

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Virtual Batteries

Pacific Northwest National Laboratory

Di Wu, Ph.D., Staff Engineer

di.wu@pnnl.gov

Project Summary

Timeline:

Start date: April 2016

Planned end date: April 2019

Key Milestones

- Flexibility characterization method for residential and commercial buildings (March 2017)
- Virtual Battery Assessment Tool and regional VB potential from building loads in the U.S. (February 2018)
- 3. Field testing and validation; documentation of results (April 2019)

Budget:

Total Project \$ to Date:

- DOE: \$2.48M
- Cost Share: \$0

Total Project \$:

- DOE: \$3M
- Cost Share: \$0

Key Partners:

Oak Ridge National Laboratory (ORNL)

National Rural Electric Cooperative Association (NRECA)

University of Florida (UF)

Southern California Edison (SCE)

Project Outcome:

Enable utilities and building owners to use flexible building loads as virtual batteries (VBs) to provide grid and end-user services, integrate more renewable generation such as wind and photovoltaics into power systems, and improve building operational efficiency

Team

- PNNL
 - Develop VB characterization, optimal schedule and device control method
 - Develop VB Assessment Tool (VBAT)
 - Perform cost-benefit analysis, validation, and testing
- ORNL
 - Provide experimental data from test sites and regional building load parameters for VBAT
 - Assist testing and validation
- NRECA
 - Integrate VB model and application assessment into Open Modeling Framework (OMF)
 - Outreach to its member utilities promoting VB technology and its applications
- University of Florida
 - Integrate medium-scale commercial buildings into VBAT and assist validation
- SCE
 - Testing and deployment

An EDISON INTERNATIONAL® Company

Challenge

- There is a growing need for **flexible assets from grid** due to increasing renewable generation
- Today's grid-scale energy storage systems require high investment cost
- Commercial and residential buildings can provide distributed "virtual" battery capacity complementing dedicated energy storage systems; need to be
 - Identified
 - Quantified
 - Controlled
- **Cost-benefit analysis** is required to determine potential return on investment and support decision-making

National Opportunity Assessment—VB Max. Tech

	Virtual Battery Assets	Power Potential (GW)*	Energy Potential (GWh)*	Current Investigation
1	Residential Air Conditioners and Heat Pumps	26.3	6.6	\checkmark
2	Commercial HVAC with Roof Top Units	17.6	25.9	\checkmark
3	Commercial HVAC with Air Handling Units	12.9	38.7	\checkmark
4	Residential Water Heaters	10.6	10.6	\checkmark
5	Refrigerators	4.3	2.2	
6	Residential Pool Pumps	4.7	4.7	
7	Commercial Water Heaters	1.0	1.0	
8	Electric Vehicles	0.8	1.6	
9	Super Markets and Grocery Stores	1.4	7.0	
10	Refrigerated Warehouses	0.3	0.6	
11	Data Centers	0.5	2.0	
12	Municipal Water Pumping	0.7	1.4	
	Total	81.1	129.2	

- Virtual battery resources could provide a maximum capacity of 81GW
- 20% of max capacity enough to meet additional 18GW intra-hour balancing ۲ requirements in 2020 scenario

*peak load reduction study

Approach: VB Illustration—Water Heater

Approach: VB Battery Model

Representation for an aggregation of resources

VB dynamics:

P & E ranges:

$$\frac{ae(t)}{dt} = -ae(t) + p(t)$$
$$P^{\min}(t) \le p(t) \le P^{\max}(t)$$
$$E^{\min}(t) \le e(t) \le E^{\max}(t)$$

Variable and parameters:

- p(t) is the charging/discharging power
- e(t) is the energy state
- $P^{\min}(t)$ and $P^{\max}(t)$ are the lower and upper power limits, respectively
- $E^{\min}(t)$ and $E^{\max}(t)$ are the its lower and upper energy limits, respectively
- *a* is the self-discharge rate

Developed a flexibility characterization method to estimate VB parameters given

- Resource type (residential air conditioners, water heaters, commercial HVAC, etc.)
- Number of resources

1(1)

- Parameter values for the population (thermal resistance and capacitance, COP, etc.)
- External drivers such as ambient temperature, water draw, usage patterns, etc.

