

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

THERMM: Heat & Moisture Modeling Tool

Simon Pallin, pallinsb@ornl.gov /ORNL

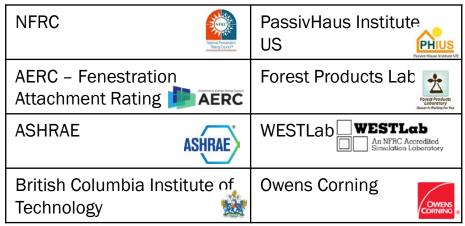
Project Summary

Timeline:

Start date: 10/1/2016 (actual start Jan, 2017)

Planned end date: 12/31/2019

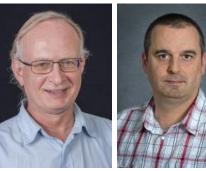
Key Milestones:


- Mathematical and numerical model 3/31/2018
- 2. GUI design 6/30/2018
- 3. Beta software tool release 12/31/2018
- Final software tool release and full technical documentation – 1/31/2020

Budget:

Total Project \$ to Date:

- DOE: \$718K (Last 12 months: \$450K)
- Cost Share: \$0K (Last 12 months: \$0K) Total Project \$:
- DOE: \$1,250K
- Cost Share: \$250K


Key Partners:

Project Outcome:

Software tool capable of modeling 2-D dynamic heat and moisture transfer in building envelopes, incorporating automated meshing and error estimation for rapid model development. Open source code base for third party contributions. API that can be utilized by other tools, such as E+, webbased custom tools.

Team

Charlie Curcija

Simon Vidanovic Robert Hart

Howdy Goudey

Simon Pallin

Andre Desjarlais

Florian Antretter

ORNL Team

ORNL team is led by Dr. Simon Pallinwho brings extensive experience in modeling, measurements and analysis of moisture transport in building envelopes

Andre Desjarlais is Program Manager for the Building Envelope Systems Research Program at the Oak Ridge National Laboratory. He has been involved in building envelope and materials research for over 40 years, bringing unprecedented expertise in both heat and moisture transfer.

Florian Antretter brings his experience as a member of WUFI team at Fraunhofer institute for Building Physics in Germany.

LBNL Team

LBNL team is led by Dr. Charlie Curcija, co-leader of the LBNL's Windows group. Charlie is heat transfer expert, with extensive experience in windows and building envelop heat transfer and energy performance.

Simon Vidanovic is an engineer and programmer, with expertise in numerical methods. He is bringing the right balance to programming task.

Robert Hart is a scientist with the expertise in both modeling and measurements of heat transfer

Howdy Goudey is the manager of Windows group Thermal Lab, with extensive experience in the measurement of heat transfer

Purpose and Objectives

Problem Statement: Moisture transfer and heat transfer are two critical and inter-related problems in building envelope characterization, design and optimization. The presence of moisture can degrade both the durability and thermal performance of the building envelope as well as introduce mold problems that endanger the health and safety of building occupants. Successful design of modern energy efficient envelopes is highly dependent on proper moisture management.

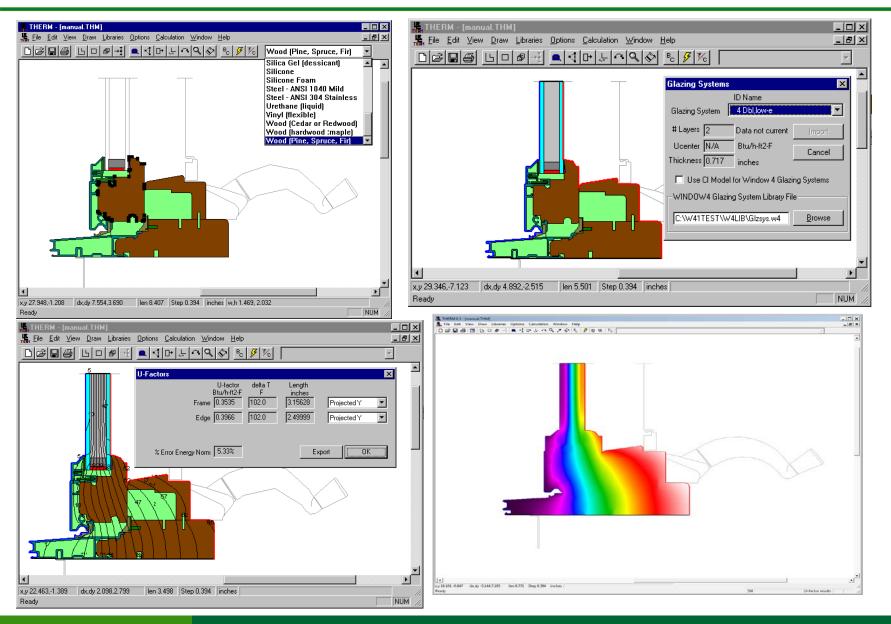
Target Market and Audience: Building envelope designers, manufacturers, rating organizations, certified simulators, other related professionals

