Nuclear Energy Advisory Committee Meeting

John W. Herczeg
Deputy Assistant Secretary
for Nuclear Technology Research and Development
Office of Nuclear Energy

July 9, 2018
Presidential and Departmental Nuclear Energy Priorities

• President Trump ordered review of nuclear energy policy:
 “[W]e will begin to revive and expand our nuclear energy sector...which produces clean, renewable and emissions-free energy. A complete review of U.S. nuclear energy policy will help us find new ways to revitalize this crucial energy resource.”

• Nuclear energy role as clean baseload power is key to environmental challenges:
 “If you really care about this environment that we live in...then you need to be a supporter of this amazingly clean, resilient, safe, reliable source of energy.” Secretary Rick Perry at Press conference, May 10th

• Executive Order Promoting Energy Independence and Economic Growth

• Commercialization of advanced SMRs crucial to future of US nuclear sector
NE-4 Organizational Chart

Nuclear Technology Research and Development

Deputy Assistant Secretary John Herczeg
Associate Deputy Assistant Secretary Sal Golub

NE-41
Office of Advanced Reactor Technologies
Director - Alice Caponiti

NE-42
Office of Advanced Fuels Technologies
Acting Director – Bill McCaughey

NE-43
Office of Materials and Chemical Technologies
Director – Patricia Paviet
Focus Areas: Nuclear Technology Research and Development

- Enrichment & Uranium Supply
 - Uranium Mining
 - Nat'l Enrichment Capability
 - Other Advanced Techniques

- Fuel Fabrication
 - Conventional LWR Fuel Fabrication
 - Accident Tolerant Fuels

- Reactors

- Recycle
 - Used LWR Fuel Recycle
 - Advanced Reactor Fuel Recycle

- Interim Storage
 - Interim Storage

- Final Disposal
 - Geologic Repository

Safeguards and Security by Design -- Materials Protection, Accounting, & Control Technologies (MPACT)
• Phase 1: Feasibility Assessment and Down-Selection
 • Collaborative partnership between DOE, industry, and universities.
 • Completed in FY 2016 with three concepts for further development.

• Phase 2: Development and Qualification
 • Industry led efforts supported by DOE national infrastructure and universities.
 • By the mid 2020s, install first reload quantities in commercial reactors.

• Phase 3: Commercialization
 • Industry commercial activity deploying ATF into existing and future reactor systems.
 • By the early 2030s, full cores of ATF in multiple reactors and benefits realized by utilities.
Industry-led Development of ATF Concepts in Phase 2

- **Framatome**
 - Chrome coated zirconium cladding
 - Doped uranium dioxide fuel

- **General Electric**
 - Iron-chrome-aluminum cladding (FeCrAl)
 - Conventional uranium dioxide fuel

- **Westinghouse**
 - Silicon carbide cladding
 - Uranium silicide fuel
1. Approach to Design: Conducting a 3 year research & development effort on core design.

2. Reach fast flux of approximately 4×10^{15} n/cm2·s, with prototypical spectrum.

3. Load factor: as large as possible (*maximize dpa/year to > 30 dpa/year*).

4. Provide flexibility for novel experimental techniques.

5. Be capable of running loops representative of typical fast reactors (*Candidate Coolants: Na, Lead, LBE, Gas, Molten Salt*) – May be a single location with replaceable loops.

6. Effective testing height ≤ 1 m.

7. Ability to perform large number of experiments simultaneously.

8. **Metallic driver fuel** (possible options: HA-LEU, LEU+Pu).
Mission: to develop advanced material recovery as well as advanced waste form development technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

Electrochemical Processing of Used Nuclear Fuel
- Develop and demonstrate deployable and sustainable technology for fast reactor fuel recycling
- Demonstrate flowsheets with irradiated used nuclear fuel under Joint Fuel Cycle Study with Republic of Korea

Off-Gas Capture and Immobilization
- Management of process off-gasses (I-129, H-3, Kr-85, and C-14) to meet U.S. regulatory constraints

Waste Management
- Demonstrate technologies at laboratory scale for advanced ceramic and glass ceramic waste forms and understand long-term performance of waste forms

Aqueous Processing of Used Nuclear Fuel – CoDCon Project and Advanced Recycling
- Demonstrate recovery of useful materials, Uranium, Plutonium and Minor Actinides from used nuclear fuel thereby enabling recycle options for the sustainability of the nuclear fuel cycle
<table>
<thead>
<tr>
<th>Program Name</th>
<th>FY 2018 Omnibus</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP</td>
<td>$5,000</td>
</tr>
<tr>
<td>Reactor Concepts RD&D</td>
<td></td>
</tr>
<tr>
<td>Advanced SMR R&D</td>
<td>-</td>
</tr>
<tr>
<td>Transformational Challenge Reactor Light Water Reactor Sustainability</td>
<td>$47,000</td>
</tr>
<tr>
<td>Advanced Reactor Technology</td>
<td>$155,000</td>
</tr>
<tr>
<td>Versatile Advanced Test Reactor unallocated</td>
<td>$35,000</td>
</tr>
<tr>
<td>Reactor Concepts RD&D TOTAL</td>
<td>$237,000</td>
</tr>
<tr>
<td>Fuel Cycle R&D</td>
<td></td>
</tr>
<tr>
<td>Materials Recovery and Waste Form Dev't</td>
<td>$30,000</td>
</tr>
<tr>
<td>Advanced Fuels</td>
<td>$125,000</td>
</tr>
<tr>
<td>Systems Analysis and Integration MPACT</td>
<td>$8,641</td>
</tr>
<tr>
<td>MPACT</td>
<td>$10,000</td>
</tr>
<tr>
<td>Used Nuclear Fuel Disposition R&D</td>
<td>$63,915</td>
</tr>
<tr>
<td>Integrated Waste Management System</td>
<td>$22,500</td>
</tr>
<tr>
<td>Fuel Resources</td>
<td>-</td>
</tr>
<tr>
<td>Fuel Cycle R&D TOTAL</td>
<td>$260,056</td>
</tr>
</tbody>
</table>
In parallel, DOE-NE is also investing in the R&D infrastructures (with emphasis on the test reactor) to assure a sustainable fast-reactor industry in the long-run.

- TREAT already restarted
- Versatile Test Reactor (VTR) targeted for availability by 2026