

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hamilton: Flexible, Open Source \$10 Wireless Sensor System for Energy Efficient Building Operation

University of California, Berkeley Professor David Culler culler@berkeley.edu

Project Summary

<u>Timeline</u>:

Start date: October 1, 2016 Planned end date: September 30, 2019

Key Milestones

- 1. Milestone 6.1 Second-generation sensor node with application-specific sensor modalities streaming samples at 1 hertz (Hz). (March 30, 2018)
- 2. Milestone 8.1: Demonstrate subsecond latency of application control component actuating a building device, such as a thermostat, (June 30, 2018)
- **3.** Milestone 9.2: Applicability study of potential building product incorporation of project technology. (Sept 30, 2018)

Budget:

Total Project \$ to Date (Dec 31, 2017):

- DOE: \$496,690
- Cost Share: \$86,273

Total Project \$:

- DOE: \$1,586,856
- Cost Share: \$176,372

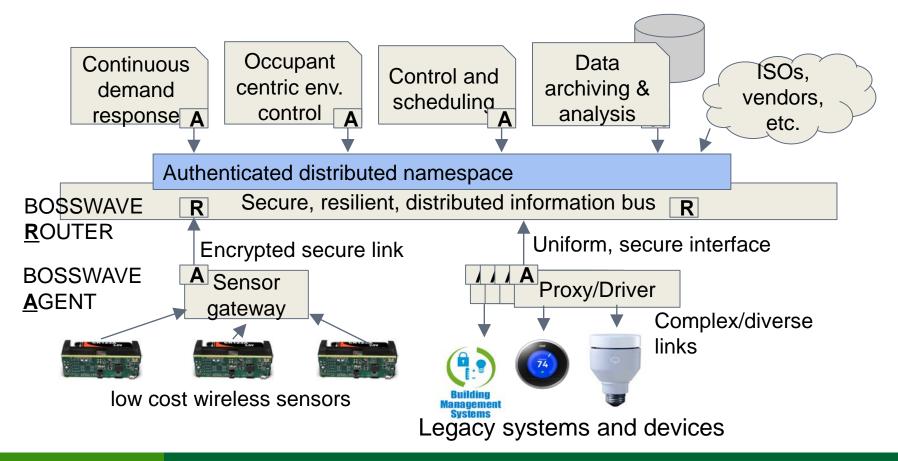
Key Partners:

UC Berkeley: Building, Energy, & Transportation Systems (BETS) in Computer Science California Institute for Energy & Environment (CIEE) Center for the Built Environment (CBE) Center for Information Technology Research in the Interest of Society (CITRIS)

Building Robotics and HamiltonIOT

Project Outcome: create and evaluate the technological foundations for secure and easy to deploy building energy efficiency applications utilizing pervasive, low-cost wireless sensors integrated with traditional Building Management Systems (BMS), consumer-sector building components, and powerful data analytics—and to demonstrate the effectiveness of this foundation on potential applications.

First objective, *Low Cost Wireless Sensor Systems*, develops networked sensors to provide situational awareness for optimization of environmental conditioning, lighting and other building functions at a total cost of manufacturing of less than \$10 per sensor. The objective of the *Secure Attack-Resistant Middleware Tier* is to provide a resilient, secure, fully distributed information bus. The objective of the *Applications, Components and Services* tier is to integrate these technological advances into a complete building-wide secure system utilizing pervasive sensing and fine grain authorization to spur innovation in building energy efficiency.

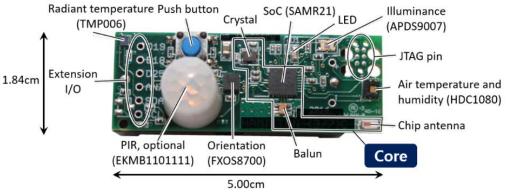

- BETS: hardware and software development, laboratory and pilot testing.
- CIEE: administration and T2M, Hamilton field deployments, thermostat hardware application.
- HamiltonIOT: device, data aggregation hosting and services
- BuildingRobotics (Comfy): consulting on integration of sensors into software application of HVAC comfort control and optimization
- CBE: Hamilton field deployment, anemometer and foot warmer hardware application.
- BRICK consortium: comprehensive, semantic-based metadata

Challenge: Bringing Wireless Sensor Systems into Building sector ...

- Despite need spend 70% of electricity & 90% of our lives, yet 2/3rds of occupants uncomfortable; could be natural counterbalance to fluctuating renewables...
- Buildings remain opaque, complex, inefficient, and often operating under degraded conditions, ...
- Wireless sensor systems could provide visibility, but
 - devices remain too expensive, too hard to integrate into products
 - networks too hard to deploy at low power, high reliability
 - Programming too esoteric
- Need robust environment for applications, analytics & advanced control
 - With advanced security and cyber-protection
 - delegation of authority across administrative domains

