

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

### Low-Cost Identification and Monitoring of Diverse MELs in Residential and Commercial Buildings with PowerBlade





UC Berkeley | Lawrence Berkeley National Laboratory | National Renewable Energy Laboratory

Prabal Dutta, Associate Professor

prabal@berkeley.edu

# **Project Summary**

#### Timeline:

Start date: January 1, 2018 Planned end date: December 31, 2020

#### Key Milestones:

- 1. \$10-12 sensor unit cost in volume (Q2)
- 2. Cloud DB schema and queries (Q4)
- 3. Sensor accuracy verification (Q4, Q6)
- 4. Scaling sensor manufacturing (Q5)
- 5. Field deployment and analysis (Q8)

### Budget:

Total Project \$ to Date:

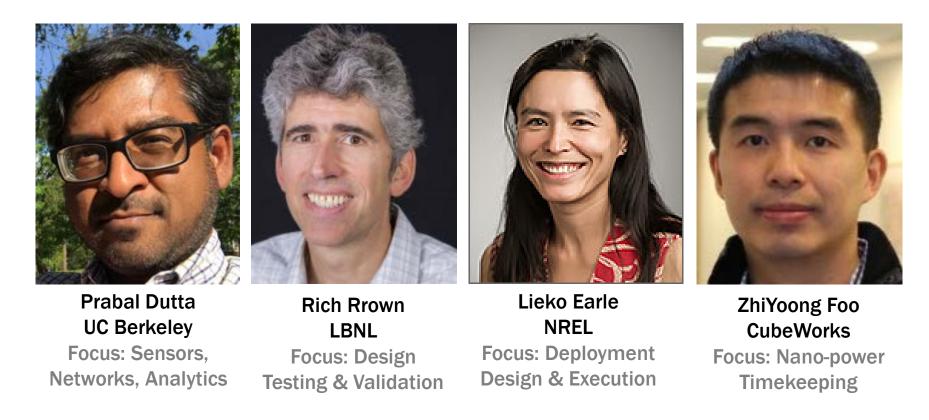
- DOE: \$0
- Cost Share: \$0

#### Total Project \$:

- DOE: \$2,025,000.00
- Cost Share: \$225,095.00

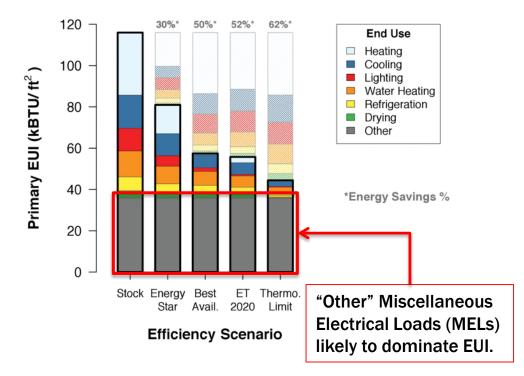
#### Key Partners:

Lawrence Berkeley National Laboratory (LBNL)


National Renewable Energy Laboratory (NREL)

CubeWorks, Inc

#### Project Outcome:


- Automatically identify/monitor miscellaneous electrical loads (MELs) across a representative sample of homes in two geographies.
- Provide a blueprint and proof-of-concept for a cost-effective, scalable, MEL monitoring and identification system.

### Team



- Dutta is a leader in dense, large-scale, low-power sensor systems and networks.
- Brown is a leader in characterizing and addressing MEL energy use in buildings.
- Earle is a leader in field testing, including for the Building America Program.
- Foo is a leader in nano-power "smart dust" sensor technologies and components.

# **Challenge: MEL Monitoring and Identification**



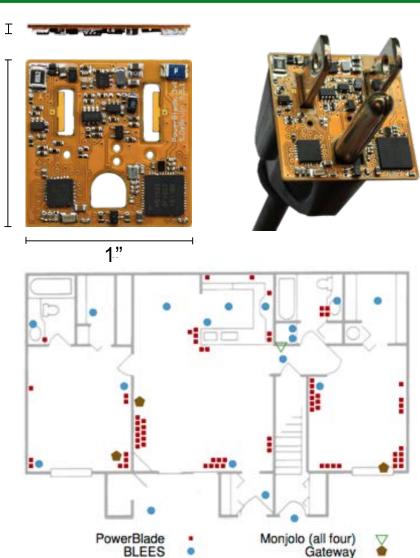
Source: U.S. Department of Energy, Quadrennial Technology Review (QTR): An Assessment of Energy Technologies and Research Opportunities, Sep. 2015.

