Gen3 Gas Phase System Development and Demonstration

Shaun D. Sullivan / Frayton Energy / sullivan@braytonenergy.com

25 June 2018 DOE Concentrating Solar Power Gen3 Kickoff Disney Contemporary Resort 4600 N World Dr Orlando, FL 32830

Agenda

Overview

- Major Subsystems
 - Heliostat Field
 - Receiver
 - Circulator System
 - Thermal Energy Storage Heat Delivery System
- Demonstration Facility

PROJECT NAME	Gen3 Gas Phase System Development and Demonstration: DE-EE0008368		
FUNDING OPPORTUNITY	Generation 3 Concentrating Solar Power Systems (Gen3 CSP): DE-FOA-0001697		
PRINCIPAL INVESTIGATOR	Shaun D. Sullivan		
LEAD ORGANIZATION	Brayton Energy		
PROJECT PARTNERS	NREL, Brightsource, Burns & McDonnell, DLR, Echogen, Edisun Microgrids, EPRI, SolarDynamics, SolarTAC, SOLEX, Southwest Solar Technology		
PROJECT DURATION	2 years (Phases 1 and 2)		
PROJECT BUDGET	\$ 7,570,647		

Program Structure

• Phase 1

- Optimized commercial-scale system design
- Demonstration-scale design
 - Incorporates commercial-scale componentry as much as possible
- Subsystem subcomponent testing

• Phase 2

- Ongoing performance modeling
- Ongoing cost analysis modeling
- Component and subsystem testing
- Demonstration facility design
 - De-risk advanced technologies
 - Demonstrate integrated operation
 - Showcase facility for commercialization

PARAMETER	UNITS	COMMERCIAL	DEMO.					
System Power	MW _e	50	n/a					
RECEIVER								
Thermal Rating	MW _{th}	200	1.5					
Pressure Drop	%	< 5% DP/P	< 5% DP/P					
$\eta_{ m Annualized}$	%	≥ 90%	TBD					
Fatigue Life	cycles	> 100,000	> 100,000					
Operating Life	hrs	90,000	90,000					
GAS PHASE LOOP								
Pressure Drop	%	< 5% DP/P	< 5% DP/P					
Operating Power	%	< 2% of net power	ower TBD					
THERMAL ENERGY STORAGE								
Storage Capacity	MWh _{th}	600 9						
Storage Duration	hrs	up to 24 hours	up to 24 hours					
$\eta_{ m energetic}$	%	99%	99%					
$\eta_{ m exergetic}$	%	95%	95%					
HEX Press. Drop	%	< 1% DP/P ea. side	< 1% DP/P ea. side					
POWER BLOCK								
sCO ₂ Pressure	MPa	25	25					
sCO ₂ Inlet Temp	С	545	45 545					
sCO ₂ Outlet Temp	С	715	715					

Heliostat Field 🗱 Edisun Microgrids

Partner with ambitious US heliostat developer

- Incorporate and showcase emerging state-of-the-art heliostat technologies
 - wireless control
 - novel low-cost manufacturing
 - innovative calibration method
 - Heliostat/controller supplier providing substantial in-kind field support to program's test objectives.

Firayton Energy Solar Receiver

High-Efficiency Low-Cost Solar Receiver for use in a Supercritical CO₂ Recompression Cycle

Absorber Cell Creep, Fatigue Testing

• All life testing performed with sCO₂ at 790 C

Receiver Performance Summary

		CAVITY F	RECEIVER	EXTERNAL RECEIVER	
PERFORMANCE METRIC	SUNSHOT TARGET	BRAYTON TARGET	BRAYTON RESULTS ¹	BRAYTON TARGET	BRAYTON RESULTS
Receiver Creep Life	n/a	≥ 90,000 hours	60,000 hours	≥ 90,000 hours	90,000 hours
Receiver Fatigue Life	≥ 10,000 cycles	≥ 10,000 cycles	≥ 100,000 cycles	≥ 10,000 cycles	≥ 100,000 cycles
Receiver Cost	≤ \$150/kW _{th}	≤ \$120/kW _{th}	\$98/kW _{th}	≤ \$150/kW _{th}	\$124/kW _{th}
HTF Exit Temeprature	≥ 650 °C	≥ 750 °C	750 °C	715 ⁰C	715 ⁰C
Receiver Efficiency η_{thermal}	n/a	≥ 95%	94.9%	(partner defined)	90.62%
Receiver Efficiency $\eta_{\text{annualized}}$	≥ 90%	≥ 92%	93.1%	(partner defined)	88.36%
System Efficiency Gain	-	-	-	≥ 15.00%	30.30% (10.27 pts.)
Quartz Window Benefit	-	-	-	≥ 2.00%	6.1% (5.5 pts.)

