

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hierarchical Occupancy-Responsive Model Predictive Control (MPC) at Room, Building and Campus Levels

Lawrence Berkeley National Laboratory Occupant and User **Building System** Mary Ann Piette, Senior Scientist and Division Director **Performance Data Behavior Data** (510) 486-6286, mapiette@lbl.gov Toutside **Adaptive Models and Preferences** Johnson 🤇 Optimized User Controls Feedback Performance $\max I(x)$ s.t.Ax < bGrid Weather **Control Optimization** Signals Forecasts United lechnologies **LUTRON** lendlease

Project Summary

Timeline:

Start date: 4/1/2016 Planned end date: 3/31/2021

Key Milestones

- 1. MPC software MPCPy v0.1 released (FY17Q4)
- 2. Completing the building level MPC field test (FY19Q2)
- 3. Occupant module developed and integrated (FY18Q1)

Budget:

Total Project \$ to Date:

- DOE: \$890k
- Cost Share: \$3,062k

Total Project \$:

- DOE: \$2,390k
- Cost Share: \$4,490k

Key Partners:

China
Tsinghua University
China Academic of Building Research
Ministry of Housing & Urban-Rural Development

Project Outcome:

- Develop and demonstrate cost-effective occupancy-responsive building and district scale MPC
- Develop and open-source MPC software to spur innovation and promote further exploration through additional research, field testing and industry adoption
- Support BTO Goals for Occupant-Centric Sensors and Controls

Team

U.S. Researchers

Name, Affiliation	Roles & Responsibilities
Mary Ann Piette, LBNL	PI
Tianzhen Hong, LBNL	Co-PI and Occupant Module Lead
Michael Wetter, LBNL	MPC Task Lead
David Blum, LBNL	MPC Researcher
Baptiste Ravache, LBNL	Occupant Module Researcher

U.S. Industry Partners

Name, Affiliation	Roles & Responsibilities
Clay Nesler, JCI	Industry Lead
Robert D. Turney, JCI	Lead Researcher at JCI
Bruce Rauhe, Disney	Industry Co-Lead and Campus Demonstration
linki Ding UTC	Lead Researcher at UTC on Commissioning and MPC
Jinlei Ding, UTC	demo in China
Joe Qiao, Lend Lease	Personal house and Commissioning Task
David Nieh, Lend Lease	Researchers at Lend Lease and Commissioning Task
Robert Nachtrieb, Lutron	Lead Researcher at Lutron

Team

China Researchers

Name, Affiliation	Roles & Responsibilities
Wei Xu, Director, CABR	PI
Da Yan, Tsinghua	Lead Researcher at Tsinghua and Occupant Module
University	Lead Researcher at Isinghua and Occupant Module
Shicong Thong CAPD	Joint Research on Demonstration Sites, Model
Shicong Zhang, CABR	Identification to Aid Continuous Commissioning
Liu Haizhu / Zeng Di, MoHURD	Data Mining for Commissioning

Challenge

Problem Statement:

Conventional building control systems unable to meet future building system

Control complexity

1980

adaptive, grid aware, MPC for

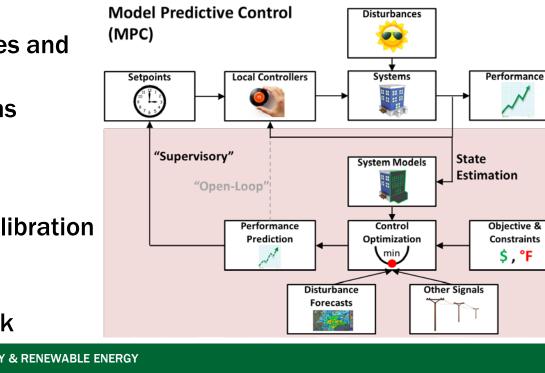
2030

Time

buildings and communities

MPC for large buildings

requirements effectively:


- Energy cost reduction
- **Electric grid integration** 0
- Fault detection and diagnosis 0
- **Occupant-responsiveness** 0

