

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Improved Radiative Recombination in AlInGaP LEDs

(new project)

Lumileds Ted Chung: Senior Manager (408) 964-2446; ted.chung@lumileds.com

Project Summary

Timeline:

Start date: October 1, 2017

Planned end date: September 30, 2019

Key Milestones

Year 1: 15% external quantum efficiency (EQE) for amber LED

Year 2: 20% EQE for amber LED, 60% EQE for red LED

Budget:

Total Project \$ to Date (as of 2/18/2018)

- DOE: \$187,403
- Cost Share: \$57,370

Total Project \$:

- DOE: \$1,068,970
- Cost Share: \$327,243

Key Partners:

Sub-recipient:

 Sandia National Laboratories: for defect characterization by DLTS/DLOS

Other collaborators:

- Stony Brook University: X-ray topography of GaAs substrate and epi layers
- MIT: STEM-CL characterization of AllnGaP die

Project Outcome:

- Design more efficient amber and red LEDs by characterizing and mitigating defects associated with high efficiency epitaxy designs
- Enable efficiency gains towards DOE SSL program goals for white lighting efficacy

Team

Member	Position	Expertise
Ted Chung	Senior Manager	Epitaxial growth & device physics
Juan Cai	MOCVD growth scientist	Epitaxial growth, TEM
Suk Choi	MOCVD growth scientist	Epitaxial growth, device physics
David Soltz	Characterization scientist	Time-resolved PL, electron beam induced current (EBIC)

Team

Additional collaboration with universities

- Professor Dudley of Stony Brook University: X-ray topography:
 - Synchroton X-ray done at Argonne National Laboratory

- Professor Gradecak of Massachusetts Institute of Technology (MIT)
 - Cathodoluminescence (CL) with scanning transmission electron microscopy (STEM)

Challenge: White light LED efficacy

- LED architecture with highest efficacy today
- Used in majority of LED lighting applications
- Efficacy ultimately limited by phosphor downversion loss ("Stokes loss")
- LED architecture with highest efficacy <u>potential</u>
- Efficacy today limited by low efficiency of direct green, amber and red – not a fundamental limit
- Need to improve to achieve DOE SSL program goals and full energy savings potential of SSL

Problem

- 1) How to make red and amber LEDs brighter without sacrificing reliability?
 - Approaches for efficiency improvement are known but typically associated with faster LED degradation
- 2) How to make red and amber LEDs brighter despite the inherent limits of the band structure?

Approach

- 1) Determine the key root causes of degradation and establish a model
 - Establish boundary conditions using advanced characterization techniques including X-ray topography, cathodoluminescence, deep-level transient spectroscopy
- 2) Based on the model, design the LED structure using tensile strained barrier for better carrier confinement and higher flux

Approach: Part 1

AllnGaP epi structure

- 1st part of the project is improve reliability by reduction of point defects
 - This determines the type of active region we can use

Approach: Part 2

Tensile strain increases the conduction band offset of the X-valley, increasing the energy barrier for electrons to overcome and reducing carrier overflow.

Secondary effect:

Splitting of light-hole and heavy hole bands in valence band

Goal: to increase EQE and H/C factor

X-ray topography: GaAs substrates

X-ray white beam transmission image of entire 150 mm GaAs substrates

- Large number of dislocations at wafer edge
- Substrate from Vendor A has abnormally high number of dislocations at 2 locations

Grazing incident X-ray diffraction

Monochromatic X-ray topography using Grazing incident geometry (reflection mode)

All box size: $2.33mm \times 1.75mm$

- Penetration depth of ~1 um
- Look at X-ray diffraction pattern of (33-3) lattice planes
- Advantage: able to evaluate the dislocation density on the top wafer surface

Grazing incident X-ray diffraction

- Grazing-incident X-ray diffraction of (33-3) planes does show higher number of dislocations on the wafer surface at the wafer edge
- Correlates to vendors' EPD maps & understanding
 - dislocations are generated during cool-down of ingots (contraction)

On-going investigation: X-ray topography

GaAs substrates:

- Study different Si doping concentrations
- Does dislocation density difference explain the reliability difference?
- Need to establish whether there is causal relationship

AllnGaP film:

- Evaluate whether those dislocations propagate from GaAs substrates into AlInGaP epitaxial layers
- Does it change with AI% composition or doping in AlInGaP?