#### The Problem

- MELs are a large and growing fraction of end-load EUI
- MELs are fragmented so little visibility into them today
- Hard to identify "offenders" given wide mix of MELs
- No good solution to identify and characterize MEL energy use and usage patterns

# **Approach: PowerBlade at Every MEL**

1/16"

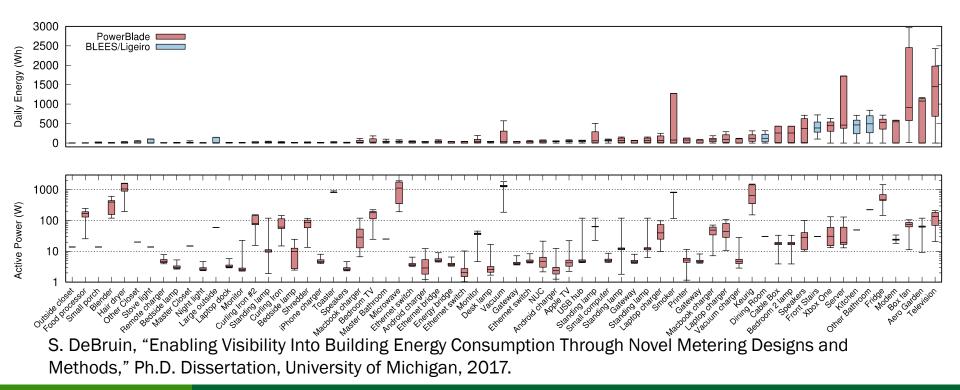

1"

#### Our Solution

- A small and ubiquitous sensor
- Attaches to every MEL plug-load
- Identifies and monitors every MEL
- In 200-500 residential dwellings
- Using advanced data analytics
- Enabling unprecedented density

#### Technical Risks/Challenges

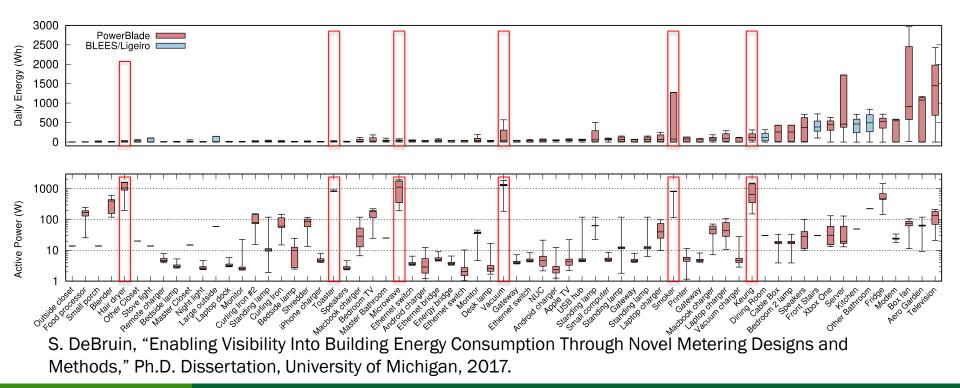
- Achieving target cost
- Ensuring metering accuracy
- Ensuring load identification accuracy
- Reliably delivering date to cloud




S. DeBruin, B. Ghena, Y.-S. Kuo, and P. Dutta. PowerBlade: A low-profile, true-power, plug-through energy meter, In Proc. of the 13<sup>th</sup> ACM Conference on Embedded Networked Sensor Systems (SenSys'15), pp 17–29, 2015.