Key MPC Advantages

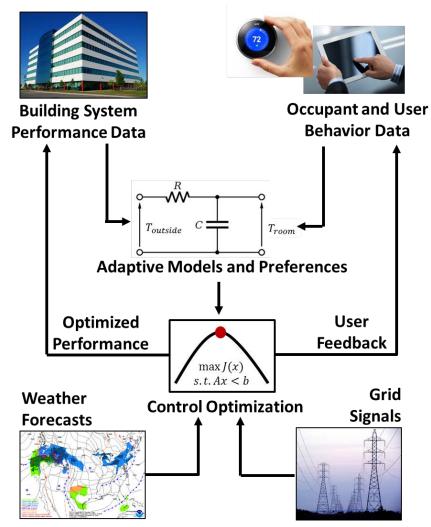
- Consider future disturbances and incentives
- Coordinate multiple systems
- **Occupant integration**

Key MPC Challenges

- Model development and calibration
- **Optimization formulation**
- **Building installation**
- Lack of common framework

clock-based & PID

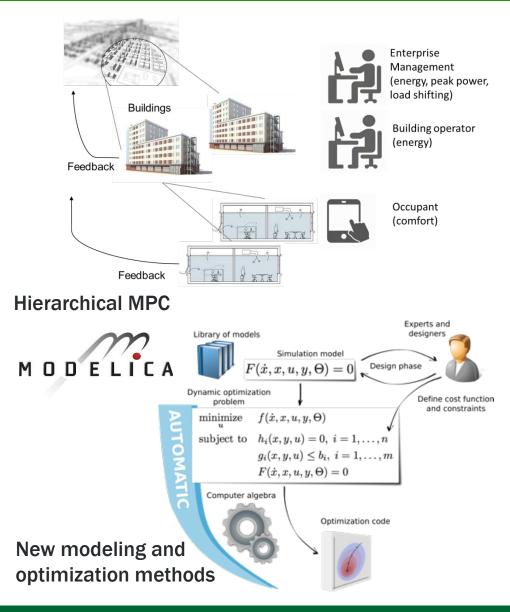
\$, °F


Approach

Technical Approach:

- **Develop** hierarchical, occupancyresponsive model predictive control software (MPC) framework
- **Demonstrate** multiple buildings sites, showcase robustness and verify performance improvements
- Distribute open-source for industry adoption and research collaboration

Key Issues:


- Data and control requirements
- Model structure and calibration algorithms
- Optimization algorithms
- Occupant integration
- Ease of use and robustness

Approach

Distinctive Characteristics

- Developed in this project
 - Data-driven model identification
 reduces model setup, calibration,
 and maintenance effort.
 - Hierarchical MPC *enables* occupant input and feedback at different levels.
 - Occupant integration *detects* occupant presence and count (Jia and Spanos 2017).
- Leveraging other projects
 - Predict behavior (IEA EBC Annex 66)
 - Modeling and optimization methods solve faster than conventional method (Wetter et al 2015).
 - Open-source software standards facilitate collaboration, scaling, robust API, ecosystem of tools and vendors, and longevity.

Approach

Target Market and Audience:

- Target commercial building HVAC and lighting end uses
- Enable startup and major control companies to enter this new market segment in both the U.S. and China.
- Strong U.S. and China industry consortium with key players of JCI, UTC, Disney, Lutron, and Lend Lease.

