and do not exhibit excessive penetration when exposed to flowing salt Demonstrate that the cost of the tank and piping meets the SunShot goals

Control Number: 1697-1599

Ceramic Castable Cement Tanks and Piping for Molten Salt

What is the problem at 750C?

Conventional welded metal is too expensive because of corrosion

G. Glatzmaier, Report No. NREL/TP-5500-53066 Table 1. Component costs for direct, two-tank molten salt TES system (base case).

Component	Materials (\$/kWh _{th})	Installation (\$/kWh _{th})	Total Cost (\$/kWh _{th})
High-temperature tank—stainless steel	5.20	1.84	7.04
Low-temperatures tank—carbon steel	1.30	1.84	3.14
Tank supports, foundations, and site work	1.10	1.55	2.65
Storage medium	11.74	0.36	12.10
Electrical and instrumentation	0.47	0.43	0.90
Piping, valves, and fittings	0.20	0.18	0.39
Totals	20.01	6.22	26.22

Multiply by 4X for Ni alloys \rightarrow > \$20/kWh-t for the tank alone

SOLUTION = Use ceramics Castable cements from WAM Add water, mold into shape, cure in place Very inexpensive \$5,950/m³ New internal insulation architecture Redundant leak protection mechanisms Can also use for piping

INNOVATION

- A different design & class of materials
- Lower cost material that is easy to fabricate
 - Add water & mold
 - Ability to tune/engineer the composition/microstructure
- Redundant leak protection
- Also use as pipes, with cast flanges

Ceramic Castable Cement Tanks and Piping for Molten Salt

GEN3CSP

Ot

What are the potential issues?

- Reaction with salt
- Convective enhancement
- Salt penetration into pores
- Tank wall cracking
- CTE mismatches between layers
- Seal leakage at pipe flanges
- Cost

Ceramic Castable Cement Tanks and Piping for Molten Salt

What are the project objectives?

- (1) Demonstrate minimal/acceptable salt penetration
- (2) Demonstrate corrosion resistance to flowing salt
- (3) Demonstrate pipe sections with flanged interfaces and no leakage
- (4) Demonstrate < \$15/kWh-t via a comprehensive cost model

Prototype System Test Rig

What are we proposing to do?

- Reaction with salt
- --- Testing modified compositions with small crucibles
- Salt penetration into pores
- --- Testing full tanks and pipe sections in prototype loop (salt level in tank static)
- Convective enhancement
- --- Testing full tanks and pipe sections in prototype loop (salt level in tank flowing)
- Tank wall cracking
- --- Thermal cycles during prototype loop tests
- CTE mismatches between layers
- --- Measure CTE + 3D Modeling
- Seal leakage at pipe flanges
- --- Testing pipe section interfaces under applied pressure
- Cost
- --- 3D modeling + Cost model (materials + labor etc.)

Ceramic Castable Cement Tanks and Piping for Molten Salt

TIMELINE

		C	ג וג		Q2		Q3		Q3		(ຊ4		Q	5		Q6		G	<u>کړ</u>		Q8	
TASKS N	∧onth:	1	2 3	3 4	5	6	78	9	10	11 1	2 1	3 14	4 15	16	17	18 1	19 2	20 21	22	23	24		
TASK 1: Test a tank and flanged pipe section																							
Task 1.1 – Finalize the tank and system design					$\mathbf{\Delta}$																		
Task 1.2 – Cast the tank and pipe section																							
Task 1.3 – System construction																							
Task 1.4 – Preliminary testing, debugging and 24 hr test													Ο										
Task 1.5 – Extended test at \geq 750C for \geq 100 hrs																							
Task 1.6 – Leak test sealed pipe section \geq 750C																		Δ					
TASK 2.0: Optimizing the microstructure/chemistry																							
Task 2.1 – Fabrication of test crucibles																							
Task 2.2 – Pretest characterization		_																					
Task 2.3 – 100 hr tests at 750°C																							
Task 2.4 – Post mortem characterization and analysis										C													
TASK 3: Property measurements																							
Task 3.1 - Sample fabrication																							
Task 3.2 – Measure CTE from 25-900C					L	7																	
Task 3.3 – Measure thermal diffusivity from 25-900C																							
Task 3.4 – Profilometry measurements															L	Δ							
TASK 4: Full scale tank design and technoeconomics																							
Task 4.1 – Initial design for thermal considerations																							
Task 4.2 – Revised tank design for thermomechanical considerations													Δ										
Task 4.3 – Revised tank design based on installation/curing considerc	ations																						
Task 4.4 – Tank cost model																					Δ		
Task 4.5 – Pipe cost model																							

Ceramic Castable Cement Tanks and Piping for Molten Salt

TASK 1: PROTOTYPE TEST LOOP-

		G	21		Q	2	Q3			Q4		Q4		Q5		Q6		6 Q7		Q8	
TASKS Month	ו:	1	2	3	4 5	56	5 7	8 9	9 1	0 11	12	13 1	4 15	16 1	7 18	19	20 21	22 2	23 24		
TASK 1: Test a tank and flanged pipe section																					
Task 1.1 – Finalize the tank and system design																					
Task 1.2 – Cast the tank and pipe section																					
Task 1.3 – System construction																					
Task 1.4 – Preliminary testing, debugging and 24 hr test													0								
Task 1.5 – Extended test at \geq 750C for \geq 100 hrs																					
Task 1.6 – Leak test sealed pipe section \geq 750C																	Δ				

