

Topic Area 2B: Gen3 Research & Analysis

Thermophysical Property Measurements of Heat Transfer Media and Containment Materials

(Gen3 CSP Kick-Off, June 25th 2018)

Shannon K. Yee, Ph.D.
Assistant Professor (PI)

Andrey Gunawan, Ph.D.

Research Engineer II

Sampath Kommandur Ph.D. Candidate

Thermophysical Property Measurements of

Heat Transfer Media (e.g., Molten Salts)

Containment Materials (e.g., high temperature alloys)

LIBRARY NEXT

Thermophysical **Property Database**

Advanced Photothermal Technique

Measurement Accuracy at High Temperatures in Corrosive Environments

Project Goals

Provide research and support analysis (Topic 2B) supporting Gen3 integrated thermal system:

- Perform thermophysical properties measurements using advanced immersion electrothermal and photothermal techniques on:
 - > HTMs (i.e. molten salts chemistries proposed by Topic 1 awardees)
 - CMs (i.e. alloys, ceramics, cermets proposed by Topic 1 and 2A awardees)
- Develop engineering model describing the effects of composition, contamination, corrosion, etc. on thermal conductivity and diffusivity of HTMs and CMs
- Curate the datasets openly, publicly, and digitally through our university library

Immersion Electrothermal Probe (for HTMs)

- Ability to determine k and C simultaneously by measuring over wide frequency ranges
- Measurement insensitive to properties of the cladding material

Photothermal Technique (for CMs)

- Modified Xenon flash technique to measure thermophysical properties up to 1250 °C.
- Data analysis software can account for sample porosity, roughness, and transparency.

New Equipment

to support Gen3 CSP Thermophysical Property Measurements

Pressurized Samples

Feasibility and Preliminary Data

- Custom rotary deposition lathe to achieve uniform circumferential coating (thickness variation <10%)
- Data analysis performed using a multilayered radial heat transfer model with robust Monte-Carlo analysis

Feasibility and Preliminary Data (contd.)

- Preliminary measurements on Alumina powder between 25 °C and 700
 °C, using a platinum-coated silica fiber
- Measured thermal conductivity in good agreement (within 10%) with empirical correlation developed in literature

Feasibility and Preliminary Data (contd.)

- Preliminary measurements on Inconel 600 between 25 °C and 1000 °C, using the modified Xenon flash technique
- Measured thermophysical properties in good agreement (within 5%) with values reported in literature

Innovation and Impact

Steady-state techniques	Transient techniques (time domain)	Transient techniques (frequency domain)
1D reference bar (ASTM D5470) ¹¹	Transient hot-wire (THW) ¹⁵	3-omega ⁴
Radial heat flow method ^{9,12}	Time-domain thermoreflectance ¹⁶	Frequency-domain thermoreflectance ¹⁹
Guarded hotplate (ASTM D1518) ¹³	Laser flash method ¹⁷	Pulsed power technique ²⁰
DC thermal bridge method ¹⁴	Transient plane source ¹⁸	

- Proposed electrothermal immersion probe sensor can become the standard characterization technique at temperatures >700 °C
 - Addresses key challenges present in current state-of-the-art techniques
- The modified Xenon flash technique could serve to benchmark high temperature characterization of solids
 - Versatility its can be useful for other high temperature applications

Key Milestones & Deliverables

Project Team & Facilities

- Prof. Shannon Yee (PI)
- Dr. Andrey Gunawan (Senior Personnel)
- Scalable Thermal Energy
 Engineering Laboratory
- HEATLAR

Thermophysical Property Measurements of

Heat Transfer Media (e.g., Molten Salts)

8

Containment Materials (e.g., high temperature alloys)

Thank you!

LIBRARY NEXT

Thermophysical Property Database

Questions?

Advanced Photothermal Technique

Measurement Accuracy @
High Temperatures in Corrosive Environments

Topic Area 2B: Gen3 Research & Analysis

Thermophysical Property Measurements of Heat Transfer Media and Containment Materials

(Gen3 CSP Kick-Off, June 25th 2018)

Shannon K. Yee, Ph.D.
Assistant Professor (PI)

Andrey Gunawan, Ph.D.
Research Engineer II

Sampath Kommandur Ph.D. Candidate

Thermophysical Property Measurements of Heat Transfer Media and Containment Materials

SunShot U.S. Department of Energy

PI: Prof. Shannon Yee, / Georgia Institute of Technology

Technology Summary

Topic Area 2B: Thermophysical property measurements of <u>heat transfer media (HTM)</u> and <u>containment materials (CM)</u> using advanced immersion electrothermal and photothermal techniques, *curating the data openly and publicly through a public university library*.

Technology Impacts

Immersion Electrothermal Probe for HTM:

Thermal conductivity & diffusivity of molten salts

Operating temperatures (700 – 1200 °C)

Stable in multi-corrosive environment (e.g, KCl, etc.)

Study composition & contamination (e.g, H₂O, O₂, etc.)

High Temperature Photothermal Measurements of CM:

Thermal conductivity & diffusivity of alloys & ceramics

Modified flash diffusivity

Study composition, contamination, & corrosion effects

Curating & Disseminating Thermophysical Data:

Freely, openly, and publicly through a university library.

Online repository and database for Gen3 CSP properties

Project Goals

- Qualify an inline immersion probe to measure and monitor thermal properties of molten salts
- <u>Develop engineering models</u> describing the effects of composition, contamination, & corrosion on thermal conductivity and diffusivity of HTMs and CMs.
- <u>Develop a freely accessible & open database</u> of thermophysical properties of HTMs and CMs.

Key Milestones & Deliverables			
Budget Period 1 (15 mo.)	 Qualify immersion electrothermal probe Qualify photothermal technique 		
Budget Period 2 (15 mo.)	 Release thermophysical property database Perform robust thermophysical property measurements of the most promising HTMs and CMs, supporting Topic Area 1 and 2A awardees. 		
Budget Period 3 (30 mo.)	 Perform detailed studies of contamination, corrosion, and composition of thermophysical properties Develop engineering models describing thermophysical properties 		

Resources (\$)			
Total Project (5 yr.)	DOE Funds	Cost Share	
\$2,184,935	\$1,966,441	\$218,493	