

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Adhesive Bonding of Aluminum and Copper in HVAC&R Applications

Oak Ridge National Laboratory Patrick Geoghegan, PhD. geogheganpj@ornl.gov

Cu-Cu U-joints and pre-packaged field

Al-Al manifolds

Project Summary

<u>Timeline</u>:

Start date: 10/1/2016

Planned end date: 3/1/2020

Key Milestones

- 1. M18 meet 75% of joint strength requirements
- 2. M27 Meet full strength and leakage requirements

Budget:

Total Project \$ to Date:

- DOE: \$450K
- Cost Share: \$*

Total Project \$:

- DOE: \$1,500K
- Cost Share: *

* In-kind contribution from CRADA partner – exceeds DOE funding level; exact total is confidential information

Key Partners:

Project Outcome:

Aluminum-Copper, Aluminum-Aluminum, and Copper-Copper adhesive joints that supplant traditional brazing in HVAC&R applications.

Reduce heat exchanger production cost by 30-40% compared to controlled atmosphere brazing.

More compact, lighter units requiring less refrigerant charge.

Patrick Geoghegan, PhD. Principal Investigator Adrian Sabau, PhD. Materials Science R&D Staff

<u>Shari Loushin</u> Lead Application Engineering Specialist

Expertise in building equipment, neutron radiography, material characterization and functionality

Matthew Kryger, PhD. Research Polymer Scientist

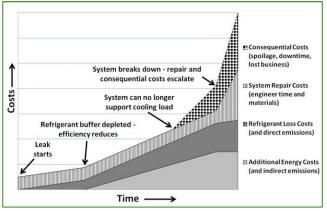
> World leaders in adhesives

Herrick aboratories PURDUE UNIVERSITY

Renowned graduate program

Eckhard A. Groll

Reilly Professor of Mechanical Engineering & Associate Dean of Undergraduate and Graduate Education, College of Engineering


<u>Haotian Liu</u> Ph.D. Student

<u>Justin A. Weibel</u>

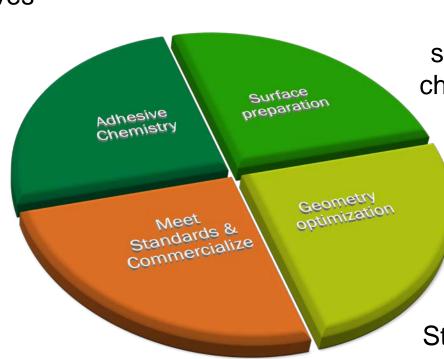
Associate Professor of Mechanical & Associate Director of the Cooling Technologies Research Center (CTRC)

Challenge

 According to the 2016 Annual Energy Outlook, the U.S. consumed 2.15 Quads in delivered energy in cooling, refrigeration & freezing across the residential and commercial sectors

After ETSU (1997), *Cutting the cost of refrigerant leakage*, Good Practice Guide 178, Energy Technology Support Unit, Didcot, UK.

www.homeadvisor.com


R&D Opportunities for Joining Technologies in HVAC&R, BTO,

Reduce refrigerant leakage

- October 2015
- increase lifetime equipment operating efficiency and reliability
- Decrease equipment production cost
- Enable new designs not feasible with brazing

Approach – Adhesive Bonding

Develop adhesives with specific chemistries for bonding to aluminum and copper

Enhanced surface preparation (laser structuring, etc.) and characterization (XPS, SEM, etc.)

UL207, ASHRAE 15, ISO 14903, etc. Prototype Testing Strong business model Structural analysis and optimization, and nondestructive coverage quantification via neutron imaging

Adhesive Approach

- Develop adhesives with specific chemistries for bonding Al and Cu
- Performance Characterization (overlap shear strength and peel strength at 2-3 temperatures)
- Basic rheology characterization of viscosity and modulus vs. time for strength build
- Characterization of glass transition temperature

Milestone – Formulation and characterization of 3-5 adhesives, M15

<u>1K Epoxy</u>

Pros

- No mixing
- Better high temp performance
- Unlimited open time

Cons

- Heat cure
- Poor room temperature stability (cold storage/transportation)
- Nevertheless, some customers using this now for braze replacement.

