

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

The Building Adapter: Automatic Mapping of Commercial Buildings for Scalable Building Analytics

Computer Science, University of Virginia

Hongning Wang - Assistant Professor

hw5x@virginia.edu

Project Summary

Timeline:

Start date: 2018-01-01

Planned end date: 2020-12-31

Key Milestones:

- Basic evaluation framework released to industry partners and research collaborators; 2018-10-31
- >90% mapping accuracy in <10% of buildings with <10% of the points manually mapped; 2020-09-30

Budget:

Total Project \$ to Date:

- DOE: \$163,204
- Cost Share: \$18,134

Total Project \$:

- DOE: \$499,994
- Cost Share: \$55,858

Key Partners:

Project Outcome:

This project will create new solutions to automate the costly process of creating a match between a building's sensor data stream and building analytics engine inputs.

Team

Hongning Wang

Over eight years of experience in data mining and machine learning research, with a special emphasis on human-centric knowledge discovery. Focus on <u>learning-based metadata</u> <u>inference and mapping solutions</u>.

Kamin Whitehouse

Over a decade on developing techniques in various fields, including occupancy sensing, smart buildings, safety-critical wireless communication. Focus on <u>wireframe evaluation</u> <u>framework for metadata inference</u> and <u>industry collaboration</u>.

Madhur Behl

Over seven years of finding analytical and practical solutions to problems of modeling, control, simulation, operation, safety, and implementation of CPS. Focus on <u>evaluation with</u> <u>building analytics engine</u> and <u>industry collaboration</u>.

Background

- Buildings are complex cyber-physical systems with profound impact on human health, productivity, comfort, and energy consumption
 - Average Americans spend 90% of their time in buildings ^[1]

Background

- Buildings are complex cyber-physical systems with profound impact on human health, productivity, comfort, and energy consumption
 - Indoor conditions affect human productivity by 8-11% ^[2]

Background

- Buildings are complex cyber-physical systems with profound impact on human health, productivity, comfort, and energy consumption
 - Account for almost 20 percent of the country's total energy use and a good 30 percent of that energy is used "inefficiently or unnecessarily." ^[3]

• An analytics engine cannot be applied to a new building without first addressing the issue of mapping ^[4]

 An analytics engine cannot be applied to a new building without first addressing the issue of mapping ^[4]

- Dilemma: mapping must be done to know the value of the analytics engine, but the value of the analytics engine must be known to decide whether to invest in manual mapping
 - Microsoft's 88 Acres project that aims to apply analytics to 125 buildings, the mapping process alone would take over two years ^[4]

 Dilemma: mapping must be done to know the value of the analytics engine, but the value of the analytics engine must be known to decide whether to invest in manual mapping

Goal

 Automatically <u>infer sensor context</u> using names and data so that analytics can be quickly applied to all buildings with <u>minimal or none manual effort</u>

Insights and Proposed Solutions

 Developing statistical models that exploit <u>structure and</u> <u>redundancy</u> in sensor point names and time series readings

- Transferring metadata from mapped buildings to new buildings ^[7]
 - Patterns in sensor reading streams are more transferrable

- Transferring metadata from mapped buildings to new buildings ^[7]
 - Improve confidence via transferring from multiple buildings

- Transferring metadata from mapped buildings to new buildings^[7]
 - Improve confidence via transferring from multiple buildings

- Transferring metadata from mapped buildings to new buildings ^[7]
 - Exploiting naming structure within target building

- Actively querying the most informative point names for manual inspection ^[8]
 - Exploiting redundancy in naming structure

Impact

 Building analytics can reduce energy consumption by 8% or more, for a 2030 primary energy savings technical potential of 0.464 Quads ^[9]

Impact

 Our technique will enable a vendor to apply building analytics to 90% of buildings with no manual mapping, and to 10% of buildings with a 90% reduction in manual mapping

Impact

 Create a wireframe framework for open evaluation in both academia and industry to spur additional innovation

- Still at its early stage of this project
 - Current focuses
 - Develop a Technical Advisory Panel to receive feedback on our research progress, disseminate research achievements, and acquire and create new benchmark data sets
 - Dataset aggregation: a minimum total of about 20 fully mapped buildings, including at least 4 different types of buildings
 - Wireframe evaluation framework
 - Data-driven type and relationship inference

- A collection of manually mapped buildings as our evaluation framework
 - # buildings: 15
 - Duration of sensor stream readings: 12-52 weeks

 Transfer learning enables more than 75% accurate labeling and 60% coverage without any manual labeling effort ^[7]