Impact

Energy and Other Impacts:

Potential Savings

- ~20% HVAC from MPC (Zakula et al. 2014)
- Overall ~1.9 Quad in U.S. and 1.0 Quad in China
- 30% commercial building energy for occupant-integrated controls (Dong and Lam 2014).
- \$6B per year in US if all commercial buildings
- Contribute to BTO's 30% EUI savings by 2030

Grid Integration Benefits

- Renewable integration through load shifting and shedding
- Reduce risk of blackouts to avoid estimated costs of \$16 22 billion, and an anticipated loss of 136,000 jobs just in California (National Energy Policy 2001)

Accelerate MPC Technology Adoption

- Application of efficient optimization algorithms to reduce computation time
- Test effectiveness of model learning techniques to reduce setup time
- Study of how model accuracy affects energy savings and performance
- Documented software using open-source standards

Impact

Global Impacts:

- Optimize building operations in U.S. and China to reduce energy use and environmental impact
- Provide software platform to test, evaluate, and scale MPC technologies by researchers and industry
- Establish a strong foundation for future international collaborations on MPC and other advanced building technologies

Software Development

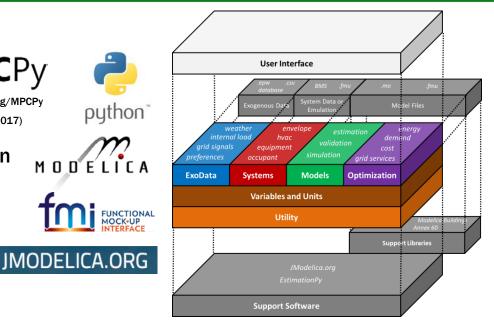
MPCPy v0.1: Open-Source Platform For MPC in Buildings

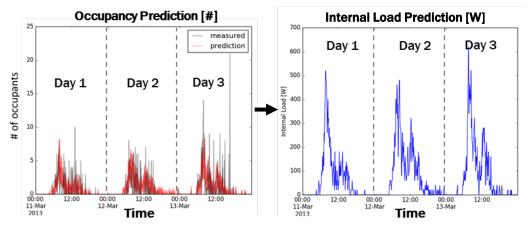
- Exogenous data collection
- Building system emulation or data collection

🕮 MPCPV

https://github.com/lbl-srg/MPCPy

(Blum and Wetter 2017)


- Adaptive model learning
- Control optimization
- Continuous maintenance and development


Occupancy Modeling and Prediction

- Statistical "queueing" approach (Jia and Spanos 2017)
- Predicts occupant count
- Applicable to room and building scales
- Integrated into MPCPy

obModelica: Modelica Library of Occupant Behavior models

- Window opening and closing
- Thermostat interaction
- Blind and light operation
- Integration underway into Modelica Buildings Library

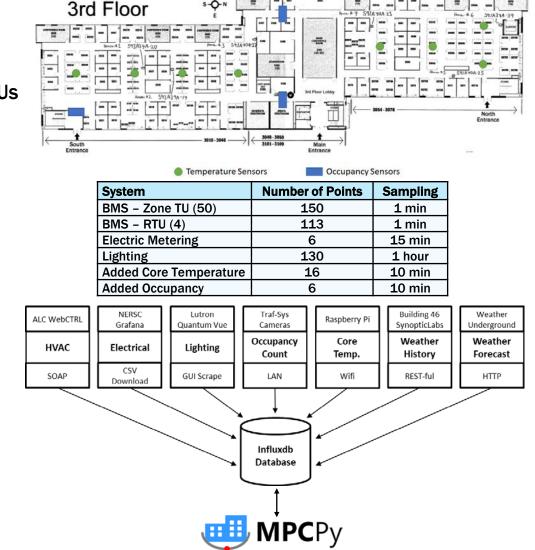
Field Test of MPC at Room and Building Levels at LBNL Building 59

Building Description

- Computational Research Facility
- 2 Office Floors of ~ 50,000 sf
- UFAD w/ Reheat, 4 Water-Cooled DX RTUs Timeline
- MPC test started in April 2018 and to complete in March 2019

Data (~420 Points)