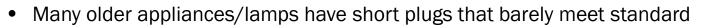
## **Impact: Inventory MEL Usage and Trends**

#### Advantages, Differentiation, and Impact


- Small size and dense deployment enable novel analytics and new insights
  - The six devices that that draw the most power (> 500 W)
  - Collectively account for a small fraction of total energy use (2.9%)



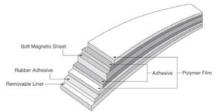
## **Impact: Inventory MEL Usage and Trends**


#### Advantages, Differentiation, and Impact

- Small size and dense deployment enable novel analytics and new insights
  - The six devices that that draw the most power (> 500 W)
  - Collectively account for a small fraction of total energy use (2.9%)



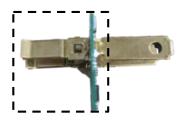
# Progress: Low Cost Sensors (Tasks 1 & 3)


- Analysis of PowerBlade sensor yielded three design issues
  - Issue 1: Insufficient insertion depth with short plugs



- Prevalent in older homes, especially with well-used receptacles
- Reducing insertion depth by an additional 1/16" to 3/32" is an issue
- Issue is less likely in newer homes and with newer loads
- Issue 2: Insufficient creepage and clearance tolerances
  - Tolerance between high-voltage and low-voltage circuits too small
  - Mainly an issue since PCB design is open-air design and exposes signals
  - Easily mitigated via PCB change or changing dielectric (e.g. overmolding)




- Issue 3: Magnetic interference from noisy loads
  - Caused by highly inductive/noisy loads
  - Magnetic field affects sense electronics
  - Requires magnetic shielding to reduce impact
  - Mu-metal tape/shielding offers one possible route



## **Progress: Potential Mitigations to Issues**



- Option 1: PowerBlade++
  - Creepage  $\rightarrow$  Change PCB, overmold to increase isolation
  - Interference  $\rightarrow$  Use mu-metal shield to reduce susceptibility
  - Insertion Depth  $\rightarrow$  Include extension cord for when needed



- Option 2: PowerCube
  - Creepage  $\rightarrow$  Change PCB, overmold to increase isolation
  - − Interference  $\rightarrow$  Use mu-metal shield to reduce susceptibility
  - Insertion Depth  $\rightarrow$  Add standard receptacles and prongs

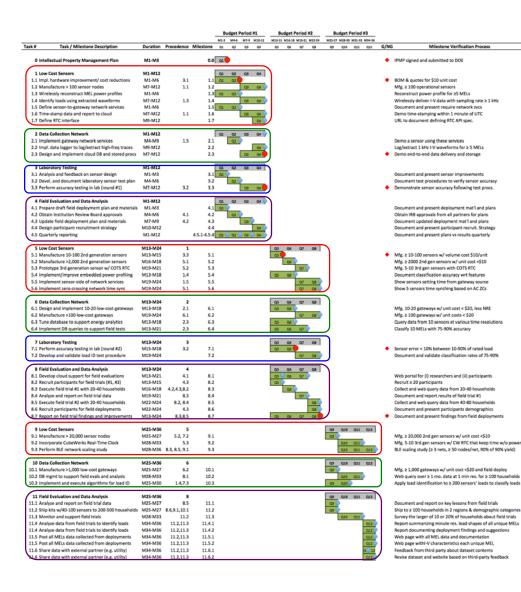


- Option 3: PowerCord
  - − Creepage  $\rightarrow$  Change PCB
  - Interference  $\rightarrow$  Use mu-metal shield to reduce susceptibility
  - Insertion Depth  $\rightarrow$  Integrate into standard plug housing

# **Stakeholder Engagement**

- NIST
  - Interested in available COTS/R&D MEL metering technologies
  - Project will adopt a variation of NIST-designed testing procedures
  - Project will supply sensors to NIST for independent verification
- Residential homeowners/occupants
  - Interested in understanding energy usage and reduction pathways

  - Tune & test deployment strategies with local sites; then scale up
- Electric Utilities
  - Interested in helping ratepayers reduce demand, replace appliances
  - Project will supply potentially actionable data at the level of homes
  - Project will engage with stakeholders through contacts at local utilities
- State and National Laboratories
  - Interested in understanding, monitoring, and regulating MELs
  - Project can provide key missing data for decision-making and policy
  - Project will engage with stakeholders through meetings and on-site visits










## **Remaining Project Work**



#### **Low-Cost Sensors**

- Y1: Hitting target cost \$10
- Y1: Hitting target accuracy
- Y1: Address design feedback
- Y2-3: Scale up: 100→1-2K→ 10-20K

#### Data Collection Network

- Y1: Hitting target cost \$20
- − Y1: Sensor ⇔ gateway protocols
- Y2-3: Scale up:  $10 \rightarrow 100 \rightarrow 500$

