

Identification and Mitigation of Droop Mechanism in GaN-Based Light Emitting Diodes (LEDs)

UC Santa Barbara
Professor James S. Speck
Speck@ucsb.edu

Project Summary

Timeline:

Start date: July 31, 2015

Planned end date: July 31, 2018

Key Milestones

- Milestone 3.1: Determination of dominant droop mechanism in blue c-plane LEDs; date
- 2. Milestone 3.3: Determination of thermal droop mechanism in blue c-plane LEDs; date

Budget:

Total Project \$ to Date:

• DOE: \$935245.34

Cost Share: \$250,000

Total Project \$:

• DOE: \$1,000,000

Cost Share: \$250,000

Key Partners:

Cree, Inc.	

Project Outcome:

Development of a tool to directly identify the dominant non-radiative recombination mechanisms responsible for current droop, thermal droop, and the green gap.

Team

Prof. James Speck UCSB

Prof. Claude Weisbuch UCSB/Ecole Polytechnique

Cree, Inc. U.S. Industry Partner

Daniel Myers UCSB – Electroemission

Wan-Ying Ho UCSB – Electroemission

Andrew Espeniaub UCSB – Photocurrent

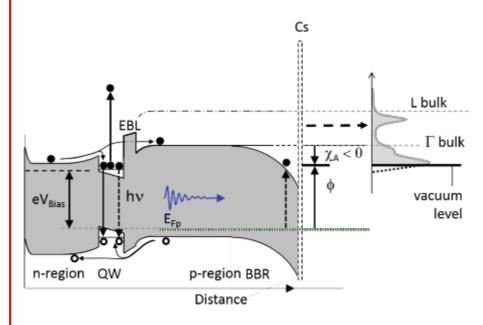
Challenge

Problem Definition:

To address the fundamental challenge of identifying the origins of current droop, thermal droop, and the green gap in state-of-the-art LEDs. Understanding the origins of LED *inefficiency* will lead to more efficient LEDs.

Target Market and Audience:

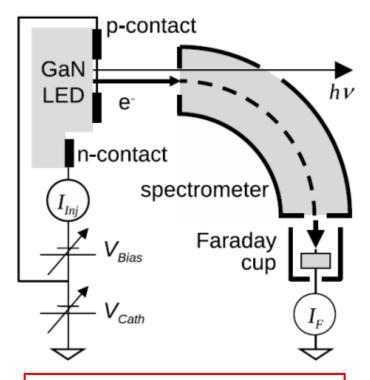
Audience: U.S.-based LED manufacturers and U.S. R&D community.


Target market: U.S. lighting market.

Approach

Measurements of droop mechanisms

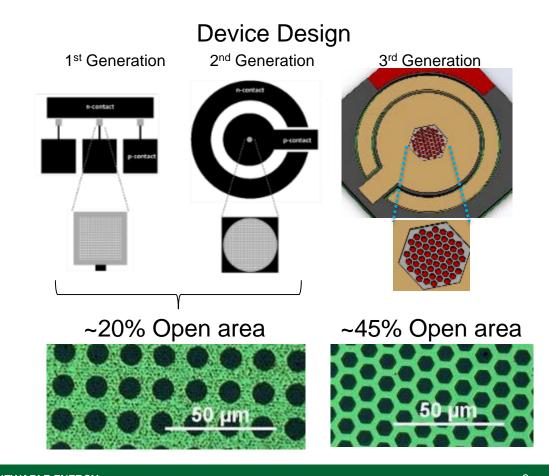
- DC electrical or optical excitation (the 'ABC' model for EQE/IQE).
- Many uncertainties some intrinsic and essential. Modeling fails to include disorder and the change of ABC parameters with injection.
- Measurements do not observe carrier dynamics inside LEDs (except time resolved emission measurements which yield dynamics, but no direct information on carriers energies).
- Carrier transfer in EL (Vampola, UCSB) could not differentiate between carrier leakage or Auger. Recent hot carrier transfer between quantum wells by Osram in PL.


