

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Narrow Emitting Red Phosphors for Improving pcLED Efficacy

Principal Investigator: Robert Nordsell, CEO rob@lumenariinc.com Presenter:

Daniel Bugaris, Principal Scientist dan@lumenariinc.com

Project Summary

Timeline:

Start date: September 1, 2016 Planned end date: August 31, 2018

Key Milestones:

- Eu³⁺-containing material (crystal) with red emission at 77 K – Completed May 2017
- Eu³⁺-containing material (crystal) with red emission at RT – Completed December 2017
- 3. Performance Testing Begun January 2018
- 4. Commercial Characterization Projected completion by August 2018

Budget:

Total Project \$ to Date: \$1,350,551.71

- DOE: \$1,080,441.41
- Cost Share: \$270,110.30

Total Project \$: \$1,860,529.00

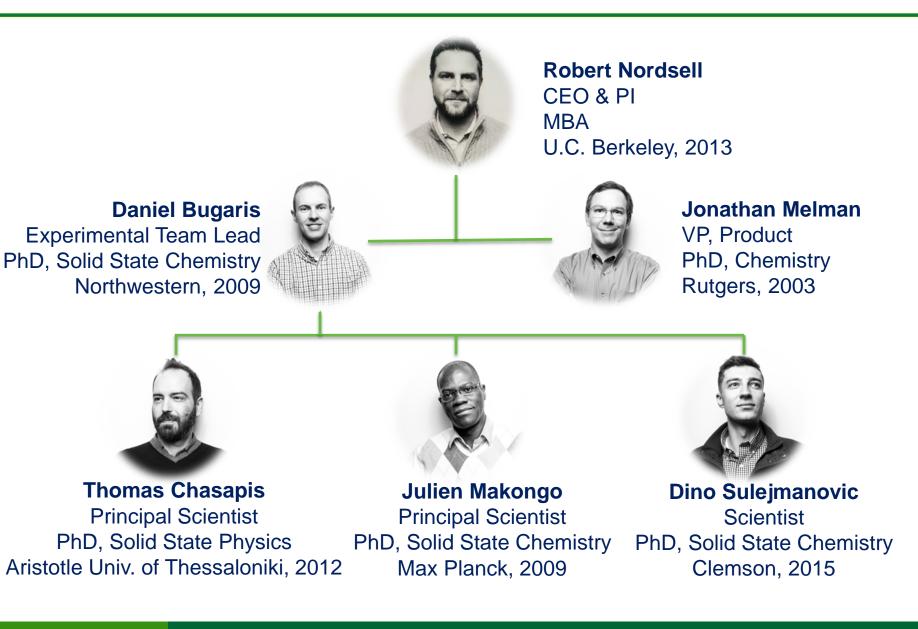
- DOE: \$1,488,423.00
- Cost Share: \$372,106.00

Key Partners:

MaterialsQM Consulting

Professor James Whitten (UMass-Lowell)

Professor Oliver Monti (University of Arizona)


Stanford Synchrotron Radiation Lightsource (SLAC)

Advanced Photon Source (ANL)

Project Outcome:

The focus of this Project is the development of a narrow-band red Eu³⁺-activated phosphor for bluepumped, on-chip LED applications. The goal is to improve pcLED efficacy by up to 28%.

Experimental Team – Lumenari, Inc.

Computational Team

Shyue Ping Ong

Professor Ong received his BA and MEng from the University of Cambridge in Electrical & Information Science Engineering, and his PhD in Materials Science & Engineering from MIT. In addition to MaterialsQM, he currently leads the Materials Virtual Lab at U.C. San Diego.

Anubhav Jain

Dr. Jain received his BS from Cornell University in Applied & Engineering Physics, and his PhD in Materials Science & Engineering from MIT. In addition to MaterialsQM, he currently leads the Hacking Materials group at Lawrence Berkeley National Lab.