Impact of Project: Technical potential for energy savings by 2030 from building envelopes (commercial and residential) is 7.1 quads/year, or over \$70 Billions/year. Better moisture modeling capability would allow for better energy efficient design, helping save some of this energy.

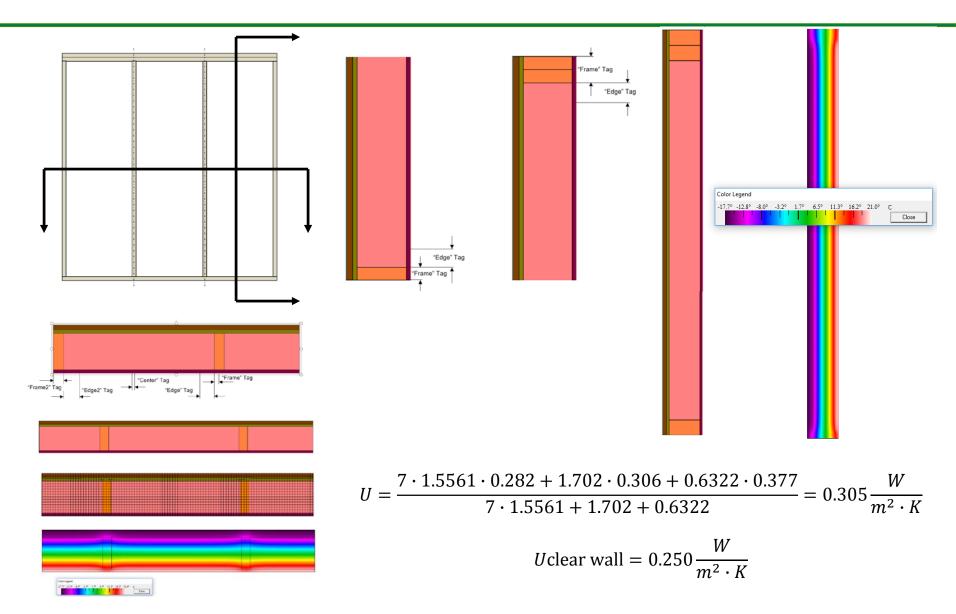
World class modeling tools form the basis for good building design, as well as helping building envelope component manufacturers innovate and sell their products globally.

Approach

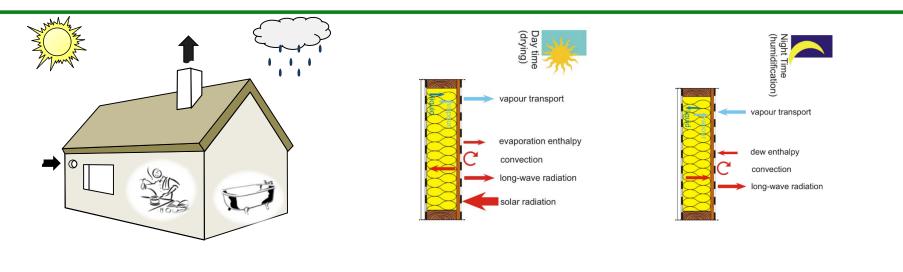
Approach: Enhance LBNL's state-of-the-art building envelope 2-D heat transfer modeling tool THERM with moisture transfer modeling capabilities. In the process, also bring dynamic modeling capabilities to THERM.