Approach: VB Characterization Method

A group of residential ACs as an example:

AC thermal dynamics model:

$$C^{i}\frac{d\theta^{i}(t)}{dt} = \frac{\theta_{o} - \theta^{i}(t)}{R^{i}} - \underbrace{s^{i}(t)P^{i}\mathrm{COP}^{i}}_{u^{i}(t)} + w^{i}(t),$$

- θ^i indoor air temperature
- θ_o is the outside temperature
- C^i thermal capacitance
- R^i thermal resistance
- s^i ON/OFF state
- P^i rated power
- COP^{*i*} coefficient of performance
- θ_r^i temperature setpoint
- Δ^i deadband
- w^i external disturbance

VB model:

Define

$$\begin{aligned} e^{i}(t) = & C^{i}(\theta^{i}_{r} - \theta^{i}(t)) / \text{COP}^{i} \\ p^{i}(t) = & u^{i}(t) - p^{\text{base},i}(t) \end{aligned}$$

where $p^{\text{base},i}(t) = \frac{\theta_o(t) - \theta_r^i}{\text{COP}^i R^i}$ and ignoring $w^i(t)$, yield

VB dynamics:
$$\frac{de^{i}(t)}{dt} = -ae^{i}(t) + p^{i}(t)$$

where
$$a = \frac{1}{C^i R^i}$$
,

P & E ranges:

$$\underbrace{-p^{\text{base},i}(t)}_{P^{\min}(t)} \leq p(t) \leq \underbrace{P^{i} - p^{\text{base},i}(t)}_{P^{\max}(t)}$$
$$\underbrace{-\frac{C^{i}\Delta^{i}}{COP^{i}}}_{E^{\min}(t)} \leq e(t) \leq \underbrace{\frac{C^{i}\Delta^{i}}{COP^{i}}}_{E^{\max}(t)}$$

Approach: VB from Residential ACs at County Level

- Virtual battery potential varies based on outside temperature
- # of ACs available to participate in grid services varies based on outside air temperature
- Greater # of houses does not necessarily mean greater potential for grid services

Target Market and Impact of Project

Target Market: Grid operators and behind-the-meter asset owners/operators

Impact: Lower cost delivery of grid and end-user services by using behind-the meter virtual battery assets enabled by

- VBAT for planning study, providing building owners and utilities a means of quantifying technical potential and economic benefits of VB resources for end-user and/or grid services
- An operational tool to optimally schedule and control VB assets to provide different services
- Testing and validation in realistic environments to provide a quantifiable basis to compare VB resources and electrochemical storage for grid services

Progress: Project Status

FY16-17 (completed)

- Performed a national opportunity assessment to quantify the potential (GW/GWh) from building loads, Dec. 2016
- Developed virtual battery characterization methods, including both analytical and optimization based methods, Mar. 2017
- Completed a preliminary benefit assessment study for California, including revenue assessment and physical storage requirements, Aug. 2017

FY17-18 (in progress)

- Virtual Battery Assessment Tool, Feb. 2018
 - A database of VB potential from four residential TCLs at different geographical levels county, state, region, and the U.S., completed.
 - A database of VB potential from medium-scale commercial buildings and commercial refrigeration, in progress.
- NRECA integration of VB model and assessment in OMF, Apr. 2018
 - VB potential assessment
 - VB economic benefit evaluation for behind-the-meter applications
- Development of locational net benefit analysis and case study using distribution systems within SCE

Progress: Virtual Battery Assessment Tool

- An interactive web application (<u>http://35.162.145.49/index/</u>)
- Assessment of VB potential from residential thermostatically controlled building loads at different geographical levels—county, state, census region, and U.S.
- Integration of medium-scale commercial buildings and commercial refrigeration models
- Customized assessment with user-defined inputs