The electroemission technique

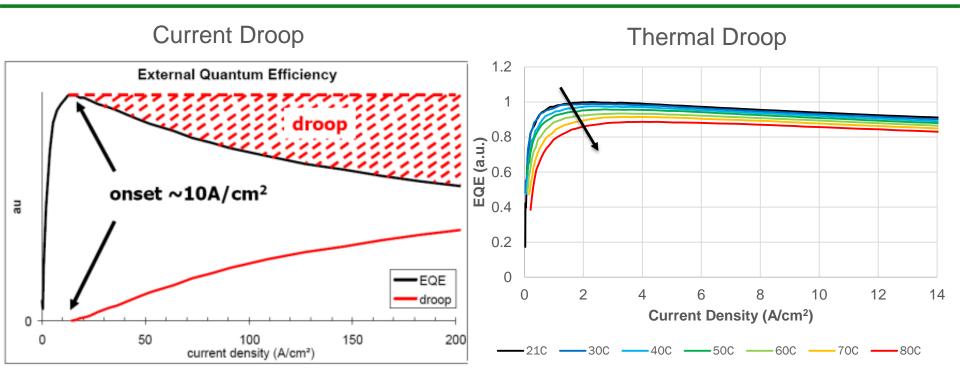
Measure electron energies and currents *inside* the LED under operation by measuring electron current and energies **outside** the LED

Approach

Low Energy Spherical Sector Analyzer


Vary V_{Cath} to sweep energy

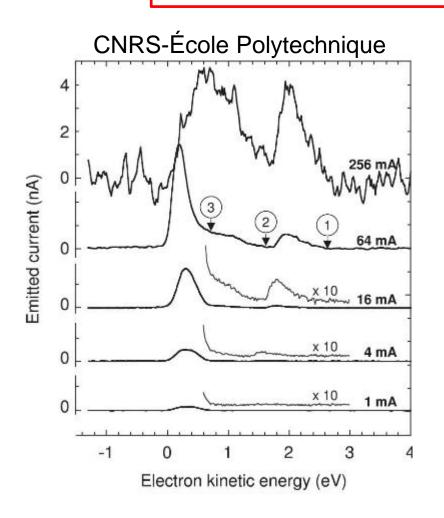
Note:

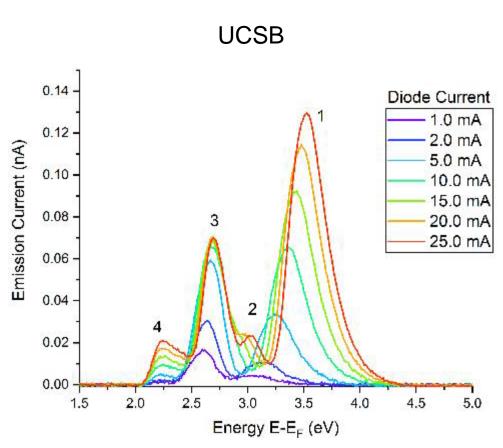

 V_{Bias} relative to V_{cath}

 V_{Bias} biased relative to ground

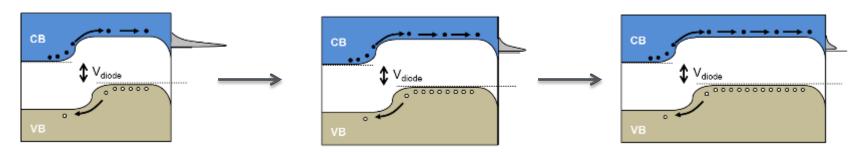
- Constant energy -> analyzer potentials fixed
- •50 meV resolution
- •~3 x 10⁻¹¹ Torr ensures Φ_{GaN/Cs} stable over several days

