

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Advancements in Building Controls for Energy Efficiency: Adaptive Control

Pacific Northwest National Laboratory and Oak Ridge National Laboratory PI: Draguna Vrabie <u>draguna.vrabie@pnnl.gov</u> Co-PI: Teja Kuruganti <u>kurugantipv@ornl.gov</u>

Project Summary

Timeline:

Start date: 10/01/2016 Planned end date: 09/30/2019

Key Milestones

- Machine learning methods with simulated data attain <5% RMSE accuracy (met 09/2017)
- Adaptive supervisory control demonstrated >15% energy consumption reduction (met 01/2018)
- 3. Online model learning with building data attain <5% RMSE accuracy (due 09/2018)
- 4. Adaptive control tested at a building site (due 09/2019)

Budget:

Total Project \$ (to date):	Total Project \$:
DOE: \$1M	DOE: \$2.1M
Cost Share: \$0	Cost Share: \$0

Key Partners:

Oak Ridge National Laboratory

Industry Technical Advisory Group

Project Outcomes:

- Supervisory adaptive control algorithms for commercial buildings with AHU and VAV equipment that can reduce >15% HVAC energy consumption relative to existing ASHRAE 90.1 supervisory baseline.
- Open-source controls software compatible with the open-source building control platform VOLTTRON[™].
- 3) A high fidelity virtual testbed and baseline control strategies, to serve as a benchmark and to enable the R&D community to develop advanced building controls.

Team

Challenges and Opportunities

Operate >95% of time at partial load

Operation under uncertainty load variability, equipment aging

Variable speed drives

Daily walk-through preventative maintenance

Best-of-class sequences (Guideline 36)

Public Review Draft

High Performance Sequences of

Operation for HVAC Systems

First Public Review (Jun (Draft Shows Proposed New Gu

The proper strategies is the ACT RM matching is particular or consistence was the first matching of the strategies and access to ensure ensurement matching and the constraint or was the strategies of the RM book of 20 meters and was used for the control of the constraint or matching is the strategies of a 20 meters and was used for the terminal strategies and the constraint or matching is the strategies of a 20 meters and the angle (strategies of the strategies of the constraint or matching is strategies of the ACT MAL Constra Strategies of the angle (strategies of the strategies of the s

The approximate of any solution of earliest index in the path more departed state of smaller indextores, strains, or particle to APRAE of the potent, solido, process, process, an origin, and APRAE special path and a solid

9 2014 A Vertical: This double covered under AMPRAS coveryon: Processor to constance on postational and any part of the dopament must be addened bare the ASI (1964) Manage of Diemeters, 1971 Table Carlo, M., Alberts, C.R. 2005; Prover additional Additional Cover and Paral Additional Table Carlo, ASI Additional Section 2016; Prover additional Additional Cover additional Additional

Adjustments based on complaints

Challenges and Opportunities

- Retro-commissioning: cut energy bills by 10-15% ^[1]
- BAS and control retrofits: up to 30% energy savings ^[2]

Adoption challenges

- **Product maturity**: less than 5 years
- **Technology**: proprietary optimization algorithms
- Energy savings: 10% -40%: no common baseline
- Cost: limited information for full-cycle deployment
- Deployment and security: Most products are cloudbased; Security concerns

References

- Mills, E., H. Friedman, T. Powell, N. Bourassa, D. Claridge, T. Haasl, and M.A. Piette, "The Cost-Effectiveness of Commercial-Buildings Commissioning" (2004), Lawrence Berkeley National Laboratory
- Fernandez N., S. Katipamula, W. Wang, Y. Xie, M. Zhao, C. Corbin, "Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction," (2017), Pacific Northwest National Laboratory

Background

Approach: Adaptive Control

- Machine learning, Model-based predictive control (MPC), Dynamic adaptation
- Test performance in simulation and at building test sites

Approach: Machine Learning

Fan power consumption model

Learning algorithm emphasizes accurate representation of the fan power consumption model at boundary corresponding to optimized operation

Approach: Machine Learning

• Predictive zone temperature models

Performance evaluation on test data - prediction horizon 120 min.