Cov: % labeled Acc: accuracy of labels

 Active learning enables 50% reduction of manual labeling effort ^[8]

• A wireframe evaluation framework

- A wireframe evaluation framework
 - Use case

((CALL FOR PARTICIPANTS))

- Technical Advisory Panel
 - Receive periodic updates about the research progress
 - Provide feedback to the team from across the vendor community,
 - Help identify or create additional datasets for analysis

Pls:

GRAs:

- Dataset aggregation
 - Different types of manually mapped buildings from a variety of geographic locations and vendors
 - With explicit/implicit evaluation metric

• A wireframe framework

- Best-of-breed baseline algorithms for benchmarking
- Common evaluation metrics for quantitative comparison

- Sensor type and relationship inference
 - Data-driven feature engineering
 - Statistical learning based inference algorithms

- Connecting buildings with analytics engines
 - In field assessment of the Building Adapter

Remaining Project Work

- We have built a solid foundation to achieve the project goal
 - At least 40 commercial building datasets with manual mapping data identified
 - Release our basic evaluation framework to industry partners and research collaborators
 - Name and relation inference errors >60% reduced in comparison to baseline techniques
 - Overall reduction in buildings that need manual mapping by 60% over baseline techniques

Expected Outcomes

• In a not far future, the success of this project will enable

Expected Outcomes

 In a not far future, the success of this project will enable

Thank You

Computer Science, University of Virginia Hongning Wang - Assistant Professor hw5x@virginia.edu

References

- 1. David P Wyon and PawelWargocki. How indoor environment affects performance. thought, 3(5):6.
- 2. B Richter, D Goldston, G Crabtree, L Glicksman, D Goldstein, D Greene, D Kammen, M Levine, M Lubell, and M Savitz. Energy future: Think efficiency. American Physical Society, College Park, MD, 2008.
- 3. US DOE. Better buildings challenge. http://www4.eere.energy.gov/challenge/sites/default /files/uploadedfiles/may-recognition-fs-052013.pdf (Feb. 26, 2014), 2013.
- 4. Jennifer Warnick. 88 acres: How microsoft quietly built the city of the future. http://www.microsoft.com/en-us/stories/88acres/88-acres-how-microsoft-quietly-built-the-cityof-the-futurechapter-1.aspx (May 8, 2015), 2012.
- 5. Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22.10 (2010): 1345-1359.
- 6. Settles, Burr. "Active learning." Synthesis Lectures on Artificial Intelligence and Machine Learning 6.1 (2012): 1-114.
- 7. Hong, Dezhi, et al. "The building adapter: Towards quickly applying building analytics at scale." Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments. ACM, 2015.
- 8. Hong, Dezhi, Hongning Wang, and Kamin Whitehouse. "Clustering-based active learning on sensor type classification in buildings." Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM, 2015.
- 9. DOE, US. "Quadrennial Technology Review: An Assessment of Energy Technologies and Research Opportunities." *no. September* (2015): 1-505.

Project Budget

- Project Budget
 - DOE's commitment: \$499,994
 - Cost sharing: \$55,858
- Variances: N/A
- Cost to Date: \$0
- Additional Funding: N/A

		Budget	History		
01/01/201 (pa	<mark>.8</mark> – FY 2017 ast)	FY 2018	(current)	FY 2019 - 1 (plar	L2/31/2020 nned)
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share
\$0	\$0	\$163,204	\$18,134	\$336,790	\$37,724

Project Schedule											
Project Start: 01/01/2018		Complete	d Wor	k							
Projected End: 12/31/2020		Active Task (in progress work)									
	•	Milestone/Deliverable (Originally Planned)									
	•	Milestone/Deliverable (Actual)									
Task		FY 2018			FY 2019				FY 2	2020	
Past Work											
M1.5: Data usage agreements established for											
building datasets already provided by											
industry partners											
M1.6: Compilation of approximately 5											
datasets used for academic publications by											
the community, beyond the datasets from											
Milestone 1.5											
M1.8: Initial set of common evaluation											
metrics established for quantitative											
comparison of different algorithms											
M1.9: At least 3 baseline algorithms defined,											
integrated into framework, and benchmarked		• •									
against common evaluation metrics											
Current/Future Work											
M1.1: Basic framework for intellectual											
property rights and data usage agreements is											
approved by the university											
M1.2: Membership of the TAP is ≥ 3		•									
M1.3: First meeting of the TAP											