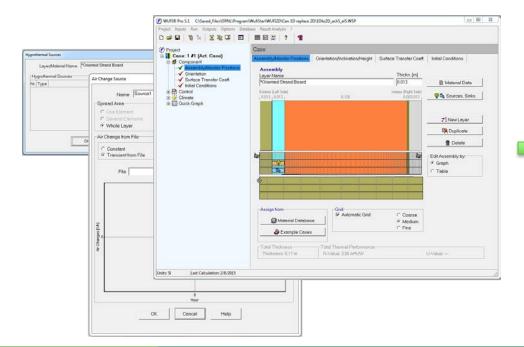

Key Issues:

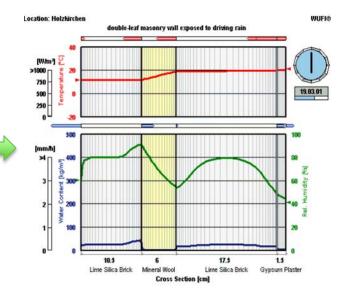
- Extend Finite Element Method (FEM) in THERM to time domain (currently steadystate)
- Add moisture modeling numerical model to THERM.
- Extend current GUI to enable additional data required to model dynamic performance and moisture transfer (e.g., add initial conditions and extend boundary conditions, add new outputs).
- Provide as much of the software tool as open source code, as feasible while complying with export restrictions and third party components.

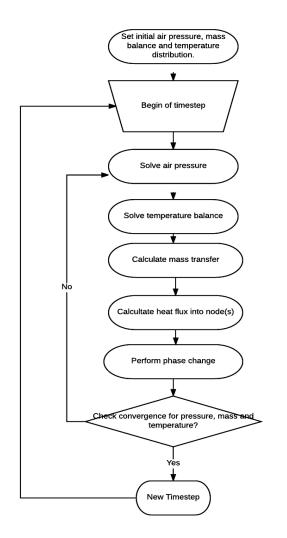

Distinctive Characteristics:

- THERM is used by approximately 25,000 users world-wide. Most widely used building envelope heat transfer modeling tool.
- Used currently primarily to model windows heat transfer and to lesser extent to model building envelopes. This new functionality will expand user base and application


Current THERM Capabilities – Fenestration




Opaque Envelope Assemblies Modeling in THERMM


Current Modeling of Moisture Transfer - WUFI

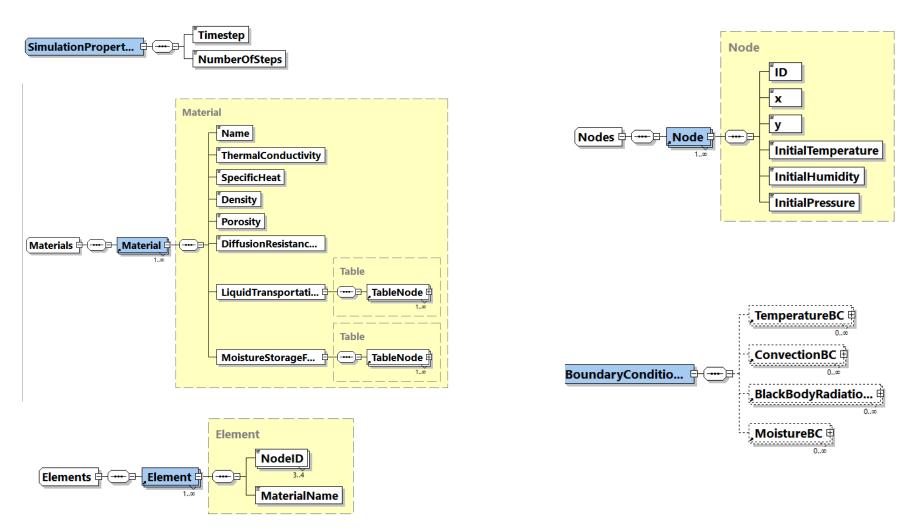
Coupled Heat, Air & Moisture (HAM) Transport Model

Steps in Solving HAM problem

Heat Transfer Model:

$$\begin{split} \rho_{eq} \cdot C_{eq} & \frac{\partial T}{\partial t} + S \cdot H_{ii} = \\ &= \frac{\partial \vec{q}_{c,x}}{\partial x} + \frac{\partial \vec{q}_{c,y}}{\partial y} + h_{ig} \left(\frac{\partial \vec{g}_{v,diff,x}}{\partial x} + \frac{\partial \vec{g}_{v,diff,y}}{\partial y} + \frac{\partial \vec{g}_{v,adv,x}}{\partial x} + \frac{\partial \vec{g}_{v,adv,y}}{\partial y} \right) + \\ C_i \left(\vec{g}_{i,x} \cdot \frac{\partial T}{\partial x} + \vec{g}_{i,y} \cdot \frac{\partial T}{\partial y} \right) + C_v \left(\vec{g}_{v,x} \cdot \frac{\partial T}{\partial x} + \vec{g}_{v,y} \cdot \frac{\partial T}{\partial y} \right) + C_{ab,d} \left(\vec{g}_{ab,x} \cdot \frac{\partial T}{\partial x} + \vec{g}_{ab,y} \cdot \frac{\partial T}{\partial y} \right) + Q \end{split}$$

