

Energy Factors in Commercial Building Finance

Lawrence Berkeley National Laboratory
Paul Mathew, Staff Scientist

(510) 486 5116; pamathew@lbl.gov

Project Summary

Timeline:

Start date: October 2015

Planned end date: September 2018

Key Milestones

1. Complete new analysis based on additional data for specific sectors. 6/30/18

2. Development of prototype energy risk ratio for lenders. 6/30/18

Budget:

Total Project \$ to Date:

• DOE: \$800,000

Cost Share: \$0

Total Project \$:

DOE: FY18 TBD

Cost Share: \$0

Key Partners:

UC Berkeley Haas School of Business	Institute for Market Transformation
Silicon Valley Bank	Colorado Lending Source
Northmarq	Wegowise
Community Preservation Corporation Project Outcome:	

Ensure that commercial mortgages fully account for energy factors in underwriting and valuation and thereby serve as a scalable channel for energy efficiency.

- Demonstrate impact of energy factors on commercial mortgage valuation;
- Develop interventions to fully incorporate energy in commercial mortgage valuation;
- Disseminate best practices within the commercial mortgage community.

This project directly addresses CBI strategy #3 in the BTO MYPP.

Team

Phil Coleman

Paul Mathew

,

Nancy Wallace

Paulo Issler

Baptiste Ravache

Kelly Sun

Emily McLaughlin

DOE Managers: Holly Carr, Cindy Zhu

Challenge

Energy directly affects Net Operating Income (NOI) used in mortgage valuation.

Current practice does not fully account for energy factors in calculation of NOI

- Usually based on historical average cost data, if available
- Does not account for energy use and price volatility during mortgage term

Energy efficiency is not properly valued and energy risks are not properly assessed and mitigated.

NOI = gross rents – gross expenses (insurance, energy, water, etc.)

Energy Use Volume

Electricity kWh/kW, fuel therms, etc.

Driven by bldg. features, operations, climate

Energy Use Volatility

+/- change over mortgage term

Driven by bldg operations, weather variation

Energy Price

\$/kWh, \$/kW, \$/therm Set by rate structure

Energy Price Volatility

+/- change over mortgage term

Driven by rate structure, forward prices

Commercial mortgages are a \$2.5+ Trillion market and could be a significant channel for scaling energy efficiency.

Approach

Goal:

Energy factors are <u>fully and routinely</u> incorporated in commercial mortgage valuation, accelerating demand for buildings with lower energy risk.

Fully aligned with CBI logic model:

Objective: Accelerate market adoption

Short-term outcome: Market has tools and data to understand, manage and value EE Mid-term outcome: Array of stakeholders incorporate EE into financial transactions

Approach: Analyze impact of energy on default rate

Mortgage Default Rate = f (EUI, ElecPriceGap, CouponSpread, LTV, Region)

Empirical analysis combining

- Mortgage loan data (TREPP)
- Energy use data (Benchmarking disclosure, Wegowise)

Approach: Case studies on specific loans

Collaborate with lenders to:

- 1. Demonstrate impact of energy use and price on specific mortgage loans
- 2. Develop recommendations

Silicon Valley Bank

Approach

- Compile info from Appraisals,
 PCAs, other sources.
- Estimate source EUI variations.
 - Simulation and empirical approaches
- Compute elec price gap using forward curves.
- Compute default risk impact due to source EUI and elec price gap.

Case studies

Impacts: The link between energy and default

- The coefficient estimates for **BOTH** the *Electricity Price Gap* and *Source EUI* are significant at better than the .05 level of statistical significance.
 - The higher the Source EUI (the more energy usage per square foot) the higher the likelihood of default.
 - The higher the *Electricity Price Gap*, (the larger the difference between the actual and the expected electricity prices since the loan origination), the higher the likelihood of default.