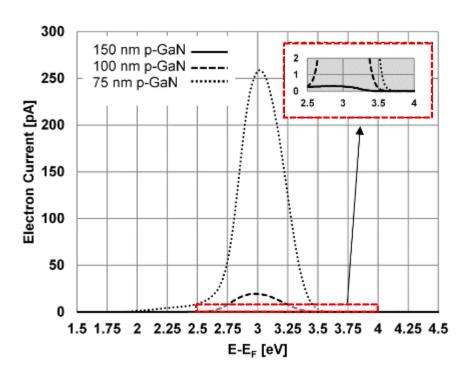
Impact

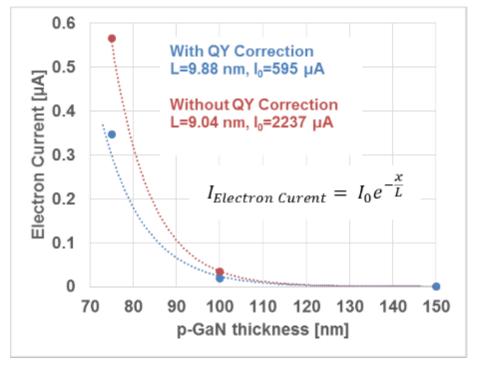



Advancement of LED technology by providing industry with physical mechanisms responsible for efficiency loss

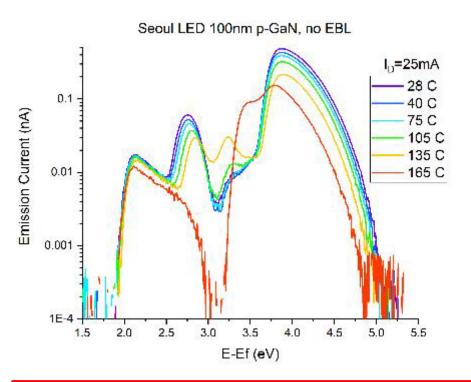
- Understanding electron transport phenomena to optimize semiconductor design.
- Provide pathways for engineering solutions to efficiency problems in LEDs past current state-of-the-art.


Subtask 3.1: EES on Commercial Grade Blue: Dominant Droop Mechanisms

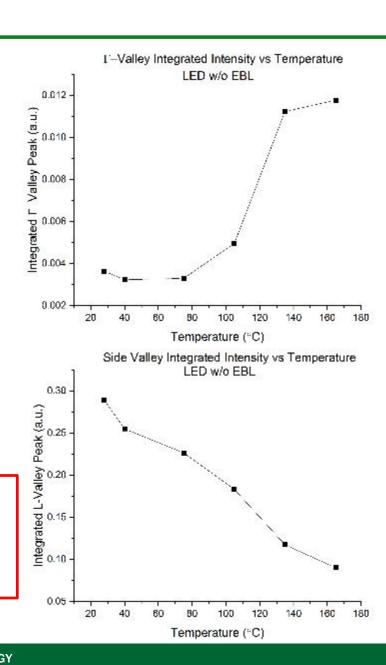

UCSB confirms measurements of hot carriers emitted from LEDs.



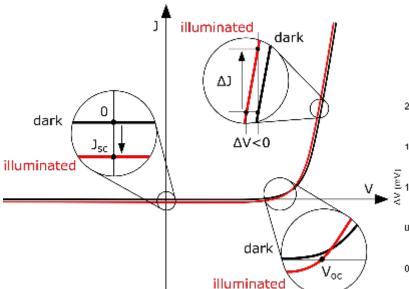
Milestone 2.1: Quantification of electron diffusion length in p-GaN


Milestone 2.2: Quantification of the efficacy of the AlGaN EBL via EE spectroscopy

Electron blocking layer is capable of producing hot carriers.

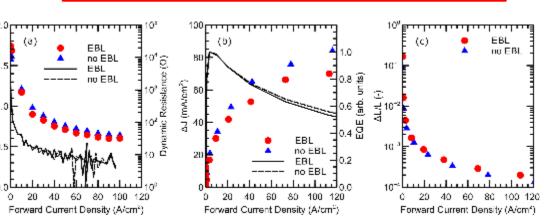

- Only Γ -valley emission is seen from pn-junctions
- Hot carriers present in pn-junctions with EBLs may be generated by trap-assisted Auger recombination.