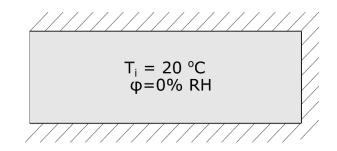
Moisture Transfer Model:

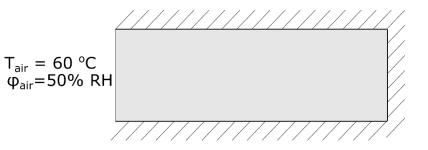

$$\begin{split} & \frac{\partial \gamma_{w}}{\partial \varphi} \frac{\partial \varphi}{\partial t} = \frac{\partial}{\partial x} \left(\frac{E}{\mu_{x}} \frac{\partial \varphi \gamma_{v_{nal}}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{E}{\mu_{y}} \frac{\partial \varphi \gamma_{v_{nal}}}{\partial y} \right) + \\ & \frac{\partial}{\partial x} \left(\frac{k_{ab,x} \cdot \varphi \gamma_{v_{nal}}}{\eta_{abr}} \cdot \frac{\partial P_{ab}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{k_{ab,y} \cdot \varphi \gamma_{v_{nal}}}{\eta_{abr}} \cdot \frac{\partial P_{abr}}{\partial y} \right) + \\ & \frac{\partial}{\partial x} \left(D_{\varphi,x} \left(\frac{\partial \varphi}{\partial x} \right) \right) + \frac{\partial}{\partial y} \left(D_{\varphi,y} \left(\frac{\partial \varphi}{\partial y} \right) \right) + S_{j} + S_{y} \end{split}$$

Air flow model:

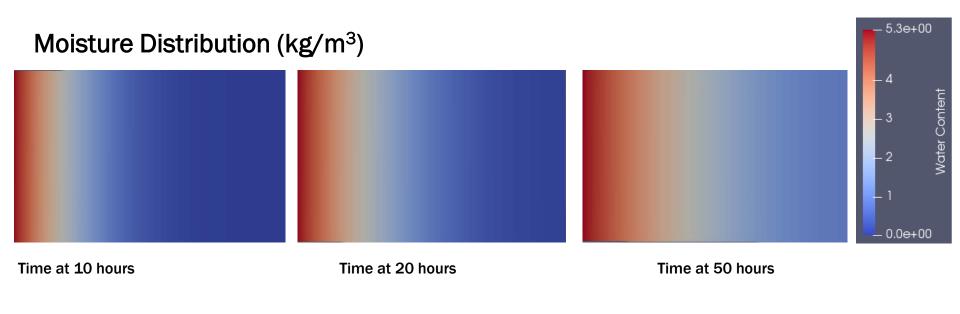
$$\frac{\partial \gamma_{ab}}{\partial t} = \frac{\partial}{\partial x} \left(\frac{k_{air} \cdot \rho_{air}}{\eta_{ab}} \cdot \frac{\partial P_{ab}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{k_{air} \cdot \rho_{air}}{\eta_{air}} \cdot \frac{\partial P_{air}}{\partial y} \right)$$