MOCVD growth conditions of AllnGaP film:

• Does growth condition change the dislocation density across the wafer?

Cathodoluminescence of AllnGaP die

- Die with poor reliability (flux drop > 8%) shows a broad defect peak ~ 750 nm wavelength
- The appearance of CL peak at 750 nm correlates to flux degradation

STEM CL of stressed die with flux drop> 20%

• No defect peak emission in QWs

STEM CL of stressed die with flux drop> 20%

This indicates the present of defects in n-layer closest to the active region

STEM CL of unstressed die

 This indicates CL can replicate the aging effect under reliability stress test

Remaining Project Work

Characterization:

- 1) Deep-level transient & optical spectroscopy (DLTS & DLOS)
 - Done by Andy Armstrong of Sandia National Laboratories
 - Determine type of defect states next to active region
- 2) X-ray topography of AllnGaP film
 - Professor Dudley of Stony Brook University
- 3) Explore other characterization techniques
 - Transient-lifetime photoluminescence (TLPL)
 - Positron annihilation lifetime spectroscopy (PALS)

Active region design of LEDs:

- Incorporate tensile-strained barrier into the LED active region
 - Study performance and reliability
 - Achieve amber and red LED performance targets

Stakeholder Engagement

- Project partners for advanced characterization
 - Professor Dudley of Stony Brook: X-ray topography
 - Andy Armstrong of Sandia National laboratories
 - Characterize defect states in AlInGaP
 - Deep-level transient spectroscopy (DLTS)
 - Deep-level optical spectroscopy (DLOS)
 - 2 samples per month starting in April in progress
- Lumileds epitaxy manufacturing
 - Qualification and release of new epitaxy technology
 - Manufacturing located in San Jose, California
- Lumileds product development
 - Implementation in new LED products or upgrades of existing LED products
 - Established market channel and comprehensive color LED product portfolio

Thank You

Lumileds Ted Chung, Senior Manager Ted.chung@lumileds.com

REFERENCE SLIDES

Project Budget: \$1,396,213
Variances: On track - no significant variance to date
Cost to Date: \$244,773 as of 2/18/2018
Additional Funding: \$240,000 for Sandia work (funded directly by DOE)

Budget History												
FY 2017 (past)		FY 2018	(current)	FY 2019 (planned)								
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share							
-	-	\$535,025	\$163,756	\$533,945	\$163,487							

Project Plan and Schedule

	10	11	12	1	2	3	4	5	6	7 8	9	10	11	12	1	2 3	4	5	6	7 8	3 9
		2017				2018								201				9			
Task / Subtask / Milestone Month		2	3	4	5	6	7	8	91	0 11	12	13	14	15 1	16	7 18	19	20	21 2	2 23	24
1 Defect characterization in GaAs substrate and unstrained AlGaInP									-												
1.1 Survey measurement of defects in GaAs substrate and GaAs buffer																					
1.1.1 Establish defect characterization capability																					
1.1.2 Establish dependence of defects on Si doping																					
1.2 Growth and characterization of lattice-matched AlGaInP																					
1.2.1 Identify origin of defects in AIGaInP vs. AI content and Si doping						┛															
2 Defect characterization in strained AlGaInP structures																					
2.1 Growth of lattice-mismatched bulk AlGaInP layer on GaAs																					
2.1.1 Identify atomistic origin of defects vs. reduced In content																					
2.2 Characterization of baseline defects in state-of-the art LED																					
.2.1 Establish baseline defects in full LED devices																					
2.3 Introduction of strained AlGaInP EBL in LED device																					
2.3.1 Mid-project EQE gain demonstration in amber LED																					
3 Development of full LED structure with strained EBL						1															
3.1 Growth of lattice-mismatched bulk AlGaInP layer vs. thickness						T														Τ	Τ
3.1.1 Confirm absence of defects below critical thickness																					
3.2 Optimization of strained AlGaInP EBL in LED device						Τ															
3.2.1 Establish defect density vs. strain in EBL																					
3.2.2 Establish strain vs. performance relation																					
3.3 Development of growth condition for optimized epi																					
3.3.1 Demonstrate targeted EQE gains for red and amber																					
4 Finalization of epi structure and recipe						1															
4.1 Process manufacturability validation																					
4.1.1 Process freeze and epi qualification																					