Approach: Dynamic Optimization (MPC)

• Optimization problem for one Air Handling Unit serving N zones

Minimize heating and cooling capacity over prediction horizon while satisfying comfort constraints

$$\begin{split} z(\Theta) &= \min_{x^1,\dots,x^K} \quad \left\{ \sum_{t\in\mathcal{T}} \left(\eta_f P_f^t + \eta_h P_h^t + \eta_c P_c^t \right) + \lambda v^2 \right\}, \\ \text{s.t.} \quad T_n^t &= \sum_{j=1}^q \widehat{\alpha}_n^j T_n^{t-j} + \widehat{\beta}_n m_n^t \left(T_{s,n}^t - T_n^t \right) + \widehat{\gamma}_n T_o^t + Q_n^t, \\ P_f^t &= \theta_0 + \theta_1 \sum_{n\in\mathcal{N}} m_n^t + \theta_2 \left(\sum_{n\in\mathcal{N}} m_n^t \right)^2 + \theta_3 p^t, \\ \left(p^t, \sum_{n\in\mathcal{N}} m_n^t \right) \in \widehat{C}, \\ P_h^t &= \nu_h c_p \sum_{n\in\mathcal{N}} m_n^t \left(T_i^t - T_m^t \right) + c_p \sum_{n\in\mathcal{N}} \nu_n m_n^t \left(T_{s,n}^t - T_s^t \right) \\ P_c^t &= \nu_c c_p \sum_{n\in\mathcal{N}} m_n^t \left(T_i^t - T_s^t \right), \\ T_r^t &= \sum_{n\in\mathcal{N}} m_n^t T_n^t / \sum_{n\in\mathcal{N}} m_n^t, \\ T_m^t &= d^t T_o^t + (1 - d^t) T_r^t, \\ T_n^t &\leq T_n^t - v, \\ T_n^t &\leq T_n^u + v, \end{split}$$

Constraints on decision variables

Variable	Notation	Units	Range
Supply-air temperature	T_s^t	°C	[12.8, 70.0]
Discharge-air temperature in zone \boldsymbol{n}	$T_{s,n}^t$	°C	$[T_s^t, 70.0]$
Mixed-air temperature	T_m^t	°C	$[\min\{T_o^t, T_r^t\}, \max\{T_o^t, T_r^t\}]^*$
Mass-flow rate in zone 1	m_1^t	kg/s	[1.31, 13.10]
Mass-flow rate in zone 2	m_2^t	kg/s	[0.27, 2.70]
Mass-flow rate in zone 3	m_3^t	kg/s	[0.18, 1.79]
Mass-flow rate in zone 4	m_4^t	kg/s	[0.23, 2.28]
Mass-flow rate in zone 5	m_5^t	kg/s	[0.21, 2.08]
Static pressure	p^t	Pa	[24.88, 171.70]

Approach: Testing

Virtual Testbed: high-fidelity simulation

Chilled Water System

Large Office Building

Building Testbeds

ORNL: Flexible Research Platform (FRP)

PNNL: System Engineering Building (SEB)

Impact

• Contribute to 30% savings for HVAC by 2030 in the commercial sector through advanced controls and \$0.12/square feet cost target

- Meet cost & performance targets to enable optimized building performance
- Mitigate the technical challenges to facilitate market transition

Progress: Virtual Testbed

Baseline: modified based on ASHRAE 90.1-1989 and 1999

Advanced: modified based on ASHRAE 90.1-2013

Progress: Online Learning Methods

• Tested with FRP data (10 zones, 2 floors) 3/29/2018

Progress: Control Evaluated in Simulation

• Model predictive control sample simulation result (prediction horizon 60min, summer week)