API Development

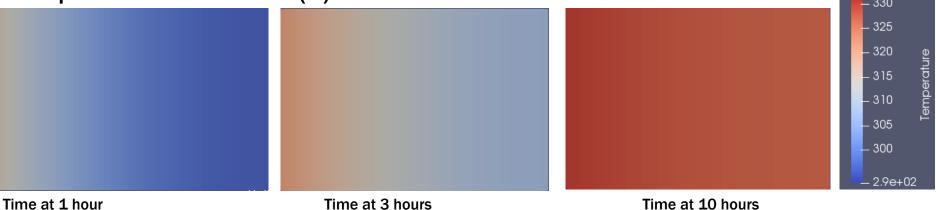

• XML file format to communicate with THERMM engine



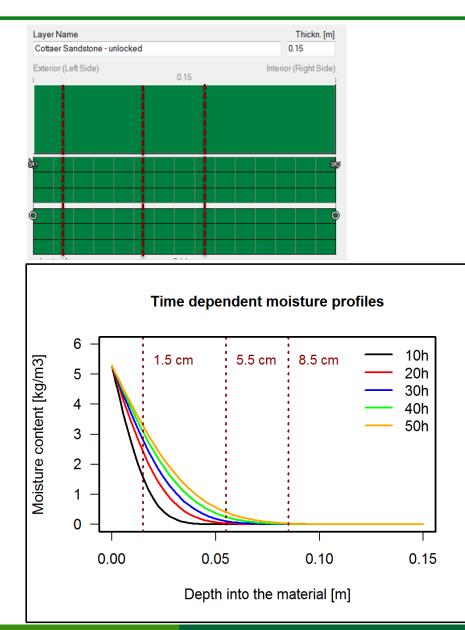
Simple WUFI Comparison Example

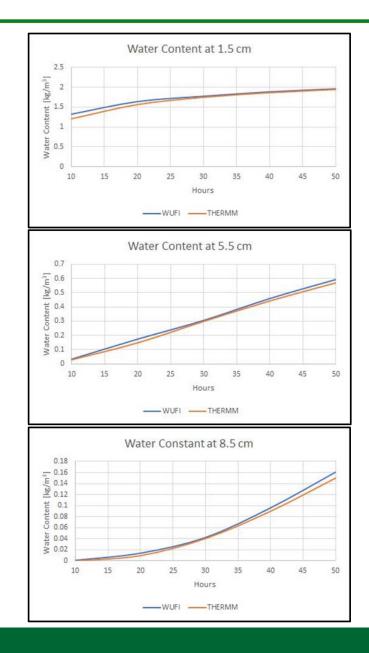

- 15 cm Cottaer Sandstone
- Initial conditions: 20 °C and 0 % RH
- Boundary conditions: 20 °C and 50 % RH applied on left side
- Modified material properties
- Liquid and heat transfer disabled

Layer Name Cottaer Sandstone - unlo	cked	Thickn. [m] 0.15		
Exterior (Left Side)	0.15	Interior (Right Side)		
2 <u></u>				
•		•		



Modeling results from THERMM




Temperature Distribution (K)

- 3.3e+02

THERMM Results vs. WUFI

Identified validation cases

• Hygric model with EN 15026 with analytical limit value table and graphic

Table A.1 — The limits of validity for results from the humidity calculations

Days	<i>x</i> = 0,0	1	<i>x</i> = 0,0	2	<i>x</i> = 0,	03	<i>x</i> = 0,	04	<i>x</i> = 0,	05	<i>x</i> = 0,	06	<i>x</i> = 0,	08	<i>x</i> = 0	,10
	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
7	50,2	54,5	41,3	45,6	40,8	45,1	40,8	45,1								
30	81,0	85,3	51,1	55,3	43,6	47,9	41,5	45,7	40,9	45,2	40,8	45,1	40,8	45,1		
365	117,5	121,8	104,4	108,7	88,7	93,0	75,6	77,9	62,8	67,1	55,7	60,0	47,9	52,2	44,1	48,4

• Thermal model with ISO 10211 (static 1D and 2D analytical reference case)

Р	20 °C	Analyti	cal solution	n at grid no	odes (°C)
В	A	9,7	13,4	14,7	15,1
	+ + + +	5,3	8,6	10,3	10,8
		3,2	5,6	7,0	7,5
	+ + + +	2,0	3,6	4,7	5,0
	+ + + +	1,3	2,3	3,0	3,2
0 °C		0,7	1,4	1,8	1,9
0.0	+ + + +	0,3	0,6	0,8	0,9
	+ + + +				
	+ + + +				
	+ + + +				
С	D				
	0 °C				
BC	= 2 × AB				

• Cross-validation with WUFI 1D and 2D

Project Integration and Collaboration

Project Integration:

- Involving NFRC, AERC and PHIUS
- Diverse technical advisory group TAG
- Reporting at ASHRAE •
- Planning to fead future standard implementation

Partners, Subcontractors, and Collaborators:

