U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Validation and Uncertainty Characterization for Energy Simulation

Lawrence Berkeley National Lab

Argonne National Lab, National Renewable Energy Lab, Oak Ridge National Lab

Project Summary

Timeline:

Start date: 10/1/2015 Planned end date: 9/30/2018

Key Milestones:

First full submission to SSPC 140; 5/31/2018

Budget:

Total Project \$ to Date:

- DOE: \$2,200,000
- Cost Share: \$250,000

Total Project \$:DOE: \$2,700,000

Cost Share: \$260,000*
 **de facto* cost-share from Southern
 California Edison.

Key Partners:

ASHRAE SSPC 140

Southern California Edison

Project Outcome:

Provide empirical data for ASHRAE Standard 140 *Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs* to enable improved accuracy of BEM engines and improved characterization of their accuracy, leading to:

- More accurate BEM engines
- Consistent and validated products
- Confidence in all BEM tools, → greater adoption and influence on design decisions → more efficient buildings

Team Roles

- LBNL: FLEXLAB measurements of space cooling and heating loads
- **ORNL:** FRP measurements of a multi-zone VAV system
- NREL: performance mapping of small RTU's
- ANL: uncertainty characterization for experimental measurements and propagation from simulation inputs to simulation outputs
- TAG: vendors, practitioners and researchers: review plans and results one to two meetings per year
- ASHRAE Standing Standard Project Committee 140 Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs: review of submissions for inclusion in Standard 140

Context and Problem Characterization

- The Standard 140 framework accommodates empirical tests but does not yet include any
- We now have facilities to make cost-effective empirical testing possible:
 - LBNL FLFXLAB
 - **ORNL FRP**
 - NRFL HVAC

Sources of differences between simulated and actual performance:

- Uncertainty
 - Algorithms 0
 - Input parameters Ο
 - Modeler decisions 0

- Variability
 - o Weather
 - Occupancy Ο
 - Operation Ο

Zone Heating and Cooling Loads

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Lawrence Berkeley National Lab – Philip Haves – phaves@lbl.gov

Baptiste Ravache Mehry Yazdanian Darryl Dickeroff Xiufeng Pang

LBNL – FLEXLAB testing approach

Focus on heat transfer in occupied spaces

- Space conditioning:
 - Mixing ventilation
 - Radiant panels and slabs
- Ideal vs realistic conditions:
 - Ideal: model assumptions: no furniture, ideal internal heat
 sources, good mixing
 - Realistic: furniture, lights, simulated occupants, imperfect mixing
- Zone type:
 - Interior: no fenestration, ~adiabatic walls
 - Exterior: window, opaque part of window wall has lower R-value

FLEXLAB Configuration and Tests

Test cells reconfigured to have a simple main zone that can be modeled by programs having limited modeling capabilities:

- insulated drop ceiling
- temporary north wall

Decouple main zone from construction complexities in ceiling void and north zone Tests performed:

- Low mass (insulation covering slab)
- High mass (exposed floor slab)
- Constant zone temperature
- Night set-back

Cooling/heating load measured on air-side

Outcomes

- 17 documented tests of 7 different physical and operational configurations – stress tests of conventional overhead mixing ventilation → SSPC 140:
 - Construction: as-builts ...
 - Instrumentation
 - Measurements 10 min averages of 1 sec samples, ~200 points:
 - Weather solar on horiz and S vert, air and sky temps, wind
 - Rate of cooling/heating delivered (airflow, supply-return ΔT)
 - Air temperatures (41 per test cell)
 - Surface and slab temperatures (106) and heat fluxes (23)
- Comparisons with EnergyPlus and DOE-2 for QA
- Extended shakedown of new construction and instrumentation
 → well prepared to make further measurements efficiently

Sample (good) result and presentation format:

Scenario 11:06: Low Mass, Exposed Windows, No Int Gain, Var Set-Point (20C / 30C)

DiffuseHorizontal DirectNormal GlobalHorizontal

Results with (as yet) unresolved problems

Immediate next steps:

- Quasi-real-time, component-level, measured heat balance for diagnosis
- Real-time EnergyPlus compare measured and expected performance for automated discrepancy detection and localization

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Multizone HVAC System Validation using ORNL's Flexible Research Platform

Oak Ridge National Laboratory Joshua New- <u>newjr@ornl.gov</u> Piljae Im- <u>imp1@ornl.gov</u>

Validation of Multi-Zone HVAC System Modeling – Test Facility

- Flexible Research Platform (FRP): 2 story small office building (40' x 40') with 10 thermal zones.
- Multizone HVAC system: Rooftop Packaged Unit with Variable Air Volume (VAV) Reheating
- Occupancy emulation: occupancy is emulated by process control of lighting, humidifiers for human-based latent loading, and a heater for miscellaneous electrical loads (MELs).

