

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

#### Eliminating Plasmon Losses in High Efficiency White Organic Light Emitting Devices for Light Applications



University of Michigan Stephen R. Forrest, Professor / Principal Investigator Tel: (734) 647-1147; stevefor@umich.edu

## **Project Summary**

#### Timeline:

Start date: 9/1/2016 Planned end date: 8/31/2018 Key Milestones

- 1. Down-select to two from three methods proposed: (eliminated grating-based methods: 8/31/2017
- 2. Demonstrate SEMLA structure with 70% outcoupling: 12/2017
- 3. Demonstrate very low cost outcoupling with >60% efficiency: 1/2018.

#### Budget:

Total Project \$ to Date:

- DOE: \$632,110
- Cost Share: \$44,468

#### Total Project \$:

- DOE: \$900,001
- Cost Share: \$195,722

#### Key Partners:

Universal Display Corp.

#### Project Outcomes:

- Demonstrate at least 70% outcoupling efficiency with scalable technologies that have the following attributes:
  - Potentially low cost
  - Viewing angle and wavelength independent
  - Not invasive of the OLED structure
- Protect and disseminate result to the lighting community

#### Team

- P.I.; Stephen Forrest
  - (Prof., EECS, Physics, MS&E)
- o Project leader
- 35 years experience in organic electronics and photonics

#### Yue Qu

(PhD student, Physics)

- Sub anode grids/lenses
- Modeling





Jongchan Kim

(PhD student, EECS)

- o Diffusers
- o Modeling



#### Xiahen Huang

(PhD student, EECS)

- o Diffusers, thin substrates
- o Modeling



## Challenge

Problem Definition:

The internal quantum efficiency of phosphorescent OLEDs (PHOLEDs) is 100%, making this an ideal source of high efficiency lighting. However, only 20% of the light leaves the substrate due to losses in:

Substrate modes

Waveguide modes

Surface plasmon polaritons

Metal losses

#### Approaches:

Acceptable solutions must have the following properties

Low cost

Viewing angle and wavelength independent

Non-invasive of the OLED structure

We seek solutions that outcouple > 70% of the emitted light

Gain a fundamental understanding of the limitations facing outcoupling

Demonstrate scalability of the methods investigated.

## Approach

- Internal quantum efficiencies ( $\eta_{IQE}$ ) have reached ~100%
- But extraction efficiency ( $\eta_{Ext}$ ) is a major limit on the external efficiency ( $\eta_{EQE}$ )
- $\eta_{EQE} = \eta_{IQE} \times \eta_{Ext} \approx 20\%$  due to TIR and other losses
- Refractive index differences at interfaces lead to trapped light due to total internal reflection at the glass-air interface ("glass modes")
  - In the high-index ITO and organic layers ("waveguided")
  - Trapped at the metal cathode interface ("Surface plasmonic")



## Where do all the photons go?



#### **Surface plasmons: Significant loss mode**



Y.Qu, S.R. Forrest, et al., Nature Photonics, 2015

## **Optical modelling is the roadmap to solution**



- Simple design that does not interfere with OLED structure
- Only substrate processing
- Extracts all wavelengths approximately equally
- 80-90% extraction within reach!

#### Solution #1: Sub anode grid + mirror



U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY

#### Performance with and w/o grid + mirror



#### **Solution #2: Subelectrode microlens arrays**



High index microlens arrays and spacer layer below OLED:

- All waveguide modes move into spacer and are refracted into substrate
- Non invasive of OLED
- No fine features: low cost
- No SPPs

#### **Analysis of SEMLA and Results**



## Impact

- OLED lighting offers ultrahigh efficiency, architecturally pleasing light, but it remains too expensive at too low efficiency
- Harvesting 70% of the emitted light at low cost can make this an important addition to high efficiency lighting
- Our work if successful will help to develop and maintain a U.S. manufacturing opportunity with Universal Display Corp and Partners.
  - UDC in discussions with a U.S. based OLED lighting panel manufacturer
  - UDC's phosphorescent emitter materials are made by PPG Industries (Pittsburg, PA) and Adesis (DL)
- OLED lighting panels now made overseas are being imported back into the U.S. and incorporated into luminaires at several U.S. lighting companies.
- OLED lighting could potentially reduce the need for imported energy, reduce energy-related emissions including greenhouse gases, improve energy efficiency in buildings, and promote U.S. technical leadership for advanced energy technologies.