Project Schedule												
Project Start: 01/01/2018		Con	nplete	d Woi	rk							
Projected End: 12/31/2020		Active Task (in progress work)										
	•	Milestone/Deliverable (Originally Planned)										
	•	Milestone/Deliverable (Actual)										
Task		FY 2018				FY	2019		FY 2020			
Current/Future Work												
M1.4: Distribution plan is drafted and												
approved by the university and TAP												
members												
M1.7: At least 20 commercial building												
datasets with manual mapping data												
collected, including existing datasets and												
new datasets												
M1.10: Basic evaluation framework released												
to industry partners and research												
collaborators												
M1.11: Data-driven algorithms integrated												
into framework and benchmarked against			┥									
common evaluation metrics												
M1.12: Quantitative evaluation showing 20%												
reduction of type inference errors over the												
baseline algorithms												
M1.13: Manual mapping time reduction of												
>20% over baselines from Subtask 1.3												

Project Schedule												
Project Start: 01/01/2018		Con	plete	d Wor	k							
Projected End: 12/31/2020		Active Task (in progress work)										
	•	Milestone/Deliverable (Originally Planned)										
	•	Milestone/Deliverable (Actual)										
Task		FY 2018			FY 2019				FY 2020			
Current/Future Work												
D1: At least 20 commercial building datasets												
with manual mapping data identified. A												
>20% reduction of type inference errors over												
baseline algorithms for 20 datasets and												
manual mapping time reduction of >20%												
over baselines achieved.												
M2.1: Feature sets that reduce type and												
relationship inference errors >40% over					•							
baseline techniques identified and tested												
M2.2: Improvement in manual mapping time												
reduction of >40% over baselines achieved												
M2.3: Distance functions that reduce value												
inference errors, relationship inference errors,												
and mapping time > 60% over baseline												
techniques identified and tested												
M2.4: Reweighting techniques that reduce												
clustering error to at least 50% over baseline												
techniques developed												

Project Schedule													
Project Start: 01/01/2018		Com	plete	d Wor	k								
Projected End: 12/31/2020		Active Task (in progress work)											
	•	Milestone/Deliverable (Originally Planned)											
	•	Milestone/Deliverable (Actual)											
Task		FY 2018			FY 2019			FY 2020					
Current/Future Work													
M2.5: Reduction in the number of buildings													
that need manual mapping by 60% over													
baseline techniques													
M2.6: In those buildings that need manual													
mapping, a reduction in mapping error and													
mapping time by >60% over baseline													
techniques achieved													
M2.7: At least 30 commercial building													
datasets with manual mapping data													
integrated into framework, for use in both													
training and testing													
M2.8: At least 40 commercial building													
datasets with manual mapping data													
integrated into framework, for use in both													
training and testing													
M2.9: Expanded set of baseline metrics													
integrated into framework													

Project Schedule												
Project Start: 01/01/2018		Completed Work										
Projected End: 12/31/2020	Active Task (in progress work)											
	 Milestone/Deliverable (Originally Planned) 											
	Milestone/Deliverable (Actual)											
Task		FY 2018				FY	2019			FY 2	2020	
Current/Future Work												
M2.10: Second TAP meeting hosted, and any												
input on datasets, baseline algorithms, and												
evaluation metrics integrated into the												
framework												
D2: At least 40 commercial building datasets												
with manual mapping data identified. Value												
and relation inference errors >60% reduced in												
comparison to baseline techniques. Overall												
reduction in buildings that need manual												
mapping by 60% over baseline techniques.												
M3.1: Running time of type and relationship												
inference reduced by 25% over off-the-shelf												
generic packages, with less than 5% increase												
in inference errors.												
M3.2: Running time of type and relationship												
inference reduced by 50% over off-the-shelf												
generic packages, with less than 2% increase												
in inference errors.												
M3.3: >90% mapping accuracy in >90% of												
buildings with 0% manually mapped												

Project Schedule												
Project Start: 01/01/2018		Completed Work										
Projected End: 12/31/2020		Active Task (in progress work)										
	•	Milestone/Deliverable (Originally Planned)										
	◆ Milestone/Deliverable (Actual)											
Task	FY 2018			FY 2019				FY 2020				
Current/Future Work												
M3.4: >90% mapping accuracy in <10% of												
buildings with <10% of the points manually												
mapped												
M3.5: New approaches and data sets												
integrated into the extensible software												
framework												
D3: The Building Adapter will be a solution												
to the manual mapping problem that can												
automatically map industry data sets with no												
manual mapping for 90% of buildings, and a												
90% reduction in manual mapping for 10% of												
buildings.												