Milestone 3.3 & 5.4: EES to determine thermal droop mechanisms



Temperature dependent EES

• Increases in Γ -valley electrons at temperatures above 75 °C suggests increases in QW overshoot and/or leakage.



Photocurrent in Forward-Biased LEDs

Increase in forward current (and EL intensity) in forward biased LEDs -> can only be explained by Auger-generated hot carrier current

APPLIED PHYSICS LETTERS 112, 141106 (2018)

Auger-generated hot carrier current in photo-excited forward biased single quantum well blue light emitting diodes

Andrew C. Espenlaub, ¹ Abdullah I. Alhassan, ¹ Shuji Nakamura, ¹ Claude Weisbuch, ^{1,2} and James S. Speck ¹

¹Materials Department, University of California, Santa Barbara, California 93106-5050, USA

²Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France

(Received 4 January 2018; accepted 22 March 2018; published online 3 April 2018)

Figures from Espeniaub, et al., Appl. Phys. Lett., 112, 141106 (2018) – recently published (Editor's Pick)

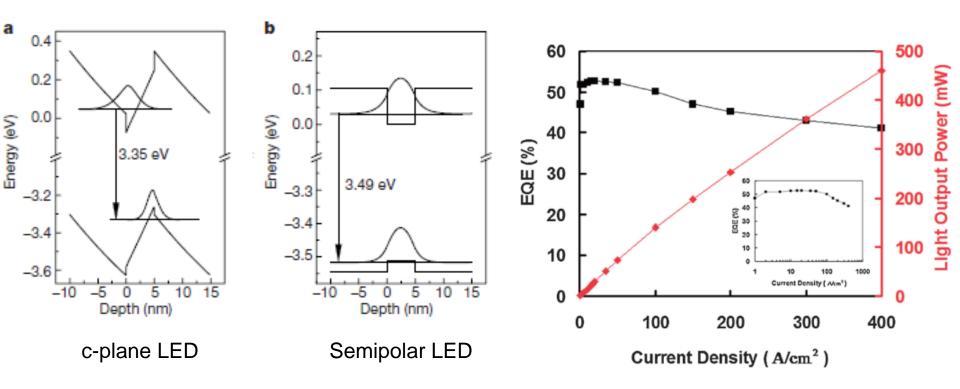
Stakeholder Engagement

Stakeholders:

U.S. Department of Energy Cree, Inc. (U.S. industrial partner) U.S. Academic R&D community

Engagement with Industry:

Industry partnerships have supplied sample material for the study of state-of-the-art devices. This provides us a pathway to understanding efficiency problems which persist in commercially available solid-state lighting.


Communication with Stakeholders:

DoE SSL workshops

Scientific publications (recent article published in *Appl. Phys. Lett.*)

Remaining Project Work

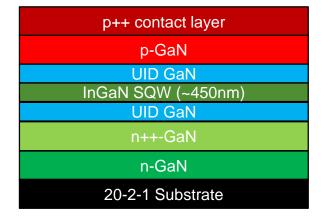
Milestone 5.2: Identification of residual current droop mechanism in semipolar ($20\overline{21}$) blue LEDs

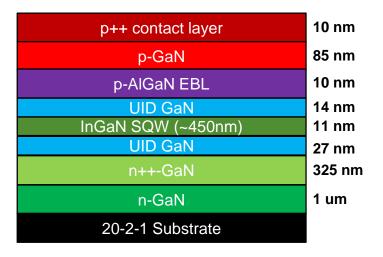
EES measurements will provide explanation of low-droop characteristics of semipolar ($20\overline{21}$) LEDs

- Improvements to wavefunction overlap by reduction of electric fields in active region.
- Reduction of QCSE → Reduced Auger recombination related efficiency losses.