- Rating organizations
- Government Forest Products Lab
- Building envelope manufacturers: Owens Corning, window manufacturers ASHRAE
- Associations ASHRAE
- Universities: University of Waterloo, British Columbia • Institute of Technology
- Certified simulators WESTlab
- Software Companies Bigg Ladder Software

Communications:

- e-mail/phone user support
- web-based software support forum
- Conferences, Webinars
- TAG meetings

/ESTLab

An NFRC Accredited

6 Alcoa

UNIVERSITY O WATERLOO

Progress and Accomplishments

Accomplishments

- IP management and data plan completed
- Mathematical model completed
 - Combined heat and moisture model HAM
 - Identified areas of future development
- Numerical model being finalized
- Early results show good agreement
- Open source plan

Market Impact

- THERM is used by all major fenestration manufacturers, including globally
- Increasing number of users use it for opaque parts of building envelope
- When HAM functionality is completed, we expect further explosion of user base

Recognition

 THERM is most widely used software tool for modeling building envelopes in the world

Lessons Learned

• Decision what to include in software tool vs. what to leave out is very difficult

Next Steps and Future Plans

FY18

- Finalize API
- Complete development of numerical model
- Implement numerical model in FEM engine (current FEM engine name is CONRAD)
- Release Alpha version of software tool to selected group of reviewers (TAG and some selected others)
- Begin verification and validation

Out Years

- Release Beta version to wide public
- Complete verification and validation of THERMM modeling results
- Collect feedback and implement in full release version
- Write final verification and validation reports
- Write user's manual, and technical documentation
- Release final software tool version

REFERENCE SLIDES

Project Budget

Project Budget: 3 year project with DOE budget of \$1,250K and cost share of \$250K
Variances: Project is on budget with schedule pushed by 1 quarter (end 12/31/2019). Cost share negotiations with CEC were significantly delayed and provided only half of promised funding. Other half was provided by industry.
Cost to Date: DOE: \$718K, cost-share: OK
Additional Funding: Cost shared by CEC and Industry

Budget History						
	2017 ast)		2018 rent)		2019 nned)	
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share	
\$450K	\$OK	\$268K	\$OK	\$400K	\$175K	

Project Plan and Schedule

Project Schedule												
Project Start: 10/1/2016		Com	pletec	Work	< C							
Projected End: 12/31/2019		Activ	e Tas	k (in p	rogre	ss wo	rk)					
		Mile	stone	/Deliv	erable	e (Orig	ginally	Planr	ned)			
		Mile	stone,	/Deliv	erable	e (Acti	ual)					
		FY2	2017			FY2	2018			FY2	2019	
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Establish GitHub, CMAKE, and Gtest												
Develop IP Management Plan												
Develop mathematical model												
Develop numerical model												
Current/Future Work												
Develop API												
Complete simulation engine												
Develop modified GUI design						•						
Implement new GUI and release alpha version												
Verification testing and bug fixing												
Validation measurements												

Project Budget: Outline the project budget and history. **Variances**: Describe any variances from original planned budget and identify if/how the project plan was modified.

Cost to Date: Identify what portion of the project budget has been expended to date.

Additional Funding: Note, if any, other funding sources.

		Budget History	
20	r <mark>t Date</mark> – FY 017 ast)	FY 2018 (current)	FY 2019 – Insert End Date (planned)
DOE	Cost-share	Required to compl	
		count towards tota doesn't need to be presentation	al slide count and e focused on during

Project Plan and Schedule

Describe the project plan including:

- Project original initiation date & Project planned completion date
- Schedule and Milestones
- Explanation for slipped milestones and slips in schedule
- Go/no-go decision points
- Current and future work

Project Sche									
Project Start:	: Insert Start Date	Completed Work							
Projected En	nd: Insert End Date	Active Task (in progress work)							
		Milestone/Deliverable (Originally Planned) use for missed							
		Milestone (Deliverable (Actual) use when met en time							
	Required to co	omplete, but does not count							
	towards total s	slide count and doesn't need to							
Task									
	be focused on	slide count and doesn't need to							
Past Work	If you have a b	better visual to put in place for							
Q1 Mileston									
Q2 Mileston	ie: Exa <i>This schedule</i> (this schedule template, please feel free to do							
Q3 Mileston	ie: Exa								
Q4 Mileston	е: Еха <u>SO.</u>								
Q1 Mileston	ie: Example 5								
Current/Fut	ure Work								
Q3 Mileston	ie: Example 6								