Outcomes

- Multiyear test plan
- 5 documented tests (3 for cooling seasons and 2 for heating seasons)
 - Experimental plan was set based on ASHRAE Standard 140
 - Each test was performed for at least 1 week
- Modeling input documents
- Comparison analysis with EnergyPlus results

Sample Results - I

Test 1: Cooling Baseline :

- No occupancy emulation
- All internal lights are turned off; no internal loads
- Fixed discharge temperature of 55°F and no Outdoor air ventilation or exhaust air
- No humidity control and no heating (including no reheating)
- Fixed zone set point temp of 72°F

Measured HVAC Energy use is 2.2% higher than simulated

Hourly NMBE and CV(RMSE) for HVAC total energy use are about 2.2%, and 4.9%, respectively.

Uncertainty Characterization

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Argonne National Laboratory – Ralph Muehleisen – rmuehleisen@anl.gov

Qi Li

Uncertainty Analysis Goals

- 1. Characterize the uncertainty in the experiments
- Characterize the values and the uncertainty in model inputs given detailed description of the experiments and facilities
- 3. Develop a standard method for propagation of uncertainty
- 4. Develop discrepancy metrics for comparing experiment to simulations when there is uncertainty

Metrics for model validation under uncertainty

 Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery 2007)

$$CRPS(F_Y, Y') = \int_{-\infty}^{\infty} \left(F_Y(y) - \mathbb{1}(y - Y') \right)^2 dy$$

- F_Y and Y': A predicted distribution and an observation of random variable Y respectively
- $F_Y(y)$:The cumulative distribution function (CDF) of F_Y $F_Y(y) = P(Y \le y)$, i.e. the probability that Y takes a value less
than y according to F_Y
- $\mathbb{1}(y Y'): \quad \text{The CDF reflected by the observation } Y', \ \mathbb{1}(y Y') = \begin{cases} 0 & \text{if } y < Y' \\ 1 & \text{otherwise} \end{cases}$
- CRPS reduces to absolute error when F_Y becomes a deterministic prediction, i.e. $F_Y = \hat{Y}$ and $F_Y(y) = \mathbb{1}(y \hat{Y})$. $CRPS(\hat{Y}, Y') = \int_{-\infty}^{\infty} (\mathbb{1}(y - \hat{Y}) - \mathbb{1}(y - Y'))^2 dy = |\hat{Y} - Y'|$

Gneiting, Tilmann, and Adrian E Raftery. 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation." *Journal of the American Statistical Association* 102 (477):359–78. <u>https://doi.org/10.1198/016214506000001437</u>.

Metrics for model validation under uncertainty

 Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery 2007)

$$CRPS(F_Y, Y') = \int_{-\infty}^{\infty} \left(F_Y(y) - \mathbb{1}(y - Y') \right)^2 dy$$

An illustrative example:

 Use perturbed-ensemble method to include observation uncertainty (Anderson, 1996)

Anderson J. 1996. A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate 9:1518–1530.