MaterialsQM Consulting

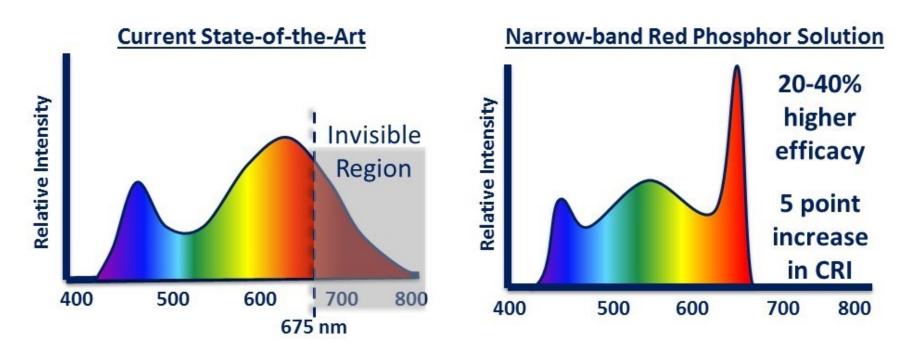
ACCELERATED MATERIALS DISCOVERY THROUGH RAPID SIMULATION AND DATA ANALYTICS

Spectroscopic Characterization Team

James E. Whitten

Dr. Whitten received his PhD in Physical Chemistry from Ohio State University. He is currently a Professor in the Department of Chemistry at the University of Massachusetts-Lowell. His research group studies the chemistry at the surfaces and interfaces of light-emitting diodes and photovoltaic devices.

Oliver Monti


Dr. Monti received his PhD from the University of Oxford. He is currently an Associate Professor with joint appointments in the Departments of Chemistry & Biochemistry and Physics at the University of Arizona. His research group investigates the electronic structures of material interfaces with advanced steadystate and ultrafast photoelectron spectroscopies.

Challenge: Optimization of Emission

The major challenge in LED lighting is shifting light emitted by the current state-of-the-art red phosphor out of the IR and into the red region. Narrowing the red emission band improves LED efficacy 20-40% by concentrating all of the emitted light into the visible red region.

Impact

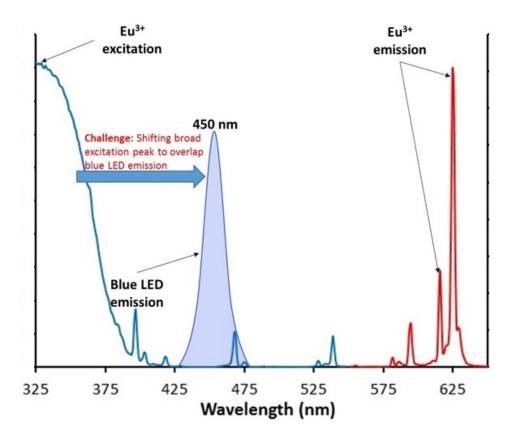
The benefits of a narrow-band red phosphor have been known to and championed by the Department of Energy. The energy savings in the U.S. in 2025 as a result of LED adoption in general lighting are expected to be 217 TW-hr, if the 2020 R&D goals from the 2014 DOE MYPP are met. The product developed as a result of this Project will be a Eu³⁺-activated narrow-band red phosphor for blue pcLED applications that will improve pcLED efficacy by up to 28%, thereby further *reducing site electricity consumption in the U.S. by 50 TW-hr, effectively displacing 10 coal plants and reducing CO₂ emissions by 47 million metric tons annually.*

U.S. Energy Information Administration, Electric Power Annual 2013 (2015)

Approach

Selection criteria for red phosphor activator ions can be grouped into three categories.

	PFS:Mn ⁴⁺	Lumenari Eu ³⁺ -activated phosphor target specs	CASN:Eu ²⁺		
Required Properties					
Peak Emission, λ	630 nm	610-625 nm	623-649 nm		
Excitation Peak/Edge	450 nm/500 nm	450 nm/500 nm	475 nm/650 nm		
Critical Properties					
Absorption, α_{450}	< 60 cm ⁻¹	> 200 cm ⁻¹	> 200 cm ⁻¹		
PL Decay Lifetime	~ 8.7 ms	~ 200 µs	< 3 µs		
Quantum Yield at RT	~ 90%	> 90%	~ 90%		
Desired Properties					
FWHM	< 10 nm	< 10 nm	75-90 nm		


Mn⁴⁺-activated phosphors, while having the desired narrow-band emission, exhibit low absorption and long decay lifetimes (i.e. inadequate flux density saturation) due to parity forbidden transitions, regardless of the host lattice.

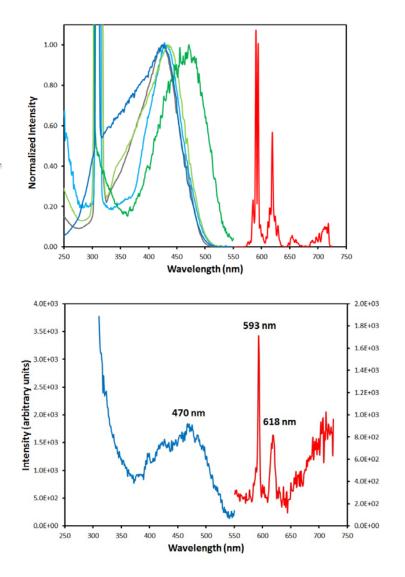
Eu²⁺-activated phosphors, while having strong absorption and short decay lifetime, are unlikely to achieve efficient emission when the FWHM < 50 nm because of the direct correlation between FWHM and Stokes shift.

