

# TISHMANSPEYER

#### Tishman Speyer: Gregg Fischer, PE

- Director of Energy Systems
- Sustainability + Utilities @ Tishman Speyer
- Oversee building and energy systems for the US portfolio (55,000,000 sqft)
- Based out of Rockefeller Center in NYC (global HQ)
- Focus:
  - Building Automation
  - Energy Monitoring/Management
  - Fire Alarm
  - Security/Card Access
  - Lighting Controls
  - Energy Supply Contracts
  - Tenant Billing Systems



#### Tishman Speyer Company Profile

- Established 1978
- 100,000,000 sqft of class A commercial office space and luxury residential globally
- \$90,000,000,000 in assets in 30 markets, 7 countries and 4 continents
  - Rockefeller Center
  - 200 Park/Metlife
  - Chrysler Center
  - Chicago Mercantile Exchange
- 2000+ tenants worldwide
- Divisions:
  - Sustainability and Utilities
  - Design & Construction
  - Investment Management
  - Property Management
  - Leasing
  - Acquisition and Development
- 1200+ real estate professionals



#### Tishman Speyer Focus

- Long term hold assets
- Renewed attention to building systems
- Landmark facilities
- Community/ Tenants



#### Tishman Speyer Focus: Systems



## Project Highlight: Thermal Ice Storage



ASHRAE – (The American Society of Heating Refrigeration and Air-Conditioning Engineers) defines "Thermal Storage" as the "Accumulation of Energy in a Body or System in the form of Sensible Heat (Temperature Rise) or Latent Heat (a change of phase).

- One of the most common forms is a domestic water heater
  - Change in <u>sensible</u> heat and stored until needed

HVAC is typically the single largest contributor to a building's total summertime energy cost.





## Conventional Electric Profile



#### Thermal Ice Storage: Why?

#### Peak Electric Demand (kW) vs. Maximum Daily Wet-bulb Temperature





## Time of Use (TOU)



## **Utility Charges for Large Commercial**

<u>Demand</u> Charges (June thru September)

— Total On-Peak (8am to 10pm, June thru Sept)= \$56/kW

— Total Off-Peak (10pm to 8am, June thru Sept) = \$30/kW

• Consumption Charges

– Total On-Peak = \$0.115/kWh

– Total Off-Peak = \$0.09/kWh



#### Thermal Ice Storage: Why?

Thermal storage is designed to reduce <u>COST</u> by <u>SHIFTING</u> the energy that would be consumed by electrical cooling equipment during the day (on-peak) to the night time (off-peak)



#### Thermal Ice Storage: Why?





#### Thermal Ice Storage: Who cares?

- Utility
  - Denuclearization of Zone J has created an incentive program called the "Demand Management Program" which incentivizes demand reduction during strategic hours of the summer weekday up to \$1500/kW (\$3MM cap, 50% cap)
- Community
  - Sustainable practice to reduce carbon emissions by running energy intensive mechanical equipment during peak hours of the day
- Asset Management
  - Increases asset value
- Operations Management
  - Gives operational flexibility
- Tenants
  - Corporate goals, interest in facilities



#### Thermal Ice Storage: When?

- Thermal storage is a smart decision when:
  - Central plant equipment is at the end of its useful life
  - LARGE buildings (1,000,000+ sqft bldg for indoor install)
  - LARGE time-of-use demand components to utility bill
  - Incentives are present
  - LARGE electric air conditioning loads in building
  - The building air distribution systems can benefit from lower discharge air temperatures



#### Project Highlight: Thermal Ice Storage









#### **Building Statistics**

- 2,000,000 sq ft of mixed use commercial space (45 and 50 Rock)
- 2,500 Ton peak chilled water load
- 6,700 kW peak electrical demand
- 5 Risers

#### **Old Plant Statistics**

- Four (4) chillers (total nominal capacity = 4200 tons)
- Chiller efficiency = 0.92 kW/Ton
- Chillers used R-11 and R-134a
- 8 degF deltaT
- Twenty-two (22) pumps (chilled and condenser water)
- Primary-Secondary pumping system
- Import capabilities only
- 208/480V Power



#### **New Plant Design**

- Three (3) chillers (total nominal capacity = 4200 tons)
- Chiller efficiency = 0.55 kW/Ton (day),
  0.68 kW/Ton (ice)
- Ice Capacity = 11,000 Ton-Hrs
- Chillers use R-514a and R-1233zd (next generation refrigerant)
- 15 degF deltaT
- Twelve (12) pumps (chilled, condenser and glycol water)
- Variable-primary pumping system
- Import AND Export capabilities
- 480/4160V Power











































#### **End Result**

- Retired plant at end of useful life
- New high efficiency equipment (0.55 kW/Ton)
- New pumping systems for high efficiency pumping
- New control systems
- Operational flexibility with import/export, chillers and ice
- High GWP replaced with ultra low GWP (< 1.0) refrigerants</li>
- Demand reduction 3,000 kW (45% DR) and 2,000 kW (30% traditional)
- Energy reduction 2,320,000 kWh (~3.8MM CO<sub>2</sub>)
- Use 60% less power to produce same amount of cooling
- Millions of dollars of electrical demand and energy savings
- Millions of dollars of incentives (Con Edison DMP)
- Simple Payback = 7.0 years
- Incremental spend for like-in-kind replacement < 2 years</li>



## Thermal Storage Users (NYC)























## Questions