Progress: NRECA VB Assessment Study

Model Input				
Model Type Help?	Model Name	Use	ər	
- Created	_vbatDispatch Run Time	mar20_benefits		di.wu@pnnl.gov
2018-03-20 21:	34:10.377846	0:00:05		
Simulation Specs				
Load Type	Number of devices	Ra	ed Power(kW	<u>)</u>
Air Conditioner	•	2000	_	5.6
I hermal Capacitance(kWh/°C)	I hermal Resistance(<u>C(kvv)</u> <u>CC</u> 2	P	2 5
Temperature Setpoint(°C)	Temperature Deadba	nd(°C) Un	t VBAT	Energy Available & [
	22.5	0.625		— VBAT power (kW) — VBAT
Upkeep Cost (\$/unit/year)	Demand Charge Cos	t <u>(\$/kW)</u> En 25	el 8k	
Financial Projection Length(yea	ars) Discount Rate(%)	De	7k 11	
	15	2	6k	
Temperature Curve (.csv file)			5k	
Browse weatherNoaaTe	emp.csv		4k	
				Marked Assessed
			⊃ 2⊬	IT BY BY ANY ANY ANY
			28	
			1k	
			0k	
			-1k	
			-2k	lan 1 Feb 1 Mar 1

NRECA OMF links for VBAT Applications:

- <u>https://www.omf.coop/newModel/_vbatEvaluation/FirstnameLastname</u>
- <u>https://www.omf.coop/newModel/_vbatDispatch/FirstnameLastname</u>

Progress: NRECA VB Assessment Study (cont.)

VB power limits: Energy dynamics in VB: VB energy limits: Power demand:

Monthly Cost Comparison

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Peak Demand (kW)	3,817	3,774	3,457	3,501	3,597	5,812	6,746	5,204	4,905	2,337	3,545	3,365
Adjusted Peak Demand (kW)	3,817	3,774	3,457	3,501	3,252	5,665	6,484	4,950	4,441	2,337	3,545	3,365
Energy (kWh)	2,192,216	1,819,984	1,841,376	1,606,514	1,546,322	1,993,841	2,951,885	2,435,934	1,533,820	1,304,142	1,590,647	1,846,676
Adjusted Energy (kWh)	2,192,216	1,819,984	1,841,376	1,606,514	1,545,129	1,993,613	2,950,375	2,432,501	1,533,505	1,304,142	1,590,647	1,846,676
Energy Cost (\$)	131,533	109,199	110,483	96,391	92,779	119,630	177,113	146,156	92,029	78,249	95,439	110,801
Energy Cost using VBAT (\$)	131,533	109,199	110,483	96,391	92,708	119,617	177,022	145,950	92,010	78,249	95,439	110,801
Demand Charge (\$)	95,436	94,356	86,436	87,516	89,928	145,296	168,660	130,104	122,616	58,428	88,632	84,132
Demand Charge using VBAT (\$)	95,436	94,356	86,436	87,516	81,301	141,616	162,096	123,744	111,036	58,428	88,632	84,132
Total Cost (\$)	226,969	203,555	196,919	183,907	182,707	264,926	345,773	276,260	214,645	136,677	184,071	194,933
Total Cost using VBAT (\$)	226,969	203,555	196,919	183,907	174,008	261,233	339,118	269,694	203,046	136,677	184,071	194,933
Savings (\$)	0	0	0	0	8,699	3,694	6,655	6.566	11,599	0	0	0

Progress: SCE Feeder Benefit Analysis

- Circuit name: PIRCE (under CORONA substation)
- Primary voltage: 12.47 kV
- Circuit length: 8.6 miles
- Preliminary load: 23.5 MVA
- Residential house: 340 (152 with electric air conditioning)

VB Potential Power limits 1000 500 Š upper bound -500 lower bound -1000Jan/13 Mar Apr May Sep Oct Nov Dec Jan/14 Feb Jun Aug **Energy limits**

Annual Benefits

Stakeholder Engagement

- PNNL and NRECA have worked with utility members within NRECA to study VB potential and benefits in their systems
 - VB assessment tool integrated into OMF to enable their utility members to perform techno-economic assessment of building loads as VB
 - Project presented at NRECA TechAdvantage Conference, which attracts utilities, co-op vendors, and industry leaders
 - Collaboration with co-ops to demonstrate and validate VB method
 - Allegheny Electric Cooperative
 - Flathead Electric Cooperative
 - Oklahoma Electric Cooperative
 - Central Alabama Electric Cooperative
 - Washington Electric Coop (Vermont)
- PNNL has worked with one of our utility partners, Southern California Edison, to perform analysis on VB flexibility and economic benefits for selected feeders in their system
- The project team will work with stakeholders for field work and testing of optimal scheduling and device control of VB technology.