¹ Results as of Phase 2, and costs do not include tower; further improvements would be achieved by applying Phase 3 learnings

Process Development MMMMMM

Manufacturing Process Development for Lower-Cost Heat Exchangers in High-Temperature/Pressure Applications

- Joint program with NETL
- funded through the Office of Fossil Technology
- Developed and demonstrated manufacturing process improvements that enabled sCO₂ heat exchangers (775 °C, 30 MPa) to be fabricated for \$40/kW_{th}

Manufacturing EnhancementsRoll Forming/Post-CompactionMetal StampingMelt Point Depressant BondingCost Modelling

* DE-FE0024020

Folded and Compressed Fin

Present Strayton Energy

Circulator System

PrBraytonEnergy

- Use an intermediate heat transfer fluid to deliver heat from the receiver to the thermal energy storage system
 - + Superior controls flexibility
 - + Thermal isolation of receiver
 - + Leverage proven receiver technology
- First developed for APOLLO* project:

Solar Receiver with Integrated Thermal Energy Storage for a Supercritical Carbon Dioxide Power Cycle

*<u>Advanced Projects Offering Low-LCOE Opportunities</u>, DE-EE0001186

- Receiver heat transfer
- Pumping parasitic
- Piping costs

Circulator Power

 Use CO₂ and leverage the same supercritical properties that benefit the sCO₂ power cycle to achieve *low pumping* power

Circulator Heat Exchangers

Plate/fin heat exchanger designs derived from more than three decades of gas turbine recuperator design, manufacturing and testing.

Thermal Energy Storage

- Gas phase system is agnostic to the coupled TES technology:
 - Brayton and other team members are currently engaged in TES projects developing thermochemical, phase change, and sensible energy storage
 - Critical program goal is to continue monitoring the development of alternative TES systems to:
 - Determine if any emerging systems surpass a critical readiness threshold for incorporation into the Gas Phase system and Phase 3 demonstration facility
 - Design a demonstration facility that might enable the downstream testing of a promising alternative technology

Sensible storage has been identified as the lowest-risk nearterm option for initial GEN3 design/development work

18

Baseline TES Design

- NREL is leading the TES subsystem design, which in the baseline design consists of:
 - 0) Solid particle media
 - 1) "Cold" particle storage bin (550 C)
 - 2) Gas-to-particle (charging) heat exchanger
 - 3) Hot particle storage bin (750 C)
 - 4) Particle-to-sCO2 (discharging) heat exchanger
 - 5) Particle bucket lift to return cold particles to (1)
 - 6) Insulation, insulation, insulation
- Also evaluating:
 - alternative high-reliability flowing bed configurations with dramatically reduced operating power
 - static bed configurations

Additional TES Details

- Concept employs flowing packed-bed particle heat exchanger technology for particle-to-gas heat transfer
 - Dense granular flow over an array of parallel plates
 - Narrow channels in a shell-and-plate configuration enable high heat transfer coefficients (up to 200 W/m²-K) in a compact geometry
 - Program targets 1.5 MW_{th}, approach temperatures of 20°C or less, fluid pressure drop less than 1%
- Commercially available bucket elevators can be used up to temperatures of 600°C, with an operating parasitic approximately 1% of cycle gross power

Demonstration Facility

- A. 1.5 MW_{th} Solar Field
- B. Solar Receiver
 - $\circ \ \eta_{\rm annualized} \geq 90\%$
- C. CO₂ Gas Loop
 - Operating power < 3% of Net Rating
- D. Solid Particle TES
 - \circ 9 MWh_{th} Storage
 - 24 hour deferral with $\eta_{\text{Round Trip}} = 99\%$
- E. Waste Heat Rejection
 - Surrogate for power block

Solar by B&M

Duke Energy Renewables Panoche Valley Solar Project 240MW PV | Development

NRG Energy Borrego 1 26MW PV

Sempra US Gas & Power El Dorado 10MW PV

Colorado Springs Utilities US Air Force Academy 6MW PV

MidAmerican Energy Topaz 550MW PV

MidAmerican Energy Solar Star I & II 580MW PV

NV Energy Spectrum Solar Facility 30MW PV

Ameren O'Fallon **Renewable Energy Center** 4.5MW PV

16

NV Energy Ft. Churchill Solar Project **20MW PV**

NRG Energy Community Solar 1 6MW PV

Agile Energy Turning Point 50MW PV

Mesquite Solar I 170MW PV

NRCO Herbert Farm Solar Power Plant 5.5MW PV

NRG Energy

H. Wilson Sundt 5MW | Concentrated Solar

GDF Suez Northfield Mountain 2MW PV Mount Tom 5MW PV | 300 MW CC

TECO **Big Bend Solar EPC** 20MW AC PV

Brayton Energy et. al. **Gen3 Demonstration Facility 1.5MW Advanced CSP**

SolarTAC Technology Acceleration Center

22

Copper Mountain I, II, & III 48MW PV | 150MW PV 250MW PV

Sempra US Gas & Power

19

Tucson Electric Power Generating Station

SolarTAC

Google Earth

SolarTAC tower

- With 74 acres, SolarTAC is the largest test facility for solar technologies in the United States
- Located near Denver Int'l Airport in Aurora, Colorado
 - flat, graded topography
 - excellent insolation conditions with more than 300 days of sunshine each year
 - access to grid interconnections.
 - all utilities and support services

Shaun D. Sullivan Principal Engineer, R&D Program Manager BraytonEnergy sullivan@braytonenergy.com

Thank You