The limiting factors for Mn⁴⁺ and Eu²⁺ activation in LED applications are not fundamental physical limitations for Eu³⁺ activation!

Shifting Excitation for Eu³⁺-Activated Phosphor

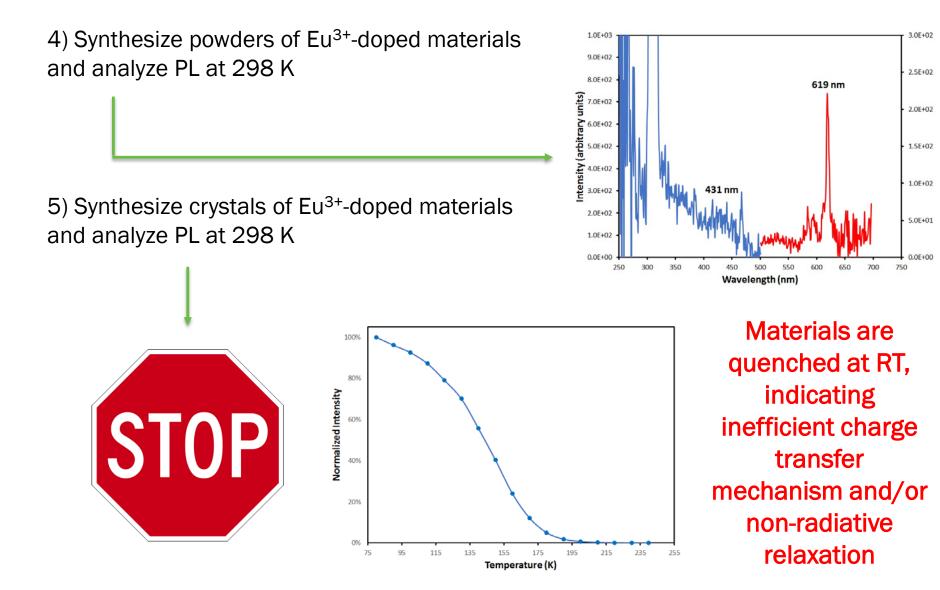
The scientific problem for Eu³⁺-activated phosphor development involves designing a host lattice that broadly absorbs blue LED emission (430-460 nm) and efficiently transfers that energy to Eu³⁺.

Previous approaches:

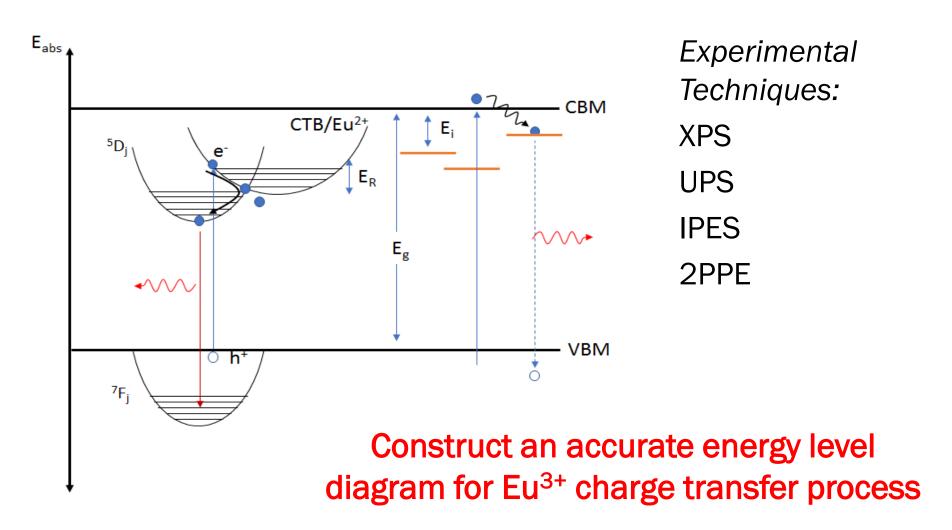

 Utilize as a UV-pumped phosphor due to coverage in the 360-400 nm region

2) Sensitize the narrow ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ absorption at 465 nm

Computationally Guided Materials Design

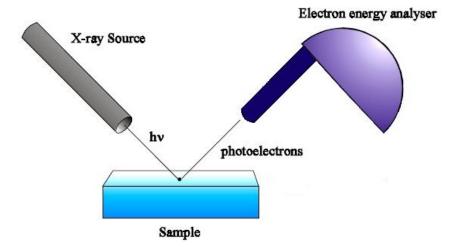

1) Computational screening of a large database (Inorganic Crystal Structure Database) of known materials by calculating parameters of interest (band gap, relaxation energy)