Remaining Project Work: Planned Activities

- Work with ORNL to perform assessment of regional VB potential from medium-scale commercial buildings and commercial refrigeration
- Continue outreach efforts to NRECA utility members and co-ops
 - Design and test control algorithms for residential assets with NRECA
- Continue the net benefit analysis with SCE
- Work with ORNL to develop and test control algorithms for selected commercial building loads and refrigeration systems

Thank You

Pacific Northwest Nation Laboratory Di Wu, Staff Engineer di.wu@pnnl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$3M Variances: None. Cost to Date: As of 3/2018, expenditures total \$1.7M. Additional Funding: None.

Budget History											
4/2016- (pa	- FY 2017 ast)	FY 2018	(current)	FY 2019 – 3/2019 (planned)							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share						
\$1.2M	\$0	\$1.3M	\$0	\$.5M	\$0						

Project Plan and Schedule

Project began in 4/2016, with field testing and validation scheduled for completion in 4/2019.

• Go/No-Go: VBAT and regional VB potential from building loads in the U.S. (2/2018)

Project Schedule	_															
	_			Com	pleted	l Work										
Project Start: 4/2016				Activ	e Task	(in pro	ogress	work)								
Projected End: 3/2019	•			Milestone/Deliverable (Originally Planned) use for missed												
				Milestone/Deliverable (Actual) use when met on time												
	FY	2016		FY	2017		FY2018			FY2019						
Task	Q3	3 Q4 Q1		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3			
Past Work					-	_				-						
Q4 Identify flexible building load candidates to be represented as virtual storage resources																
Q1 Dev flex characterization method for various classes of bldg loads				•												
Q1 Perform techno-economic assessment of virtual and dedicated storage systems			•													
Q2 Initial benefits evaluation of flexibility from building loads																
Q2 Characterization method dev shows sufficient potential in quantifying the flex of bldg loads to justify																
perform econ assess					_	_										
Q2 Flexibility characterization for residential buildings and commercial buildings																
Q2 VOLTTRON app dev and testing process specified and documented																
Q3 Report documenting a method for characterizing the virtual battery																
Q3 Report on metrics, how to apply them, and results of using them to assess the potential impacts and benefits of using virtual storage					•											
Q3 Field testing/validation plan for deployment of VOLTTRON apps at selected test sites developed																
Q3 Coord effort w/ ORNL and other BTO programs and identify target climates for HPWH adoption;																
identify/solidify partnerships with high priority program implementers, utilities, other collaborators						T										
Q3 Work plan based on coord effort w/ORNL and other BTO programs that will identify specific milestones and deliverables						•										
Q4 Initial testing of VOLTTRON apps for flexibility eval and monitoring/visualization																
Q4 Investigate retailer, installer, and manufacturer potential involvement in a national initiative that incorporates DR into project design, implement, eval																
Current/Future Work										-						
VBAT that is capable to assess regional flexibility from medium scale commercial bldgs																
VBAT that is capable to assess regional flexibility from commercial refrigeration																
User guide for VBAT																
Report on validated VB flexibility assessment method																
Report on the results from the analysis at the test utility (NRECA)																
Report on locational net benefit analysis completed																
Decign of control algorithms for residential assets completed and tested in simulation																
Control algorithms for commercial HVAC systems deploy as VOLTTRON apps in PNNL/ORNL campuses																
Report and peer reviewed publication on the design and testing of control strategies for commercial																
HVAC systems																
Report and peer reviewed publication on the design and testing of control strategies for commercial refrigeration systems																
			·	-												