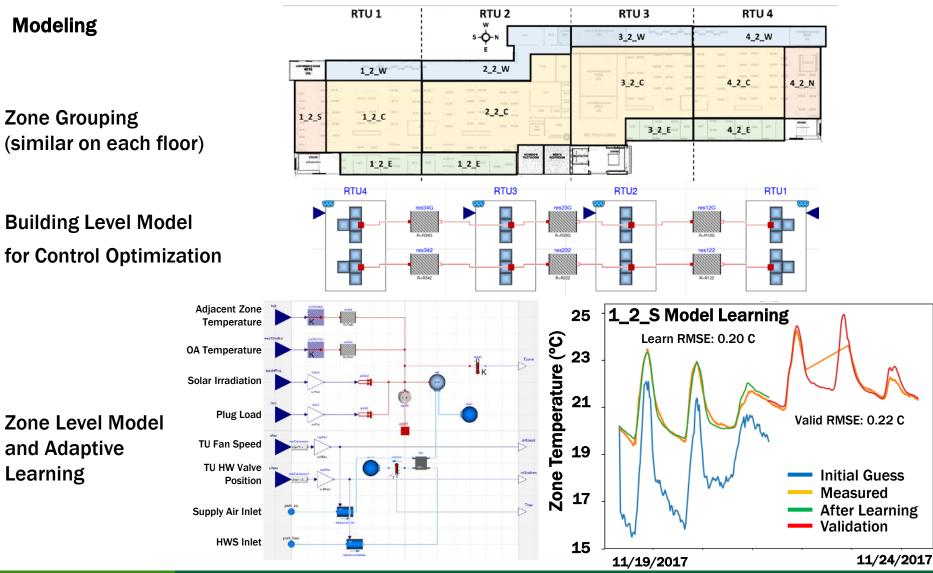
HVAC Perimeter Zone


- Temp
- RH valve position
- TU fan speed

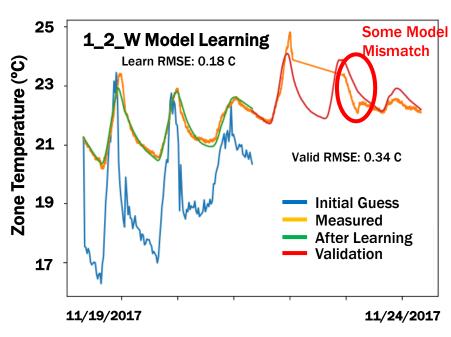
Electric and Lighting

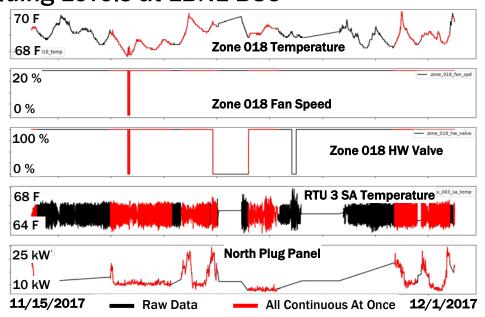
- Plug panels for north/south wings
- HVAC panels for RTUs
- Lighting energy for zones

Added Sensing


- Temp for core zones
- Image-based occupancy sensors for south wing

Field Test of MPC at the Room and Building Levels at LBNL B59


Challenges	Abatement
 System and Modeling UFAD system design Undersized heating system Model size for learning and control optimization 	 Careful model formulation (zoning and HVAC)
DataUseful data points missingData quality and gaps	 Data filtering and cleaning algorithms
 BMS Integration and IT Failure of MPC should not lead to failure of BMS MPC should not affect control of High Performance Computer Cybersecurity 	 MPC suggests new setpoints for BMS, not directly control HVAC actuators MPC on separate server from BMS Ensure separation of control between office and HPC HVAC Work with LBNL IT on cybersecurity
 Occupant Comfort Optimization of room air temperature setpoint within an acceptable range (ASHRAE Std 55) 	 Report discomfort to facility manager or via a short survey


Field Test of MPC at Room and Building Levels at LBNL Building 59

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Field Test of MPC at the Room and Building Levels at LBNL B59

Findings

- Modeling and model training approach is promising, needs further testing on all zones
- Continuity of data is a challenge for model training and will be for control

