

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Transactive Whole Homes as Integrated Assets - Connected Homes

Oak Ridge National Laboratory (ORNL) Helia Zandi, Modeling & Simulation Software Engineer zandih@ornl.gov

Project Summary

Timeline:

Start date: 03/01/2016 Planned end date: 02/28/2019

Key Milestones

- 1. Develop software and hardware to field evaluate endto-end integration of open-source HEMS using VOLTTRON platform to control HVAC, EVSE, WH, and pool pump (12/31/2017).
- 2. Deliver draft report on software framework for VOLTTRON integration of IoT devices at the device-level, aggregator-level, and cloud-level for performing reliable transactive control at-scale (3/31/2018).
- 3. Deliver final report on the software framework for the VOLTTRON integration of IoT devices to perform reliable transactive control at-scale (9/30/2018).

Budget:

Total Project \$ to Date:

- DOE: \$1,470,000
- Cost Share: \$0

Total Project \$:

- DOE: \$1,470,000
- Cost Share: \$0

Key Partners:

Southern Company	Haier (GE)
SkyCentrics	PNNL
EPRI	A.O. Smith
Emerson	Nat'l Assn of Realtors

Project Outcome:

- An open source home energy management system (HEMS) which can enable load coordination and aggregation to improve energy efficiency, reduce energy costs, reduce peak demand, and improve comfort.
- A general framework for power grid IoT-VOLTTRON[™] solutions.

Team

Helia Zandi

Jeffrey Munk

Anthony Gehl

Tristan de Frondeville Eugene Zhuk

Chuck Thomas

Michael Starke

Mohammed Olama

Teja Kuruganti

Challenge

Problem Definition:

- Over **20 billion** connected devices predicted to be in use by 2020.
- Over **41%** of the energy consumption in the United States is from buildings.
- Advanced sensing and controls have the potential to save energy in buildings up to **40%**.
- There is an immense need for a building energy management system which can **monitor**, **control**, **and coordinate the power use** by these devices to enable load flexibility.
- This management system should also provide **seamless** communication between devices and **enable interoperability**.

Target Market and Audience: Target market is residential buildings, which account for 22% (14.5 Quads primary) of the nation's total energy consumption. Target audience are homeowners and utilities.

Approach: Project Overview

- Develop Open-Source Home Energy Management System (HEMS) using VOLTTRON[™] as a platform.
 - Integrate existing HEMS into VOLTTRON[™].
 - Enable supervisory control of different loads.
 - Enables the full potential of connected equipment in residential buildings by increasing the flexibility of loads to achieve improved energy efficiency, reduced energy costs, reduced peak demand, and improved comfort.
 - Enable home-level and neighborhood-level aggregation and coordination.
 - Generate an agent blueprint to bring in variety of devices.
 - Cloud based communication: RESTful API
 - Local communication: CTA- 2045
- Deliver software and hardware for end-to-end demonstration.
 - Yarnell Station research home
 - Southern Company Connected Neighborhood
- Develop a repeatable implementation of the software framework for VOLTTRON- IoT solutions at device-level, aggregator-level, and cloud-level.

Approach

- Assessing the complex issues associated with connected infrastructure.
- Evaluating the main drivers for more widespread deployment of connected residential buildings, appliances, and devices.
- VOLTTRON[™]-HEMS integration
- Leveraging existing capabilities and focusing on missing functionalities.
- Enable interoperability and load flexibility.
- Developing control algorithms to improve efficiency, improve comfort, and reduce peak demand.
- Introduce general and platform-agnostic approaches for repeatable implementation.

Impact

The methodologies introduced in this project:

- Increase market penetration of HEMS that enable DOE to achieve its goals of reducing energy.
- Accelerate the adoption rate of products to enable intelligent control of devices inside a connected home.
- Develop retrofit control technology, aimed at residential buildings, improves the energy efficiency and reduces peak demand by 40%.
- Facilitates load dispatch of HVAC, appliances, and plug loads in residential buildings, contributing towards GMLC goal of 50% decrease in the net integration cost of distributed energy resources by 2025.

Approach: HEMS-VOLTTRON Integration

General method to transform any HEMS to a Multi-Agent system by HEMS-VOLTTRON integration.

Progress: Home Assistant-VOLTTRON Integration

- Home Assistant (https://homeassistant.io/) is an open- source home automation platform implemented in Python.
- Performed integration using homeassistant API and in a VOLTTRON driver framework.
- Extended home-assistant implementation to add support for more devices.
- Incorporate optimization into the system
- The code is available at :

https://github.com/VOLTTRON/volttronapplications/tree/master/ornl/HomeAss istant-VOLTTRON-Integration-Agents

Approach: ORNL Yarnell Station Research House

- Approximately 100 instrumentation points
 - Temperature
 - Humidity
 - Water consumption (relevant to water heating)
 - Electricity (Power)
 - Outdoor weather conditions
- Automation for simulated occupancy and hot water consumption.

located in Knoxville, TN

Siemens EV Charger

A.O. Smith Water Heater

Pentair Pool Pump

Carrier HVAC

Progress: Field Demonstration

- Demonstrate end-to-end integration of opensource HEMS using VOLTTRON platform to control HVAC, EVSE, WH, and pool pump.
- Optimization is focused on minimizing peak at the house level.