2) Synthesize powders of Eu^{3+} -doped materials and analyze PL at 77 K



3) Synthesize crystals of Eu³⁺-doped materials and analyze PL at 77 K

Computationally Guided Materials Design


Photoelectron Spectroscopy (PES)

In collaboration with Professors Whitten (UMass-Lowell) and Monti (UArizona)

PES Experimental Challenge

Insulating (i.e. poorly conducting) samples present a significant hurdle for PES experimental techniques. As photoelectrons are lost during the photoemission process, a positive charge will build up on the sample. As this occurs, the kinetic energy of the emitted photoelectrons will decrease resulting in a shift to higher binding energy of the observed peaks in the spectrum.

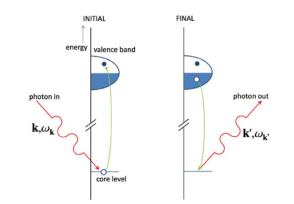
Attempted routes to compensate for sample charging included: different chemical compositions, doping to increase charge carrier concentration, different sample morphologies (powders, pellets, crystals), and different sample stages.

Synchrotron X-Ray Spectroscopy

For synchrotron X-ray spectroscopic experiments, because the incident photon energy is much higher than in PES, sample charging is not a concern.

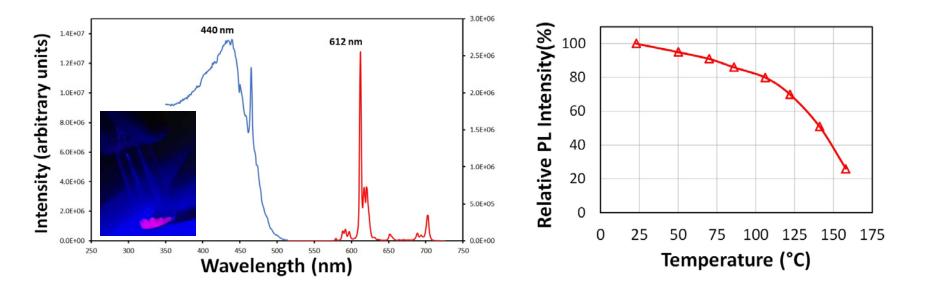
X-ray absorption spectroscopy (XAS)

- Evaluate the valence and conduction band compositions of the host materials
- Beamtime is scheduled at SSRL on May 7-9, 2018


X-ray emission spectroscopy (XES)

- Probe the density of states (DOS) for the excited state
- Proposal accepted, but beamtime not yet awarded

Resonant inelastic X-ray scattering (RIXS)


- Provide direct observation of low-lying excitations with Eu-character, such as CTS
- Proposal accepted, but beamtime not yet awarded

In collaboration with Professor Monti (UArizona)

Highly Promising Eu³⁺ Material

This Eu³⁺ containing material exhibits very strong red emission with efficient blue light excitation at RT

The thermal quenching is also quite robust, retaining > 80% PL intensity (compared to RT) at 100°C

Performance Testing

Particle Size (d₅₀)

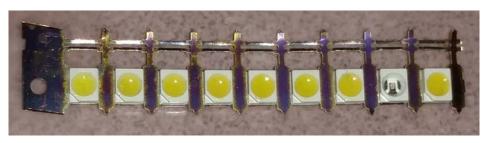
- Light scattering and brightness can be impacted by particle size and morphology
- Target d₅₀ is ~ 10 μm
- Current d_{50} is ~ 22 μ m (only sieve/elutriation, and not ball-milling)
- Reported d_{50} is ~ 20-30 μ m for commercial PFS:Mn⁴⁺ material

PL Decay Lifetime (τ)

- Decay lifetimes longer than the human eye response decrease the efficiency
- Target τ is ~ 200 μ s
- Current τ has been measured at 230-270 µs (data from Texas A&M user facility)
- Reported τ is 8.7 ms for commercial PFS:Mn⁴⁺ material

Absorption (α_{450})

- Lower absorption values increase the difficulty of achieving warm white LEDs
- Target α_{450} is > 200 cm⁻¹


Quantum Yield (QY)