#### Laboratory Testing

- Y1: Testing plans and procedures
- Y1-2: Metering and load ID accuracy

#### Field Evaluation and Data Analysis

- Y1: Getting IRBs & plans finalized
- Y2: Recruiting participants
- Y2: Field trials (20-40 homes)
- Y3: Deployments (200-500 homes)
- Y3: Data collection & sharing

# **Thank You**

UC Berkeley | LBNL | NREL | CubeWorks Prabal Dutta, Associate Professor prabal@berkeley.edu

### **REFERENCE SLIDES**

### **Project Budget**

Project Budget: \$2,250,095.00 (total) project budget (start date: 1/1/2018) Variances: Below BP1/Q1 spending target due to contracting delays. Cost to Date (1/1 - 2/28): \$28,493.93 (govt. share) + \$9,276.82 (cost share). Additional Funding: None.

| Budget History    |     |            |           |            |                                |            |  |  |  |  |  |
|-------------------|-----|------------|-----------|------------|--------------------------------|------------|--|--|--|--|--|
| FY 2017<br>(past) |     |            | FY 2018   | (current)  | FY 2019 – FY 2020<br>(planned) |            |  |  |  |  |  |
| [                 | DOE | Cost-share | DOE       | Cost-share | DOE                            | Cost-share |  |  |  |  |  |
| \$0               |     | \$0        | \$700,001 | \$77,812   | \$1,324,999                    | \$147,283  |  |  |  |  |  |