Objective f(x):

$$min\left(W_P\sum_{t=0}^{t}Peak + W_{DW}\sum_{t=0}^{t}D_{WH}(t) + W_{DH}\sum_{t=0}^{t}D_{HVAC}(t)\right)$$

Constraints:

$$\begin{split} D_{WH}(t) &\geq T_{WT}(t) - 140 \\ D_{WH}(t) &\geq 120 - T_{WT}(t) \\ D_{WH}(t) &\geq 0 \end{split}$$

$$D_{HVAC}(t) \ge T_{in}(t) - T_{max}(t)$$

$$D_{HVAC}(t) \ge T_{min}(t) - T_{in}(t)$$

$$D_{HVAC}(t) \ge 0$$

24.5

24.0

23.5

$$Peak > P_{WH}(t) + P_{HVAC}(t)$$

Progress: PV-WH Control

Rule-based WH Control

- Real PV data, 10 WH, permissible temp (80°F -140°F), time-step 10min
- If PV > Power consumed by WHs
 - · Heat (turn ON) WHs with lowest temp first
- If PV < Power consumed by WHs
 - Cool (turn OFF) WHs with highest temp, first

Model Predi

Real PV time-ste

ctive WH Control
(data, 50 WH, permissible temp (48°C – 58°C),
ep 10min

$$\int_{1}^{T} u_{j}(k) - P_{PV}(k) \int_{1}^{T} R\left(\sum_{j=1}^{J} u_{j}(k) - P_{PV}(k)\right)$$

$$ref \int_{1}^{T} \left(\sum_{j=1}^{J} u_{j}(k) - ref\right)^{T}$$

150

100

50

0

50

Time (10 min)

- Utotal

100

PV Generation

min $\sum_{k=1}^{K} \left\| \left(\sum_{j=1}^{J} \right)^{k} \right\|$ $+\left(\sum_{i=1}^{J} x_j(k) - x_j^{ref}\right) Q\left(\sum_{j=1}^{J} x_j(k) - x_j^{ref}\right)$ 250 200 Power (Kw)

subject to

$$u_j(k) \in \{0, 1\}$$
$$x_j^{min}(k) < x_j (k) < x_j^{max}(k)$$

Approach: Grid IoT Solutions

- IoT has revolutionized the way individuals and organizations are exchanging information.
- IoT facilitates communication to different sensors, actuators, and, devices and enables data exchange, collection, and analysis.
- To achieve optimal outcome for variety of stakeholders (buildings, utilities, equipment):
 - Peer to peer information exchange across nodes/devices
 - Distributed decision making
- Smart grid VOLTTRON-IoT solutions consists of 3 services:
 - Device-level services
 - Aggregator-level
 - Cloud-level
- The system architecture of each of these services has a critical role in stable development of a scalable transactive control system.

Device-level architecture:

- 0S
- Hardware Abstraction Layer (HAL) to enable access to hardware features such as serial ports.
- Communication Layer to facilitate communication to the device using Wi-Fi, MQTT, Bluetooth.
- Device API for managing the device remotely.

Progress: IoT Solutions Architecture

Aggregate-level architecture:

- General-purpose OS
- Communication layer to communicate with different devices running different communication protocols.
- Data management and messaging to support data analysis and exchanging data to local or remote components.
- Aggregator API so it can be managed remotely and to ease the process of integration.

Cloud-level architecture:

- Information Exchange layer to interact with a large number of devices and aggregators.
- Component management to register and identify devices and,
- Data management to support the volume and variety of IoT data.
- Data analysis to facilitate data analysis, creating reports, and dashboards.
- OS layer in which all VOLTTRON-based services are implemented.

Stakeholder Engagement

- Biweekly meetings
- ORNL has demonstrates and presented the work to Whirlpool, GE, Southern Company, EPRI, PNNL.
- The work has been presented in conferences (3 published papers, 1 submitted, 1 invention disclosure).
- ORNL's work is being leveraged by our collaborators at PNNL for their project.
- ORNL submits Quarterly Progress Report (QPR) to DOE.

Remaining Project Work

- Develop software for IoT integration at the device-level, aggregate-level, and cloud-level using VOLTTRON platform.
- Design a platform technology the seamlessly facilitates the peer to peer information exchange that enables resolution to obtain information of one node or aggregate hundreds of nodes.
- Software engineering approaches to define building systems as software services (architectures, semantics, standards/protocols, data models, service oriented architectures and protocols).
- Build systems and boards, and evaluate local and networked functionality and benchmark performance with standard tools.
- Control execution tied closely with several new techniques (like agent-based control and cooperative control) that provide high degree of functionality at low computational cost.

Thank You

Oak Ridge National Laboratory (ORNL) Helia Zandi, Modeling & Simulation Software Engineer zandih@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: 989K (FY16), 381K (FY17), 100K (FY18)
Variances: Original project budget was \$3,000K but reduced scope and budget to \$1,470K
Cost to Date: \$790K
Additional Funding: none

Budget History								
FY2016 – FY 2017 (past)		FY 2 (cur	2018 rent)	FY 2019 – 2/28/2019 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$1370K	\$0	\$100K	\$0	0	\$0			

Project Plan and Schedule

Project Start: March 2016		Completed Work										
Projected End: March 2019		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2016			FY2017			FY2018				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q1 Milestone: Complete work plan which prioritizes VOLTTRON protocols and service agents needed to support Home Energy Management system												
Q2 Milestone: HEMS-VOLTTRON Integration in a VOLTTON driver framework.												
Q4 Milestone: Draft report on the connected homes projec												
Q1 Milestone: Develop software and hardware to field evaluation end-to-end integration of open-source HEMS using VOLTTRON platform to control HVAC, EVSE, WH, and pool pump												
Q2 Milestone: Deliver draft report on VOLTTRON-IoT solutions at the device-level, aggregator-level, and cloud- level for performing reliable transactive control at-scale												
Current/Future Work												
Q4 Milestone:Deliver final report on the software framework for the VOLTTRON integration of IoT devices to perform reliable transactive control at-scale												