Impacts on specific loans: energy use

Example: Denver Office

Compare to TREPP average default rate of 800bp

Facilities Management factors:

- HVAC schedule
- Thermostat setback
- Supply air temp control
- VAV min flow control
- Economizer controls
- Lighting controls

Levels: good, avg, poor

Occupancy factors:

- Occupant density
- Occupant schedule
- Plug load density
- Plug load controls

Levels: good/low, avg, poor/high

Cas e	Fac mgmt factors	Occ Factors	Source EUI var (%)	Default risk var (bp)	Default risk var rel. to TREPP avg (%)
1	Good	Good/Lo w	-54%	-248	-31%
2	Good	Ave	-33%	-127	-16%
3	Ave	Ave	-	-	-
4	Good	Poor/Hig h	+4%	+12	+2%
5	Poor	Good/Lo w	+64%	+158	+20%
6	Poor	Ave	+76%	+181	+23%
7	Poor	Poor/Hig h	+132%	+268	+34%

Impacts on specific loans: energy price

Impacts: Five case studies

Compare to TREPP average default rate of 800bp

Building	Source EUI variation (%)	Default rate variation (bp)	Default rate variation relative to TREPP avg (%)
Denver Office	-54% to +132%	-248 to +268	-31% to +34%
Sonoma Office	-40% to +183%	-161 to +331	-20% to +41%
San Jose Office	-62% to +119%	-308 to +249	-39% to +31%
Denver Hotel	-11% to +17%	-37 to +49	-5% to +6%
San Francisco Multi- family	-20% to +26%	-72 to +74	-9% to +9%

Wholesale price region	Default rate variation (bp)	Default rate variation relative to TREPP avg (%)
Denver area	+159 to +501	+20% to +63%
Northern California	-49 to +705	-6% to +88%

"These results showing the impact of energy on default risk are clearly meaningful. I don't currently consider energy efficiency when making a loan and seeing this makes me think I would want to ask about it"

"I would like to apply these findings but would want an easy way to use it. A simple score or ratio for energy risk would be good. In fact, I would be interested to pilot test it."

Keith Hanley, Silicon Valley Bank

Progress

Show that energy matters

- Demonstrated statistically significant link between energy and default, based on empirical data.
- Continuing to build evidence with new data sources

Develop and pilot interventions

- Developed method and analyzed impacts for five case studies.
- Confirmed interest in and initiated development of energy risk score.

Disseminate Best practices

 Extensive engagement with finance stakeholders – many new to energy efficiency. (see next slide)

Stakeholder Engagement

- Direct engagement with three lenders on actual loans
- Discussions with over 40 stakeholders since project inception
- Participation in new ASTM task force on property condition assessments (PCA)
 - Revising PCA standard to include energy performance
- **Publications**
 - Two technical reports
 - Articles in trade publications: TREPP, Scottsman Guide
 - ACEEE Summer study paper (forthcoming)
- **Presentations**

Remaining Project Work

Show that energy matters

- Extend default risk analysis with new data sources
 - Energy cost ratio for benchmarking dataset
- Wegowise multi-family data (~45,000 records)

Develop and pilot interventions

- Complete development of energy risk score.
- Apply score to actual loans from project partners

Disseminate Best practices

- 1:1 discussions with 4-5 lenders
- Conferences: ACEEE Finance Forum, ACEEE Summer study, Better buildings Summit, Greenbuild
- ASTM PCA standard

Near term outcome:

- Enough evidence for lenders to take notice and consider energy risks
- A viable score-based method for assessing energy risk in underwriting

Thank You

Paul Mathew, Staff Scientist (510) 486 5116 pamathew@lbl.gov

REFERENCE SLIDES

Project Budget

Project Budget: Intended as 3-year project, FY16-18. \$400K per year for FY16-

17

Variances: No FY18 funds to date. FY17 carryover used for FY18 work to date

Cost to Date: 704K

Additional Funding: None

Budget History								
FY2016 - FY 2017 (past) FY 2018		(current)		9 - TBD nned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$800,000	\$0	TBD	\$0	TBD	\$0			

Project Plan and Schedule

Project Schedule												
Project Start: Oct 2015		Completed Work										
Projected End: Sep 2018		Active Task (in progress work)										
	•	Milestone/Deliverable (Originally Planned)										
	•	Milestone/Deliverable (Actual)										
		FY2016				FY2017			FY2018			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Literature review												
Scoping Report												
Demonstrate impact of energy factors to lenders												
Develop darft scope for EE module for PCAs												
Identify pilots												
Document underwriting pilot case studies									•			
Document PCA pilot case studies									•			
Current/Future Work												
Complete new analysis with additional data												•
Development of prototype energy risk ratio for lenders												