

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Creep-fatigue Behavior and Damage Accumulation of a Candidate Structural Material for Concentrating Solar Power Solar Thermal Receiver

M. McMurtrey, L. Carroll, M. Messner

DOE Gen 3 CSP Kickoff Meeting

6/25/2018 Orlando, FL

energy.gov/solar-office

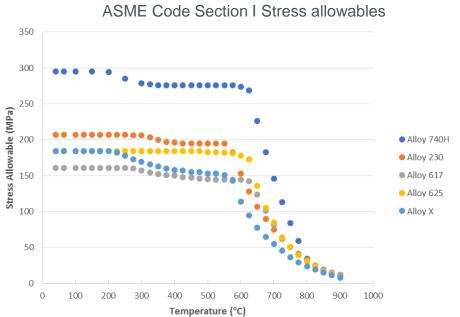
Idaho National Laboratory Award # DE-EE00033872

Overall project goals

- Provide an accurate description of the creep-fatigue behavior of a CSP thermal receiver candidate alloy
- Develop a design method for solar receiver components to guard against high temperature creep-fatigue and ratcheting failure modes
 - Design procedure and D-diagram for an advanced nickel alloy for solar thermal receivers
 - Executable design procedure that produces designs that consistently exceed design life

Project Tasks

- Task 1: Creep-Fatigue Testing and Metallographic Analysis
 - Alloy selection
 - Fatigue and creep-fatigue testing
 - Creep testing as necessary
- Task 2: Analysis of Design Methodology
 - Creep-fatigue interaction diagram (D-diagram)
 - Ratcheting design provisions
- Task 3: Assessment of Environmental Interaction
 - Preliminary assessment of additional factors that influence design life



Task 1: Alloy Selection

- Alloy selected for creep-fatigue testing and for design model
 - Candidate alloys: Alloys X, 625, 617, 230, 740H, and 282
 - Alloys evaluated based on available data and high temperature strength

Alloy	Creep	Creep-Fatigue 700 to 800 °C	Creep-Fatigue to 800 to 1000 °C
Alloy 617			
Alloy 230			
Alloy 282			
Alloy 740H			
Alloy X			

Red = limited or none Yellow = some Green = considerable

ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, 2017

Task 1: Fatigue and Creep-fatigue Testing

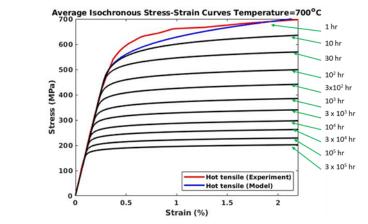
- Preliminary tensile v. compressive dwell sensitivity for a nickel alloy
- Proposed fatigue and creep-fatigue test matrix
- Creep testing as necessary

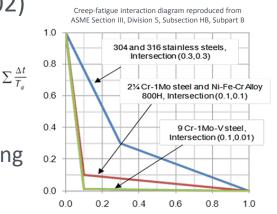
750°C

				Estimated
Strain Range	Estimated Nf	Hold Time	Repeats	Test Time
%	cycles	minutes		days
0.6	60,000	0	3	8
0.6	12,500	10	2	89
0.6	6,000	60	2	251
0.6	3,000	120	1	250
1.0	2,000	0	3	1
1.0	700	10	2	5
1.0	200	60	2	8
1.0	70	240	2	12
1.0	35	240	2	6
1.0	35	600	2	15

				Estimated
Strain Range	Estimated Nf	Hold Time	Repeats	Test Time
%	cycles	minutes		days
0.4	10,000	0	3	1
0.4	3,000	10	2	21
0.4	2,000	60	2	84
0.4	1,000	240	2	167
1.0	2,000	0	3	0
1.0	1,000	10	2	7
1.0	500	60	2	21
1.0	200	240	2	33
1.0	200	600	2	83

Task 2: Receiver Design Rules


- Previous design studies reference a Sandia National Laboratory report¹ establishing draft design guidelines
 - Amalgamation of provisions from several divisions of the ASME Boiler and Pressure Vessel Code²
 - Section III, Division 5
 - Section VIII, Division 1
 - Section VIII, Division 2
 - Most high temperature design provisions guard against failure through the following mechanisms (all relevant for CSP thermal receivers)
 - Time-independent plastic instability
 - Time-dependent creep rupture
 - Creep-fatigue damage
 - Time-dependent, cyclic excessive deformation (ratcheting)
 - Time-independent buckling
 - Time-dependent buckling
- Since the Section VIII rules are widely applied and understood, they will be adopted for this project


2. ASME Boiler and Pressure Vessel Code, American Society of Mechanical

energy.gov/solar-office Engineers, 2017.

Task 2: Receiver Design Rules

- Focus will be on ASME linear damage summation
 - Creep-rupture correlation (ASME BPVC Code Case 2702)
 - Fatigue curves and D-diagram
- Design rules will guard against
 - Excessive ratcheting
 - Starting point will be Code Case N-47 providing ratcheting strain accumulation rules using a simplified elastic perfectly-plastic analysis
 - Requires a set of isochronous stress-strain curves
 - Creep-fatigue failure
 - Consider Section III rules and previous CSP methods

 $\sum \frac{n}{N_{\star}}$

Task 3: Assessment of Environment

- Original proposal called for an assessment of environmental influence at 750°C
- Q1 suggested shifts in focus
 - Potential creep-fatigue testing of weldments
 - Testing of tube/sheet material forms
 - Final design rules should encompass all potential receiver types
 - Current test plan includes only plate material

Summary

- Three tasks
 - Task 1: Creep-Fatigue Testing and Metallographic Analysis
 - Alloy selection
 - Experimental testing and analysis
 - Task 2: Analysis of Design Methodology
 - D-Diagrams, isochronous curves, ratcheting design provisions
 - Task 3: Assessment of Environmental Interaction
 - Preliminary assessment of additional factors that influence design life, proposed focus was gas environment
 - Suggested shift in focus to weldment or tubular/sheet form testing