- QY provides an assessment of the phosphor's performance
- Target QY is > 90%

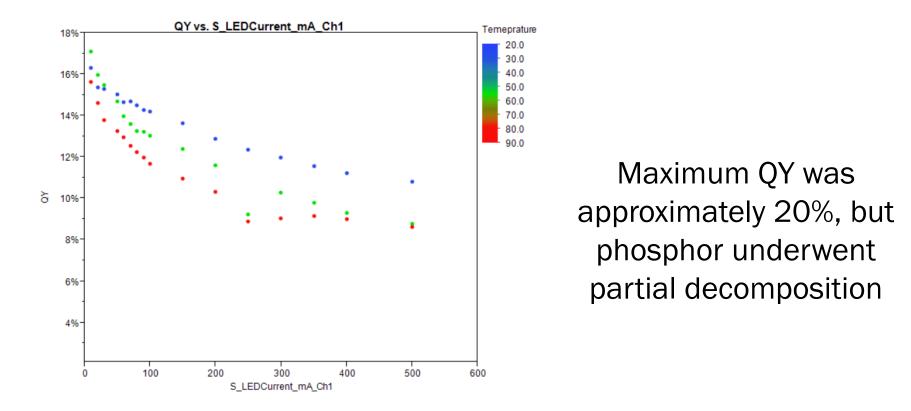
Remaining Commercial Characterization

Our Eu³⁺ containing phosphor will be packaged on an LED for on-chip testing

Thermal Quenching

- Measure of how well the phosphor will perform at elevated LED junction temperatures
- Target thermal quenching is \geq 90% PL intensity at 150°C relative to RT
- Minimum thermal quenching is \geq 80% PL intensity to be on-par with CASN:Eu²⁺

Relative Efficacy


- Assuming equivalent absorption and quantum yield, the narrow-band red emission of Eu³⁺ versus the broad-band red emission of Eu²⁺ should greatly increase efficacy
- Target on-chip efficacy improvement is 28% relative to that of CASN:Eu²⁺

Operating Lifetime

- We will conduct wet high temperature operation life (WHTOL) testing to expose compositional susceptibility to performance lifetime problems
- Any target values are beyond the scope of this Project
- It should be noted that our material appears to be stable in water at RT and elevated temperatures, in the short term

Stakeholder Engagement

An early, non-optimized, sample of our Eu³⁺ containing phosphor was given to *Customer A* for evaluation

Current challenge is to encapsulate the phosphor so that it cures in silicone for LED packaging

Thank You

Principal Investigator: Robert Nordsell, CEO rob@lumenariinc.com Presenter: Daniel Bugaris, Principal Scientist dan@lumenariinc.com

REFERENCE SLIDES

Project Budget

Project Budget: \$1,860,529

Variances: There was a 6-month delay hiring a Principal Scientist due to immigration paperwork delays. These unspent funds are being used for the Eu³⁺ electronic structure mapping by PES.

Cost to Date: \$1,350,551.71

Additional Funding: None

Budget History									
9/1/2016 - 12/31/2017 (past)		FY 2018 (current)		4/1/2018 – 8/31/2018 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$896,650	\$224,163	\$183,791	\$45,948	\$407,982	\$101,995				

Project Plan and Schedule

Project Start Date: September 1, 2016	FY 2017		FY 2018					
Project End Date: August 31, 2018			Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
<i>Milestone #1</i> : Computational identification of 5 compounds whose excitation peak wavelengths are calculated to be 430 nm $\leq \lambda_{ex} \leq 495$ nm								
<i>Milestone #2</i> : Powder synthesis/analysis of one computationally identified Eu ³⁺ -doped compound with 430 nm $\leq \lambda_{ex} \leq 495$ nm and 610 nm $\leq \lambda_{em} \leq 630$ nm at 77 K								
<i>Milestone #3</i> : Single crystal synthesis/analysis of one computationally identified Eu ³⁺ - doped compound with 430 nm $\leq \lambda_{ex} \leq$ 495 nm and 610 nm $\leq \lambda_{em} \leq$ 630 nm at 77 K								
<i>Milestone #4</i> : Powder synthesis/analysis of one computationally identified Eu ³⁺ -doped compound with 430 nm $\leq \lambda_{ex} \leq$ 495 nm and 610 nm $\leq \lambda_{em} \leq$ 630 nm at 298 K								
<i>Milestone</i> #5: Single crystal synthesis/analysis of one computationally identified Eu ³⁺ - doped compound with 430 nm $\leq \lambda_{ex} \leq$ 495 nm and 610 nm $\leq \lambda_{em} \leq$ 630 nm at 298 K								
<i>Milestone</i> #6: Completed performance testing of crystals exhibiting excitation and emission at 298 K								
<i>Milestone</i> #7: Completed performance testing of crystals with $QY \ge 55\%$								
Milestone #8: Completed commercial characterization								
Completed on time Completed	In progress							