Modeling and uncertainty quantification

An independent ANL model to avoid biases and test the construction information

Variable : DOE21 DOE22 Course measurements

Considered uncertainties:

- Envelope material properties
- Room air stratification
- Non-uniform slab
 temperature
- Sensor error in model inputs:
 - weather conditions
 - internal load
 - test cell temperatures
- Sensor error in measurements:
 - Heat rate

ANL comparison result (10-min output): RNMCRPS 6.52%

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Performance Mapping of Small Roof Top Units: NREL HVAC Test Loop

National Renewable Energy Lab - Ron Judkoff <ron.judkoff@nrel.gov>

NREL: Performance Mapping of RTUs

Full Performance Mapping of a 5 ton SEER 17 and a 6 ton IEER 23 Completed and Data Entered into the DOE Technology Performance Exchange (TPEX)

- 5 Ton Seer 17 (90 test conditions measured & full factorial for 387)
 - Multi-stage scroll compressor R-410A and single speed condenser fan
 - Direct drive variable supply air fan with high efficiency motor
 - Low Leak Dampers
 - Hot gas re-heat advanced humidity control
 - Economizer
- 6 Ton IEER 23 (90 test conditions measured)
 - Variable speed compressor, evaporator fan, and condenser fan
 - Direct drive compressor using R-410A
 - On board controls optimized for lowest lift & dehumidification mode not requiring re-heat
- Data will be used in the future to provide an empirical basis to HVAC BESTEST 1 and 2 in ASHRAE Standard 140 so that the tests include realistic part load behavior for testing BEMs

(TPEX: <u>https://www.tpex.org/content/generic-rtu-6ton-23ieer-1scrollvariable-testdata</u>)

Work in Remainder of FY18

All

• Submit draft documentation of current tests to SSPC 140

LBNL

- Begin extension to include furniture and radiant systems, as resources permit **ORNL**
- Complete documentation of measurements and modeling
 NREL
- Produce a paper on the issues associated with performance mapping and modeling the latest generation of variable highly efficient equipment
- Continue leading the NREL formal liaison role with SSPC-140

ANL

- Continue model development with better quantification of uncertainty through detailed measurement data.
- Establish a validation framework based on CRPS.

Potential Future Work

All

- Iterate with SSPC 140 on documentation of current project submissions
 LBNL
- Extend overhead mixing to include furniture and different types of internal gains
- Extend to radiant systems: ceiling panels, floor slabs
 ORNL
- Extend to different supervisory control strategies for multi-zone VAV
- Further measurements on envelope for building loads
- Extend to occupancy-emulated residential buildings at ORNL

NREL

- Develop a hybrid tabularized approach for complex performance maps
- Include fully performance-mapped equipment as part of whole building empirical validation experiments to reduce uncertainty from HVAC performance

ANL

• Expand uncertainty framework to support IESVE, TRNSYS, etc

REFERENCE SLIDES

Project Budget

Project Budget: Originally \$3M, then reduced to \$2.7M, followed by further, substantial cuts – now restored to \$2.7M

Additional Funding: Informal cost shared from complementary project, funded by Southern California Edison, to use FLEXLAB measurements to adjudicate between 2.2/eQuest and EnergyPlus.

Budget History								
FY 2016 (past)		FY 201	.7 (past)	FY 2018 (current)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$700k	\$60k	\$1,000k	\$100k	\$1,000k	\$90k			

Project Plan and Schedule

Project Schedule												
Project Start: Oct 1, 2016		Completed Work										
Projected End: Sep 30, 2018		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed						ed				
		Milestone/Deliverable (Actual) use when met on time										
		FY2016 FY2017 FY2018										
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Draft project plan and experimental designs												
Completed Development of Validation Metric(s)												
First EnergyPlus validation with FRP data												
First EnergyPlus validation with FLEXLAB data												
Documented data for mixing ventilation (F/L)												
Completed Heating/Cooling Tests & Analyses(FRP)												
Complete Validation of FLEXLAB and FRP Experiments												
SEER 17 & IEER 23 mapped, data in TPEX, paper												
S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RE	NEWABLE	ENERGY										26

(Extra slide if needed for discussion)

Sample (good) result and presentation format:

SCENARIO 11:06: LOW MASS, EXPOSED WINDOWS, NO INT GAIN, VAR SET-POINT (20C / 30C)

Day

Night

	EplustoMeas	DOE21toMeas	DOE22toMeas	EplustoMeas	DOE21toMeas	DOE22toMeas
RNMBE	0.53%	-2.79%	-5.56%	2.13%	0.88%	3.44%
RNCVRMSE	7.36%	12.80%	15.50%	3.65%	4.25%	5.67%

RNMBE = Range-Normalized Mean Bias Error

RNCVRMSE = Range-Normalized Coefficient of Variation of the RMS Error