## Progress: 18 mo. of 24 mo. program

- Demonstrated multiple outcoupling schemes that meet the following criteria
  - Potentially low cost
  - Wavelength and viewing angle independent
  - Non-invasive of the OLED structure
- Focus has been on SPP elimination
- At least one method (maybe more) outcouple >70% of emitted light
- Techniques are scalable
  - Applying techniques to stable, very high efficiency all phosphorescent WOLEDs



- Max Luminance > 200,000 nits
- 50 lm/W max
- CCT = 2780K
- CRI=89

Coburn, et al. ACS Photonics (2018)

#### **Stakeholder Engagement**

- All results shared with Universal Display Corp.
  - Holds global rights to IP generated
  - Works closely with domestic and global manufacturers to bring PHOLED lighting to the market
  - Works closely with chemical companies and partners in US to provide materials and other technologies developed by our group to the market in the shortest time possible
- Support for associated R&D provided by UDC
- Attend DOE workshops and international meetings where results are shared with community
- Publish all relevant results in the refereed, open literature

#### **Remaining Project Work**

- Combine outcoupling methods with highest efficiency, high reliability white PHOLEDs
  - Use previously demonstrated 5-stack device with 80,000/14,000 hr (L<sub>0</sub> = 1000/3000 nit) lifetime
- **Demonstrate scalability on larger (10 cm<sup>2</sup>) substrates**
- Complete demonstration of new, ultra-low-cost high efficiency schemes not discussed here.
- Determine practical outcoupling limits from fundamental optics perspective

# **Thank You**

University of Michigan Stephen R. Forrest, Professor / Principal Investigator Tel: (734) 647-1147 email: stevefor@umich.edu

#### **REFERENCE SLIDES**

Project Budget: The original budget allocated \$450k per year with 20% cost share on behalf of UM
Variances: The variances to date have been within normal tolerances. Some of the cost shared equipment has been ordered but not invoiced yet.
Cost to Date: To date, approximately 70% of the budget has been expended Additional Funding: UDC is funding synergistic aspects of this project

| Budget History               |            |                   |            |                                  |            |  |  |
|------------------------------|------------|-------------------|------------|----------------------------------|------------|--|--|
| 9/1/2016 - FY 2017<br>(past) |            | FY 2018 (current) |            | FY 2019 – 8/31/2018<br>(planned) |            |  |  |
| DOE                          | Cost-share | DOE               | Cost-share | DOE                              | Cost-share |  |  |
| 321,897                      | 80,474     | 310,213           | 44,467     | 267,891                          | 70,781     |  |  |