Stakeholder Engagement

Technical Advisory Group meetings

- May 2017 Project objectives, concept description, market evaluation
- Feb 2018 Simulation model, baseline control implementation

Collaboration and coordination with other national laboratories

Technical Advisory Group representing controls providers, technical experts, market users

Remaining Project Work

Improvements on computational scalability 200 180 Computation time (sec) Solution time (s) 30 20 10 40 20 0 ŧ _ Unoccupied Occupied 0 70 20 30 40 50 60 80 90 100 Number of decision stages Solver status 800 Total computation time (min) 40 Number of samples as function of day of the week 30 20 10 0 0 Mon Tue Wed Thu Fri Optimal Max iterations reached

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Remaining Project Work

Control Performance Evaluated in Simulation

Remaining Project Work

Testing at PNNL's Systems Engineering Building Testbed

PNNL Richland Campus

Operating Since 2015 Roof Top Unit System Multiple-Zone VAV System Single-Zone VAV System Fan Coil System

System Engineering Building (SEB, 3820)

2,121m², Office + Laboratory

Data Center System

Thank You

Pacific Northwest National Laboratory Draguna Vrabie <u>Draguna.Vrabie@pnnl.gov</u>

Oak Ridge National Laboratory Teja Kuruganti <u>kurugantipv@ornl.gov</u>

REFERENCE SLIDES

Project Budget

Project Budget: 2100K (700K/year) Variances: None Cost to Date: 1000K

Budget History									
FY 201	L7 (past)	FY 2018	3 (current)	FY 2019	(planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
700K	0	700K	0	700K	0				

Project Plan and Schedule

Project Schedule													
				Completed Work									
Project Start: 10/2016				Active Task (in progress wo			ork)						
Projected End: 09/2019	Planned Task (not started)										
			•	Go/No Go decision point									
	FY2017				FY2018				FY2019				FY2020
Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Past Work													
Model-based testing infrastructure; barriers for technology to market transition													
Established Technical Advisory Group													
Defined experiment test procedures, Identified building test bed													
Machine learning methods with simulated data attain <5% RMSE accuracy													
Adaptive supervisory control demonstrated >15% energy consumption reduction						•							
Exploration for improving machine learning models. Adaptive optimal start.													
Current/Future Work													
Energy performance assessment with diverse operating conditions													
Online model learning with building data attain <5% RMSE accuracy													
Automated explanations of adaptive control decisions to building operators.													
VOLTTRON application for model characterization tested at building site										•			
Test procedure for evaluation of advanced control at building test site													
Multi-seasonal testing demonstrates model adaptation capabilities													
Adaptive control implementation tested at a building testbed site													

Stakeholder Engagement

Publications and presentations

- 2018 ASHRAE Building Performance Analysis Conference and SimBuild
 - Sen Huang, Yan Chen, Paul Ehrlich, Draguna Vrabie, A control-oriented building envelope and HVAC system simulation model for a typical large office building
 - Yan Chen, Sen Huang, Draguna Vrabie, A Simulation Based Approach to Impact Assessment of Physical Faults: Large Commercial Building HVAC Case Study
- 2018 IEEE Conference on Control Technology and Applications (CCTA) Copenhagen, Denmark, August 21-24
 - Optimal Energy Consumption Forecast for Grid Responsive Buildings: A Sensitivity Analysis, by Soumya Kundu, Thiagarajan Ramachandran, Yan Chen, Draguna Vrabie
- 2018 10th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SafeProcess 2018), Warsaw, Poland, August 29-31
 - Indrasis Chakraborty, Draguna Vrabie, Fault Detection for Dynamical Systems using Differential Geometric and Concurrent Learning Approach
- 2019 ASHRAE Winter Conference, Atlanta, GA, January 12-16
 - Jin Dong, Piljae Im, Sen Huang, Yan Chen, Jeffrey Munk, Teja Kuruganti, Draguna Vrabie, Development and Calibration of an Online Energy Model for an AHU Fan