Remaining Project Work

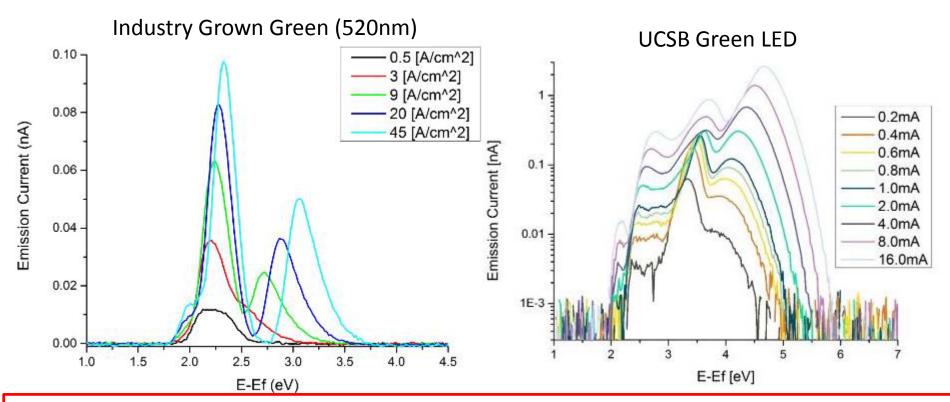
Milestone 5.2: Identification of residual current droop mechanism in semipolar $(20\overline{21})$ blue LEDs


Growth details of reference pn-junctions and LEDs for EES experiments


pn-junctions

p++ contact layer ([Mg]=1.6e20)					
p-GaN (<= 100nm) ([Mg]=1.0e19)					
UID GaN					
n++-GaN ([Si]=5.1e19)					
n-GaN ([Si]=4.2e18)					
20-2-1 Substrate					

p++ contact layer
p-GaN
p-AlGaN EBL
UID GaN
n++-GaN
n-GaN
20-2-1 Substrate


LEDs

Remaining Project Work

Milestone 3.2: Determination of dominant droop mechanism in green LEDs

Ongoing work towards understating droop mechanisms in green LEDs

- Large Γ -valley emission at low current density operation
- Auger generated electrons have lower energy in green → possibly different intervalley transfer efficiency.

Thank You

UC Santa Barbara
Professor James S. Speck
Speck@ucsb.edu

REFERENCE SLIDES

Project Budget

Project Budget: FY 2018: No cost extension

Variances: One year no cost extension to complete tasks.

Cost to Date: \$935,245.34 to DOE ... estimated balance = \$0 on 6/30/2018

Additional Funding: None

Budget History									
FY 2016 FY 201 (past)			2018 rent)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
550,000	137,495	450,001	112,505	NCE	NCE				

Project Plan and Schedule

Project Schedule												
Project Start: July 31, 2015		Completed Work										
Projected End: July 31, 2018		Active Task (in progress work) Milestone/Deliverable (Planned)										
	•	Milestone/Deliverable (Actual)										
		FY2016			FY2017			FY2018				
Task	α1	Q2	03	Q4	Q1	Q 2	03	04	Q1	Q2	03	04
Past Work												
Q1 Milestone 1.1: Annealable ohmic contacts to p-GaN												
Q2 Milestone 1.2: Reduction in metal photoemission												
Q3 Milestone 1.3: 1% quantum yield												
Q4 Milestone 1.4: Quantum yields of Γ and L												
Q4 Milestone 2.1: Electron diffusion length in p-GaN												
Q4 Milestone 2.2: Efficacy of the AlGaN EBL												
Q4 Milestone 3.1: Dominant droop mechanism in blue LEDs												
Q1 Milestone 1.5: 10% quantum yield												
Q2 Milestone 1.6: Inter-valley transfer efficiencies												
Q4 Milestone 3.3: Thermal droop c-plane in blue LEDs												
Current/Future Work												
Q3 Milestone 1.7: 25% quantum yield												
Q2 Milestone 3.2: Dominant droop mechanism in green LEDs												
Q3 Milestone 5.2: Droop mechanisms in semipolar blue LEDs												
Q4 Milestone 5.4: Thermal droop in semipolar blue LEDs												