### **Project Plan and Schedule**

| Milestone           | Description                                                                                                                                            | Verification Process                        | Date                |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|--|--|--|
| Budget Period 1     |                                                                                                                                                        |                                             |                     |  |  |  |
| Milestone<br>number | Description and Metrics                                                                                                                                | Test Methods                                | Month of completion |  |  |  |
| 1.1.1               | Develop theory of outcoupling of SPPs, compare results with existing OLEDs with accuracy to 10%                                                        | Measure outcoupling and compare with theory | 3                   |  |  |  |
| 1.2.1               | Demo fabrication of texture by OVPD and stamping with pillar dimensions $\sim 10 \text{ nm} \times 100 \text{ nm}$ with 40% filling                    | Microscopic analysis                        | 6                   |  |  |  |
| 1.3.1               | Demo decrease in SPPs by $>20\%$ , within 10% from prediction, $<10\%$ change in opt/elec OLED perf.                                                   | Measure outcoupling and compare with theory | 9                   |  |  |  |
| 2.1.1               | Meas. 80% grating diffraction eff. across the visible                                                                                                  | Optical characterization                    | 8                   |  |  |  |
| 2.2.1               | SPP & waveguide mode decr. by 50% in outcoupling eff.<br>With diffuser, show DCIE<3% from conven. OLED                                                 | Optical characterization                    | 10                  |  |  |  |
| 3.1.1               | Sub-anode grid surface features <5 nm from planar.                                                                                                     | Microscopic analysis                        | 8                   |  |  |  |
| 3.2.1               | Show no delamination of grid from metal mirror with reflectivity of 95%.                                                                               | Optical and microscopic characterization    | 10                  |  |  |  |
| 3.3.1               | SPP & waveguide mode decr. by 50% in outcoupling eff. & <10% opt/elec perf. change from conven. OLED. Demo top emitting OLED at 5000 nits for >100 hrs | Optical and electrical characterization     | 12                  |  |  |  |
| 3.3.2 G/NG          | Show at least one Approach with decrease in SPP coupling by 50%.                                                                                       | Optical characterization                    | 12                  |  |  |  |
| Budget Period 2     |                                                                                                                                                        |                                             |                     |  |  |  |
| 4.1.1               | Select at 1 - 2 approaches for optimization                                                                                                            | Analysis, data review                       | 13                  |  |  |  |
| 4.2.1               | Fabricate WOLEDs with EQE>30%, CRI=90                                                                                                                  | Optical characterization                    | 15                  |  |  |  |
| 4.3.1               | Optimize outcoupling for PHOLED yields >90% over 50 cm <sup>2</sup> areas, <10% performance variation                                                  | Optical and electrical characterization     | 18                  |  |  |  |
| 4.4.1               | Demo WOLEDs with outcoupling >70%, EQE=110%,<br>CRI=90 with <10% spectral shifts with angle and conv.<br>WOLED. Compare to <10% with analysis.         | Optical and electrical characterization     | 21                  |  |  |  |
| 4.5.1               | Demo WOLEDs on 25cm <sup>2</sup> packaged outcoupling substrates with outcoupling eff. >70%. Validate at UDC                                           | Optical and electrical characterization     | 24                  |  |  |  |

#### **Publications**

- Elimination of plasmon losses and enhanced light extraction of top emitting organic light emitting devices using a reflective sub-electrode grid," Yue Qu, Caleb Coburn, Dejiu Fan and Stephen R. Forrest, ACS *Photonics*, 4, (2), pp. 363-8, 2017. DOI: 10.1021/acsphotonics.6b00847
- "Elimination of plasmon losses and enhanced light extraction of electrophosphorescent, top emitting organic light emitting devices using a metallic sub-electrode grid," Yue Qu, Caleb Coburn, Dejiu Fan and Stephen R. Forrest, *MRS Spring Mtg,* Poster ED8.7.15 (Apr. 17, 2017)
- "Efficient, Non-Intrusive Outcoupling in Organic Light Emitting Devices Using Embedded Microlens Arrays," Yue Qu, Jongchan Kim, Caleb Coburn and Stephen R. Forrest, ACS Photonics, in press (2018).

#### **New Disclosures and Patent Filings**

- "Top emitting organic light emitting devices using a reflective sub-electrode grid," Stephen R. Forrest and Yue Qu
  - Disclosed 1/27/17 (UM7369)
  - US PTO Application 15/724,055 filed 10/3/17
- "Method of spacing emission layer and metal cathode," Stephen R. Forrest and Yue Qu
  - Disclosed 10/16/17 (UM7746)
- "Ultra-thin flexible substrate for organic light emitting devices with enhanced light extraction efficiency,"
  - Disclosed 1/9/18 (UM 2018-0248)
- "Top emitting organic light emitting devices using a low refractive index dielectric and high refractive index microlens array," Stephen R. Forrest and Yue Qu
  - Disclosed 1/30/17 (UM7371)
- "Organic light emitting devices with no plasmonic losses," Stephen R. Forrest and Jongchan Kim
  - Disclosed 2/10/17 (UM7396)
- "Sub-electrode microlens arrays enhance light extraction efficiency for organic light emitting devices," Stephen R. Forrest and Yue Qu
  - Disclosed 5/10/17 (UM7536)