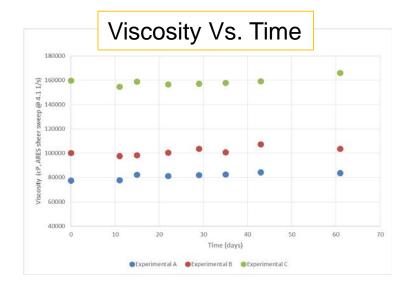
2K Epoxy

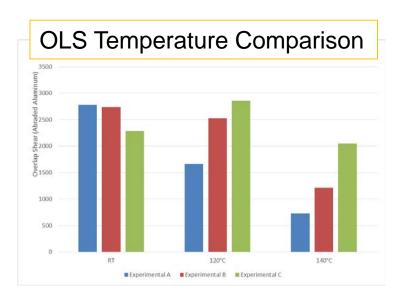
Pros

- Room temperature stable
- Room temperature curable
- High toughness and fatigue

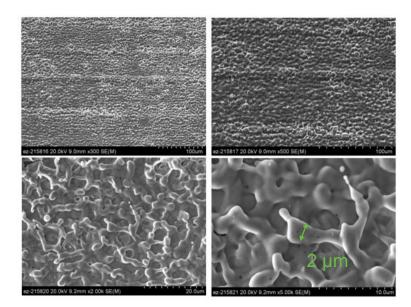
Cons

- Mixing required (difficult at low volumes)
- Poor high temperature performance (can improve with heat curing)
- □ Finite nozzle life and open time

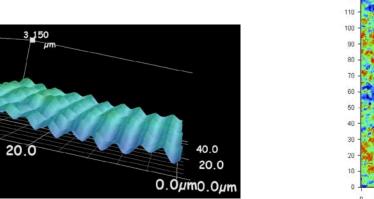


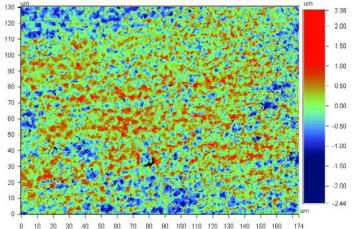

Adhesive Approach – Improved 1K epoxy

Materials in development


- Minimal increase in viscosity over time
- Good high temperature performance
- Improved thermal properties compared to past 2k brazing materials
- Fatigue testing in progress

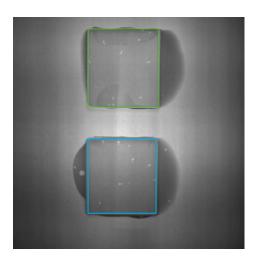
Formulation	Tg (DSC)
Experimental A	121°C
Experimental B	131°C
Experimental C	141°C



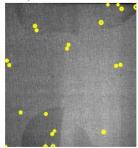

Surface Preparation Approach – Laser structuring

Samples with different laser structing conditions

2D surface profile with profilometry


30.61

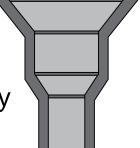
Quantitative Coverage – Neutron Imaging

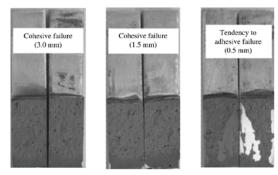


Laplacian of Gaussian

scikit-image.org http://dx.doi.org/10.7717/peerj.453

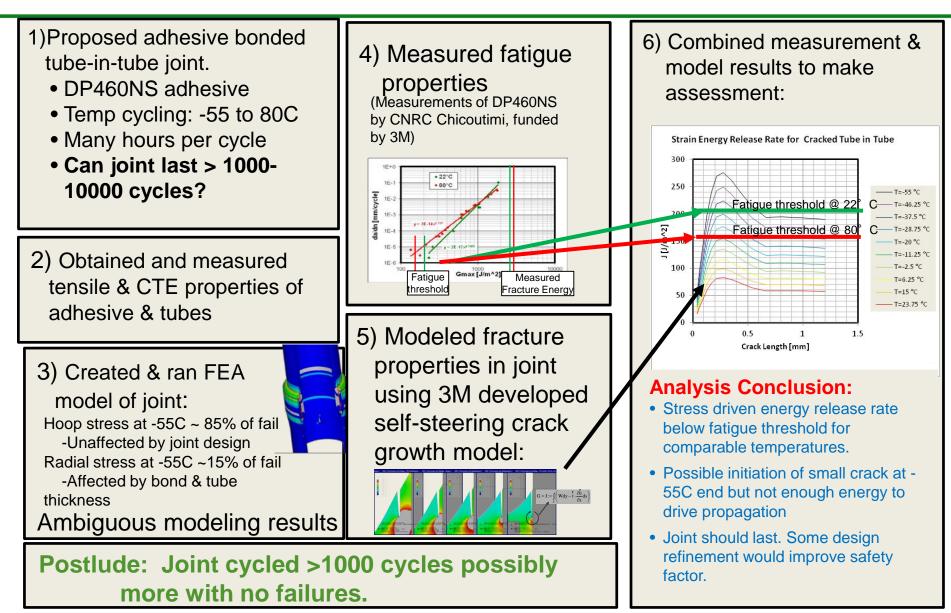
In-situ curing


Adhesive Characterization driving ABAQUS modeling

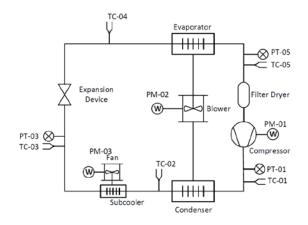

- Epoxy adhesive with cohesive failure:
 - Fracture toughness: Double cantilever beam (DCB) test; End-notched flexure (ENF) test
 - DCB samples will be prepared similarly as for previous studies at Purdue University
 - Elastic/shear modulus: tensile/shear test