Collaboration and Coordination

- Johnson Controls
 - Opened its LEED, EDGE and Three-Star certified Shanghai HQ building in June, 2017.
 - Building will deploy model-based commissioning and M&V of MPC benefit.
- Disney
 - Engaged in discussions for campus site demonstration
- LBNL
 - Develop commercialization plan through collaboration with industry partners and LBNL IPO office
 - Actively engage LBNL CSO, IT staff, B59 managers and occupants on the field tests and occupant surveys
- Research community / public
 - Conduct public webinars to announce and demonstrate MPCpy software
 - Present at conferences (e.g. ASHRAE, ACEEE and IBPSA) and publish journal articles

Collaboration and Coordination

- Collaboration with China team
 - **o** Jointly developed the research plan
 - Joint activities on model-based commissioning and occupant module
 - Parallel MPC field tests
 - 1 joint technical workshop and three meetings in 2017 and 2018
 - **o** Tsinghua researchers/students exchanged to LBNL
 - Joint research and planned joint IP on building electric load prediction

Remaining Project Work

Task 3 – Field Test Building-Level MPC and Prepare for Campus-Level MPC

- Integration of occupant module into MPC at building level
- Finish modeling and develop control optimization
- Field test the building-level MPC
- Development of campus-level MPC
- Occupant module development at the campus level
- Campus-level MPC field test preparation

Task 4 - Demonstration of the MPC at the campus level

- Integrate occupant module and MPC at campus level
- Test through simulation
- Verify through full-scale field test at a Disney campus

Remaining Project Work

Task 5 - Commissioning of MPC technology and the CERC demonstration buildings

• Develop MPC commissioning guide to detail data, procedures, and tools used to commission MPC at room, building, and campus levels.

Task 6 - Commercialization and dissemination

- Develop commercialization plan through collaboration with industry partners and LBNL IPO office
- (2) workshops to market the occupancy responsive MPC technology to industry leaders for technology transfer and adoption,
- (5) presentations in national conferences, e.g. ASHRAE, ACEEE and IBPSA and (5) publication of peer-review journal articles
- Dedicated project web site to detail MPC technology, potential energy savings and other benefits, and
- 1 or several open-source software repositories on github.com to host open-source code.

Thank You

LBNL Mary Ann Piette, Senior Scientist and Division Director (510) 486-6286, <u>mapiette@lbl.gov</u>

REFERENCE SLIDES

Project Budget

Project Budget: \$430k (Year 1), \$460k (Year 2) Variances: Site for building-level field test changed to LBNL Building 59 Cost to Date: \$460k (Year 2) Additional Funding: NA

Budget History							
, ,	2016 – FY 2017 (past) FY 2018 (current)			3/31/2019 nned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$430k	\$1,531k	\$460k	\$1,531k	\$460k	\$660k		

