

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Advanced Serpentine Heat Exchangers

Optimized Thermal Systems, Inc. Dr. Daniel Bacellar bacellar@optimizedthermalsystems.com

Project Summary

Timeline:

Start date: 10/2016

Planned end date: 10/2019

Key Milestones

- 1. Develop Optimized Fin Geometry; 08/2017
- Construct Prototype Heat Exchangers; 03/2018
- 3. Commercialization Plan; 10/2019

Budget:

Total Project \$ to Date: \$180,009

- DOE: \$143,293
- Cost Share: \$36,716

Total Project \$: 663,397

- DOE: \$509,563
- Cost Share: \$153,834

Key Partners:

Optimized Thermal Systems, Inc. (OTS)

Heat Transfer Technologies (HTT)

United Technologies Research Center (UTRC)

Project Outcome:

Conceptualize <u>serpentine heat exchangers</u> for HVAC application, aiming for <u>leakage</u> <u>reduction</u>.

Design & Optimize novel "dog-bone" fin concepts that result in <u>equivalent or better</u> <u>performance</u> than current state-of-the-art tube-fin heat exchangers.

Prototype, validate and commercialize.

Challenge

Problem Definition: <u>refrigerant leakage</u> in heat pumps and air conditioners has major impact, directly and indirectly, on both energy consumption and environment.

Focus of this project: Brazed joints \rightarrow vulnerable locations; prone to leakage

¹ <u>https://www.energy.gov/energysaver/home-cooling-systems/air-conditioning</u> (accessed on: 04/05/18)

² Impacts of Leakage from Refrigerants in Heat Pumps. Report prepared for the U.S. DOE by the London Southbank University, March 2014.

³ Kim, W. Braun, J.E. Impacts of Refrigerant Charge on Air Conditioner and Heat Pump Performance. International Refrigeration and Air Conditioning Conference at Purdue, July 10-15, 2010

Objectives

Eliminate 70%-85% of the joints in one, or both heat exchangers, of a 3-ton residential AC / heat pump system

- Develop serpentine heat exchangers (SHX) with enhanced "dog-bone" fins resulting in equivalent, or better performance than current state-of-the-art HX's
 - Overcome surface area reduction
 - Reduce / eliminate contact resistance

• Develop a cost-effective product and manufacturing means for mass production

Team

Approach Framework

Design Concepts

- Fin enhancement type: winglets vs. louvers
- Wider fins
- "Dog-bone" cut gap

• Parametric study: varying air flow rate

Metric		Baseline	Design I	Design II			Design III						
D _o	m	0.0074	0.0071	0.0071			0.0071						
P	m	0.019	0.0187	0.0213			0.0213 0.0213						
P _t	m	0.0217	0.0207	0.0213			0.0213						
θ	0	N/A	120	120			100						
A _o	m²	42.44	36.44	42.80									
u	m/s	1.025	1.025	1.025	1.08	1.2	1.025	1.06	1.2				

Results

¹Ref. DP does not account for the penalty in the flattened elbows

Alternate Circuiting

Optimization Status

Fin-to-Tube Joining

Approach: clad material on tube Microsection Analysis:

Anaerobic vessel

Brazed sample

Image curtesy from HTT (July, 2017)

Durability / robustness tests

Image curtesy from HTT (July, 2017)

Conventional "dog-bone" (non-brazed)

Image curtesy from UTRC (July, 2017)

Brazed "dog-bone"

Image curtesy from UTRC (July, 2017)

Split-Merge Connections

Image curtesy from UTRC

Electrical Discharge Machining (EDM)

Image curtesy from UTRC

Image curtesy from HTT

Image curtesy from HTT

Image curtesy from UTRC

Image curtesy from HTT

Concept-to-Proof (Non-Optimum)

Purpose:

- Manufacturing method validation (HTT + Brazeway)
- Air-to-water testing (OTS wind-tunnel) → CFD model validation

Temporary Split/Merge Joints

Conclusions and Future Work

- Successful numerical demonstration of competitive performance (< 5% of capacity)
- Promising solutions to address main challenges:
 - Fin surface area \rightarrow wider fins
 - Contact resistance \rightarrow brazing (~0.0, i.e. no visible gaps)
 - Ref. pressure drop vs. joint reduction → split-merge circuiting
- Successful demonstration of manufacturing solutions
- Next steps
 - 1'x1' HX sample \rightarrow manufacturing and model validation
 - Finalize optimization / select final concept for large HX sample

Thank You

Optimized Thermal Systems, Inc. Dr. Daniel Bacellar bacellar@optimizedthermalsystems.com

Project Budget

- BP1 under budget due to reduced need for subcontractors
- Budget reductions have enabled modest changes in prototype approach for additional development
- No other funding sources

	Budget History									
	10/2016 - 08/2017		08/2017 -	- 11/2018	11/2018 - 10/201					
	DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
Budget	\$100,432	\$25,297	\$253,488	\$68,230	\$155,643	\$60,307				
Actual	\$69,992	\$18,825	\$73,300	\$17,891	-	-				

Project Plan and Schedule

Project Schedule													
Project Start: 10/2016				Completed Work									
Projected End: 10/2019			Active Task (in progress work)										
				Milestone/Deliverable (Originally Planned)									
		Milestone/Deliverable (Actual)											
		FY2017			FY2018			FY2019					
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	
Past Work		_											
1.0 Intellectual Property (IP) Management Plan													
2.1 Baseline Selection											\square		
2.2 Initial Performance Simulations											\square		
2.3 Material Simulation and Selection													
2.4 Benchtop Testing of Brazing Methods													
3.1 Optimization Definition and Manufacturing Considerations													
Current/Future Work								T					
3.2 Develop Optimized Fin Geometry													
1 Design Fin Tooling													
4.2 Construct Prototype Heat Exchangers													
5.1 Heat Exchanger Performance Testing													
5.2 Mechanical / Cyclic Testing													
6.1 Improve Manufacturing Techniques in Preparation for Commercialization													
6.2 System Level Integration													
6.3 System Level Testing													
7.0 Develop Technology to Market Commercialization Plan													