INSTRON 3345

Optimized flare geometry



Failure mechanism at the interface


Jibin Han & Thomas Siegmund (2012) Cohesive Zone Model Characterization of the Adhesive Hysol EA-9394, Journal of Adhesion Science and Technology, 26:8-9, 1033-1052

Road Map: Fatigue prediction of tube-in-tube joint

Approach – System demonstration

- Test stand at Herrick Labs, Purdue University
 - Monitored with pressure transducers and thermocouples
 - Pressure hold test
 - System operating test
 - Variant pressure operating test

Schematic figure of the system

Modified heat pump dryer system

- Mechanical testing of joints according to relevant standards
- Standards ISO 14903, ASHRAE 15, UL207, etc.

Stakeholder Engagement

 Approximately 40 HVACR-M companies contacted and with response and varying levels of engagement

Braze suppliers	Aluminum Microchannel heat exchanger manufacturers
Flaring equipment manufacturers	AC Equipment Manufacturers
Potable water/ chillers	Brazed plate heat exchanger manufacturers

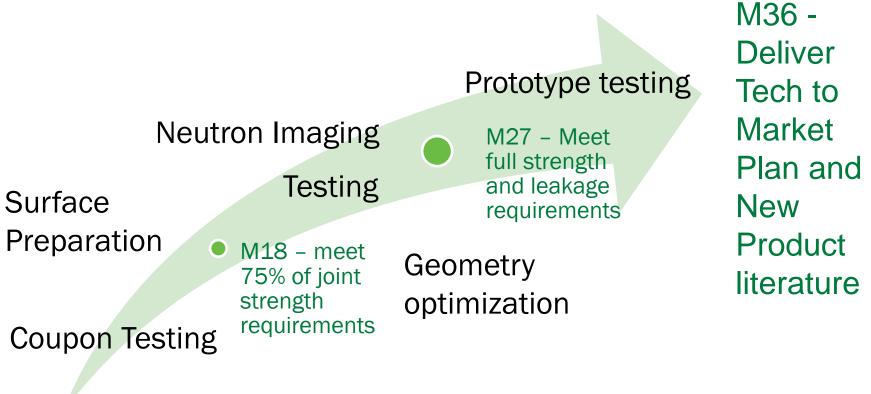
- ASHRAE RP-1808 "Servicing and Installing Equipment using Flammable Refrigerants: Assessment of Fieldmade Mechanical Joints"
- On-site visits ongoing to manufacturing plants
- Initial samples formulated for preliminary evaluation

Stakeholder engagement

Summary of feedback

- Value proposition especially for hand brazers under development
- Potential for Automation appealing
- Large OEMs most interested in the final heat exchanger design
- Working within the limitations set by flaring equipment manufacturers

Focus


- Aluminum microchannel heat exchanger to copper tube connection
- Copper to copper U bends
- New heat exchanger concepts, particularly for aluminum heat exchangers
- Refrigerant Compatibility

Stakeholder Engagement

- HVAC&R Manufacturer engagement to determine needs for adhesive performance and application methods/cure methods (ongoing site visits)
- Evaluate market attractiveness based upon HVAC&R-M feedback through customer evaluations – manufacturers are aiding the cost analysis
- Application and surface preparation expertise to HVAC&R-M

Progress

3 year project

Adhesive Formulation

Thank You

Oak Ridge National Laboratory Patrick Geoghegan, PhD. geogheganpj@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: DOE Total \$1500K **Variances**: Project delayed until 3/1/2017 due to contract negotiations **Cost to Date**: \$450K **Additional Funding**: None

Budget History							
• •	6– FY 2017 ast)	FY 2018 (current)		FY 2019 – (plan	3/1/2020 ined)		
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$250K		\$500K		\$750K			

Project Plan and Schedule

Project Schedule												
Project Beginning: 10/1/2016		Completed Work										
Projected End: 3/1/2020		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed							ed			
		Milestone/Deliverable (Actual) use when met on time										
		FY2	017		FY2018				FY2019			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q1 Milestone: DMP and IPMP												
Q2 Milestone: Surface Preparation												
Q3 Milestone: Joint strength Assessment												
Q4 Milestone: Gauge HVAC&R Interest												
Current/Future Work												
Q1 Milestone: Preliminary Cost Analysis of current												
brazing processes												
Q2 Go/No Go: Assessment of adhesive and surface												
combination												
Q3 Milestone: Joint Coverage through Neutron Imaging												