Project Plan and Schedule

			FY16	BTO	FY17	BTO	FY18	вто		TO FY20	FY21
		D F H		Y1	CER			С ҮЗ	CERC Y4	_	RC Y5
Tasks	Subtasks	Deliverables	Q3 Q4 (Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4 Q1 (Q2 Q3 (Q4 Q1 Q2
Task 1: Occupant module development at the room- level, MPC algorithm	Subtask 1.1: Occupant module development at the room level	Deliverable 1.1: Room level occupant module									
	Subtask 1.2: Development of building-level MPC	Deliverable 1.2: Building level MPC									
development at the building level	Subtask 1.3: Room level MPC demonstration preparation	Deliverable 1.3: Room level demonstration plan									
	Milestone 1: Room level occup	ant module and building level MPC		•							
Task 2: Field test of the MPC at the room level; occupant module	Subtask 2.1: Integration of the occupant module into MPC at the room level	Deliverable 2.1: Technical report- Room level module implementation into MPC									
development at the building level	Subtask 2.2: Demonstration of room-level MPC	Deliverable 2.2: Technical report- Room level MPC demonstration									
	Subtask 2.3 Occupant module development at the building level	Deliverable 2.3: Building level occupant module									
	Subtask 2.4: Building level MPC demonstration preparation	Deliverable 2.4: Building level demonstration plan									
	Milestone 2: Successfully demonstrat	e the room level MPC through emulation				•	•				
	Subtask 3.1: Integration of the occupant module	Deliverable 3.1: Technical report- Building level									
	into MPC at the building level	module implementation into MPC									
Task 3: Field test of the	Subtask 3.2: Field test the building-level MPC	Deliverable 3.2: Technical report- Building level MPC field study									
MPC at the building level; occupant module and MPC	Subtask 3.3: Development of campus-level MPC	Deliverable 3.3: Campus level MPC									
algorithm development at the campus level	Subtask 3.4: Occupant module development at the campus level	Deliverable 3.4: Campus level occupant module									
campus level	Subtask 3.5: Campus level MPC field test preparation	Deliverable 3.5: Campus level field study plan									
	Milestone 3: Successfully f	eld test the building level MPC						мз			
	Subtask 4.1: Integration of the occupant module	Deliverable 4.1: Technical report- Campus level									
Task 4: Field test of the	into MPC at the campus level	module implementation into MPC									
MPC at the campus level	Subtask 4.2: Field test of campus-level MPC	Deliverable 4.2: Technical report- Campus level MPC field study									
	Milestone 4: Successfully fi	eld test the campus level MPC								14	
	Subtask 5.1 Development of MPC										
Task 5: Commissioning of	commissioning guide	Deliverable 5.1: Commissioning guidebook									
MPC technology and the CERC demonstration	Subtask 5.2 Evaluation of MPC to support continuous commissioning	Deliverable 5.2: A memo report									
buildings	Subtask 5.3 Retro-commissioning of China CERC demonstration buildings	Deliverable 5.3: Report on the retro-commissioning results									
	Milestones 5: Publish	the commissioning guides								N	15
	Subtask 6.1: Development of a commercialization plan	Deliverable 6.1: Commercialization plan									
Task 6: Commercialization and dissemination	Subtask 6.2: Dissemination of results	Deliverable 6.2: Dissemination results									
and dissemination	Subtask 6.3: Final technical report	Deliverable 6.3: Final technical report									
	Milestone 6: De	liver the final report									M

References

- Blum, D, and Wetter, M. MPCpy: An open-source software platform for model predictive control in buildings. IBPSA Building Simulation Conference 2017.
- **D'Oca, S and Hong,** T. Occupancy schedules learning process through a data mining framework. Energy and Buildings, 88:395-408, 2015.
- **Dong, B and Lam, KP.** A real-time model predictive control for building heating and cooling systems based on the occupancy behavior pattern detection and local weather prediction. Building Simulation 7(1): 89-106, 2014.
- Jia R. and Spanos C. Occupancy Modeling in Shared Spaces of Buildings: A Queueing Approach. Building Performance Simulation, 2017.
- IEA, 2012, EBC Annex 60, iea-annex60.org
- Kintner-Meyer, M and Emery, AF. Optimal control of an HVAC system using cold storage and building thermal capacitance. Energy and Buildings, 23:19–31, 1995.
- LBNL, behavior.lbl.gov.
- National Energy Policy Development Group. National energy policy, May 2001.
- Pritoni, M, Nordman B and Piette, MA. Accessing WI-FI data for occupancy sensing. LBNL Report, 2017.
- Wetter, M, Bonvini, M and Nouidui, TS. Equation-based languages A new paradigm for building energy modeling, simulation and optimization. Energy and Buildings, 2016.
- Yan D, Hong T, Dong B. IEA EBC Annex 66: Definition and Simulation of occupant behavior in buildings, Energy and Buildings, 2017.
- **D'Oca S, Chen C, Hong T, Belafi Z.** Synthesizing building physics with social psychology: An interdisciplinary framework for context and occupant behavior in office buildings. Energy Research and Social Science, 2017.
- Zakula, T., Armstrong, P.R., and Norford, L. Modeling environment for model predictive control of buildings. Energy and Buildings 85, 549-559, 2014.