### **Project Plan and Schedule**

|         |                                                       |         |            | I           | ← 1. Started on 1/1/2018 |          |             |                  |                                                  |                  |        |               |                  |        |                     |                  |  |
|---------|-------------------------------------------------------|---------|------------|-------------|--------------------------|----------|-------------|------------------|--------------------------------------------------|------------------|--------|---------------|------------------|--------|---------------------|------------------|--|
|         |                                                       |         |            | 3. T        | oday                     |          | 2.          | To b             | e co                                             | mple             | eted o | on 12         | 2/3:             | 1/20   | 20 →                |                  |  |
|         |                                                       |         |            |             | Budget Period #1         |          |             | Budget Period #2 |                                                  |                  |        |               | Budget Period #3 |        |                     |                  |  |
|         | Task # Task / Milestone Description                   |         |            |             |                          |          | M7-9 M10-12 |                  | M13-15 M16-18 M19-21                             |                  |        |               |                  |        |                     |                  |  |
| Task #  |                                                       |         | Precedence | Milestone   | Q1                       | Q2 C     | 23          | Q4               | Q5                                               | Q6               | Q7     | Q8            | Q9               | Q1     | 0 Q11               | Q12              |  |
| 0 Inte  | ellectual Property Management Plan                    | M1-M3   |            | 0.0         | Q1                       |          |             |                  | 4. /                                             | Adopt            | ting F | OSS li        | cense            | e; Do  | ics no              | t yet sign       |  |
| 1 Lov   | v Cost Sensors                                        | M1-M12  |            |             | Q1                       | Q2 C     | 23          | Q4               |                                                  |                  | _      |               |                  |        |                     |                  |  |
| 1.1 lmp | ol. hardware improvement/ cost reductions             | M1-M6   | 3.1        | 1.1         | Q1                       | Q2 🔶     |             |                  | <b>5</b> . I                                     | Integ            | rate L | .BNL f        | eedba            | ick -  | <b>→ \$1</b> (      | <b>)-12/unit</b> |  |
| 1.2 Ma  | 1.2 Manufacture > 100 sensor nodes                    |         | 1.1        | 1.2         |                          | c        | <b></b> 23  | Q4 🔷             |                                                  |                  |        |               |                  | _      |                     |                  |  |
| 1.3 Wir | 1.3 Wirelessly reconstruct MEL power profiles         |         |            | 1.3         | Q1                       | Q2 🔷     |             |                  | 6. Download high-res. waveforms $ ightarrow$ 5 M |                  |        |               |                  |        | $\rightarrow$ 5 MEL |                  |  |
| 1.4 Ide | 1.4 Identify loads using extracted waveforms          |         | 1.3        | 1.4         |                          | c        | <b>J</b> 3  | Q4 🔷             | _                                                |                  |        | _             |                  |        |                     | _                |  |
| 1.5 Def | 1.5 Define sensor-to-gateway network services         |         |            | 1.5         | Q1                       | Q2 🔷     |             |                  | 7.0                                              | Candi            | idate  | servic        | es ide           | entifi | $ed \rightarrow$    | Docume           |  |
| 1.6 Tim | e-stamp data and report to cloud                      | M7-M12  | 1.1        | 1.6         |                          | c        | <b>1</b> 3  | Q4 🔷             |                                                  |                  |        |               |                  |        |                     |                  |  |
| 1.7 Def | ine RTC interface                                     | M9-M12  |            | 1.7         |                          |          |             | Q4 🔷             |                                                  |                  |        |               |                  |        |                     |                  |  |
| 2 Dat   | 2 Data Collection Network                             |         |            |             | Q1                       | Q2 C     | 23          | Q4 🔷             | _                                                |                  | _      |               |                  |        | _                   |                  |  |
| 2.1 Imp | element gateway network services                      | M4-M9   | 1.5        | 2.1         |                          | Q2 🔷     | _           |                  | <b>8.</b> <sup>.</sup>                           | → Im             | plem   | ent ca        | Indida           | ite s  | ervice              | s identifi       |  |
| 2.2 Imp | ol. data logger to log/extract high-freq traces       | M9-M12  |            | 2.2         |                          |          |             | Q4 🔷             |                                                  |                  |        |               |                  |        |                     |                  |  |
| 2.3 Des | ign and implement cloud DB and stored procs           | M7-M12  |            | 2.3         |                          | C        | 23          | Q4 🔶             |                                                  |                  |        |               |                  |        |                     |                  |  |
| 3 Lab   | oratory Testing                                       | M1-M12  |            |             | Q1                       | Q2 C     | 23          | Q4               |                                                  |                  |        |               |                  |        |                     |                  |  |
| 3.1 Ana | alysis and feedback on sensor design                  | M1-M3   |            | 3.1         | Q1 <                     |          |             |                  | <b>9</b> . I                                     | Detai            | led fe | edba          | ck prov          | vide   | d by l              | BNL to U         |  |
| 3.2 Dev | el. and document laboratory sensor test plan          | M4-M6   |            | 3.2         |                          | Q2 🔷     |             |                  | 10                                               | . <del>→</del> P | repa   | re and        | docur            | men    | it lab <sup>·</sup> | test plan        |  |
| 3.3 Per | form accuracy testing in lab (round #1)               | M7-M12  | 3.2        | 3.3         |                          | C        | 23          | Q4 🦊             |                                                  |                  |        |               |                  |        |                     |                  |  |
| 4 Fiel  | d Evaluation and Data Analysis                        | M1-M12  |            | [           | Q1                       | Q2 C     | 23          | Q4 🔷             | _                                                |                  | _      |               | _                | _      |                     |                  |  |
| 4.1 Pre | 4.1 Prepare draft field deployment plan and materials |         |            | 4.1         | Q1 <                     |          |             |                  |                                                  |                  |        |               |                  |        |                     | red by NF        |  |
| 4.2 Obt | ain Institution Review Board approvals                | M4-M6   | 4.1        | 4.2         |                          | Q2 🔷     |             |                  | 12                                               | $\rightarrow R$  | eviev  | <b>v draf</b> | t plan y         | with   | IRB (               | & update         |  |
| 4.3 Upd | date field deployment plan and materials              | M7-M9   | 4.2        | 4.3         |                          | C        | 23 🔷        |                  |                                                  |                  |        |               |                  |        |                     |                  |  |
| 4.4 Des | ign participant recruitment strategy                  | M10-M12 |            | 4.4         |                          |          |             | Q4 🔶             |                                                  |                  |        |               |                  |        |                     |                  |  |
| 4.5 Qua | arterly reporting                                     | M1-M12  |            | 4.5.1-4.5.4 | Q1 🔇                     | 🕨 Q2 🔷 C | Q3 🔶        | Q4 🔷             |                                                  |                  |        |               |                  |        |                     |                  |  |
|         |                                                       |         |            |             |                          | 1        |             |                  |                                                  |                  |        |               |                  |        |                     |                  |  |