TASK 2: CEMENT CHEMISTRY/MICROSTRUCTURE OPTIMIZATION

TASK 3: PROPERTY MEASUREMENTS

	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
TASKS Month:	1 2 3	3 4 5 6	5789	10 11 12	13 14 15	16 17 18	19 20 21	22 23 24
TASK 3: Property measurements								
Task 3.1 - Sample fabrication								
Task 3.2 – Measure CTE from 25-900C								
Task 3.3 – Measure thermal diffusivity from 25-900C								
Task 3.4 – Profilometry measurements						Δ		

Netzsch TMA 402 F1 Hyperion

Handheld Profilometer 10 micron resolution

Ceramic Castable Cement Tanks and Piping for Molten Salt

TASK 4: FULL SCALE DESIGN & COST MODELS

TASK 4: Full scale tank design and technoeconomics					
Task 4.1 – Initial design for thermal considerations					
Task 4.2 – Revised tank design for thermomechanical considerations			Δ		
Task 4.3 – Revised tank design based on installation/curing considerations					
Task 4.4 – Tank cost model					Δ
Task 4.5 – Pipe cost model				\land	

CTE match \rightarrow Tanks grow together

PI: Asegun Henry, Massachusetts Institute of Technology

Co-PI: Kenneth Sandhage, Purdue University

Co-PI: Kenneth McGowan & Bob Cullen, Westmoreland Advanced Materials

Technology Addressed

Tanks and Piping for 750°C Molten Chloride Salts

Innovative Aspect

The usage of ceramic castable cements to make inexpensive tanks and piping. Castable cements simply require the addition of water to form an emulsion, which can then be poured into a mold of any desired shape and then cured.

Impact

• Cheaper materials that are compatible with molten salts allow for a less expensive infrastructure and enable achievement of the SunShot goals for the cost of storage

Background and Proposed Work

- Currently envisioned materials (H230 and 740H) for the infrastructure are ~ 4X more expensive than SS316. Castable cements are much less expensive.
- Demonstrate a lab scale tank and flanged pipe section, to prove that flowing salt doesn't corrode
- Optimize the castable chemistry and microstructure to minimize penetration
- Test a cast flanged pipe section for leakage under pressure
- Develop a cost model for the tank and pipes

s Cost Share
3 \$443,033

	Key Milestones & Deliverables
Year 1	 Demonstrate the system is fully constructed and working with a molten salt and a flow rate between 0.1- 5 gpm Demonstrate that a castable chemistry can limit penetration by the salt to less than 1 cm over 30 years
Year 2	 Demonstrate that the castable cement tank and pipe section do not leak and do not exhibit excessive penetration when exposed to flowing salt Demonstrate that the cost of the tank and piping meets the SunShot goals

Ceramic Castable Cement Tanks and Piping for Molten Salt

Why ceramic lined pipes won't work

Why tank thermal cycles are not very significant

$$T = T_{\infty} + (T_0 - T_{\infty}) \exp(-t/\tau) \qquad \tau = m \cdot C_P \cdot R_{tot}$$

The time constant is large because the mass is large. $\tau \sim 50 \text{ days}$

Ceramic Castable Cement Tanks and Piping for Molten Salt

Addressing Crack Formation and Propagation

Particle Packing Choice of Material Perm. Lin. Change Water Content Surfactant Choice Dryout Schedule Compression Use of Large Aggregate or Fiber Work of Fracture

Ceramic Castable Cement Tanks and Piping for Molten Salt

Abrasion Resistance

ASTM C-704

Control Number: 1697-1599

Alkali and Alkaline Earth Resistance

Metallics Grain Boundary Attack Grain Size Change (temp)

Ceramics Grain Boundary Attack

Method of Use of Calcium Hexa Aluminate Refractory Linings and/or Chemical Barriers in High Alkali or Alkaline Environments Inventors: McGowan, Kenneth A., Cullen, Robert M., Keiser, James R., Hemrick, James G., Meisner, Roberta A. UNITED STATES FCA 9/19/2007 11/901,909 10/22/2013 8,563,083 ISSUED 0047205-000036 CANADA 0047205-000043 DCA 9/19/2007 2,663,798 1/19/2016 2,663,798 ISSUED 15END OF REPO

With ORNL

• Dry-Out

Water Must be Removed Prior to Molten Metal Contact

Highly insulating Micro porous board systems like Excelfrax products from Unifrax are water soluble.

These must be protected with a foil lining and interface temp needs to be below the melting point of the foil

Ceramic Castable Cement Tanks and Piping for Molten Salt

Ceramic Castable Cement Tanks and Piping for Molten Salt

Ceramic Castable Cement Tanks and Piping for Molten Salt

• Thermal Induced Stress in the Y-Direction

X-ray diffraction patterns obtained from solidified products generated upon exposure to ambient air at 750°C for 50 h of: **a**) a 32 mol% MgCl₂/68 mol% KCl molten salt, and **b**) 53 mol% CaCl₂/47 mol% NaCl molten salt.

CONFIDENTIAL

¹K. H. Sandhage, U.S. Provisional Patent Application, 2017.