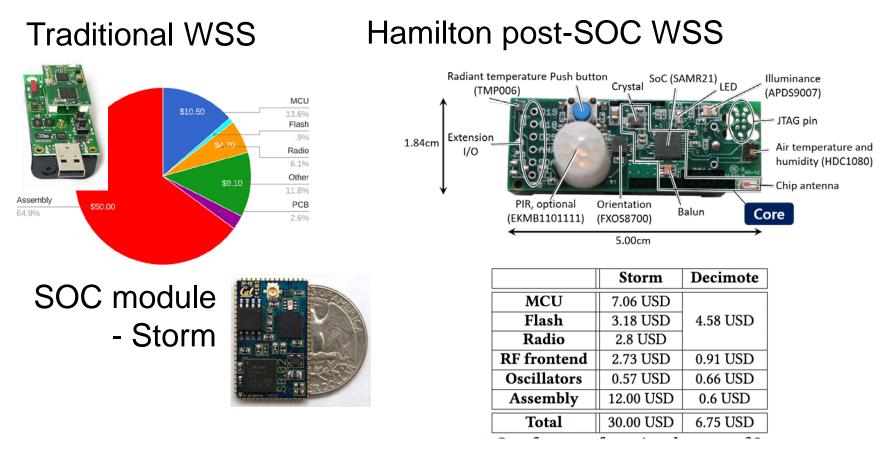
Approach

• Create low cost building-wide extensible sensing fabric, secure attack-resistant communications infrastructure, and rich platform for advanced building services.



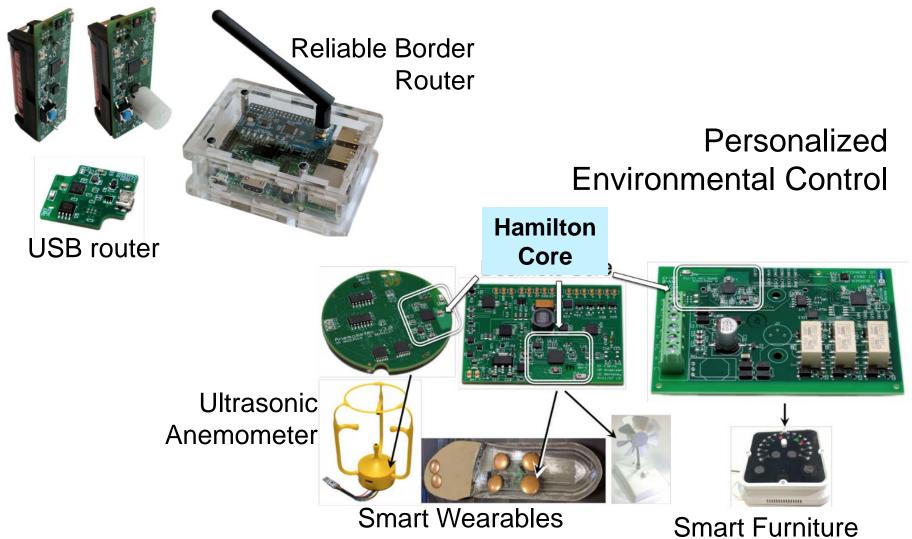
Impact

- Design, implementation, and demonstration of novel sub-\$10 WSS opens broad paths to market
 - Open source HW& SW with deep design-for-manufacturing, design-time dropin modularity, plus Open, thread-based TCP-IP,
 - Enables vendors to rapidly incorporate technology into product lines and develop applications and services
 - new market entrants, as well as pathways for established players
- Secure, attack-resistant middleware provides protected, easy-touse means of integrating devices, subsystems and services throughout increasingly-advanced buildings, & across ensembles, between grid / building / EV, etc., premises and cloud
 - Mitigates most profound threat to technological advance in Building Technologies
- Multi-building rich demonstrations (with Energy Commission) build key awareness of technological & market options


Progress - Overview

- Work to date (18 months) is under budget and on time:
 - Two iterations of a functional sensor system at a total manufacturing cost <\$10; testing different types of sensors

- Functional embedded operating system and low-power networking stack.
- Functional distributed authorization/authentication system
- Initial integration with BMSs, thermostats, electric meters, lighting
- Over a dozen deployments with 10-40 sensors in each deployment
- Identified fit with market segments.
- Integrate cloud services for trust-limited data analytics into BOSSwave framework.


Transformative Wireless Sensor System

- Eliminate previously-dominant assembly costs
- Drop-in Open IP for application-specific design-for-mfg

Hamilton Open Ecosystem

Building-Wide Environment Monitoring

Post-SOC embedded Operating System

1st low idle power @ 32-bits

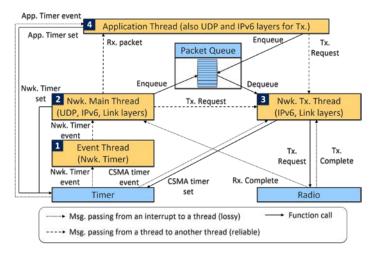
	Idle Current
TelosB/TinyOS	8.9 µA
Storm/TinyOS	13.0 µA
Firestorm/TinyOS	25.6 μΑ
TelosB/Contiki	36 µA
OpenMote/Contiki	2169 μΑ
CC2650STK/Contiki	13.2 µA
Decimote/Contiki	347 µA
TelosB/RIOT	1926 µA
SAMR21-XPRO/RIOT	6012 µA
Decimote/RIOT	5.9 μA (2.6 μA core)

Efficient Concurrency

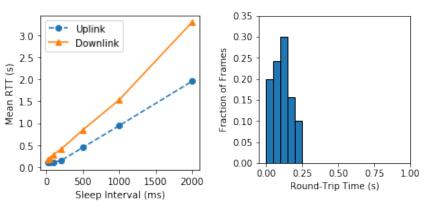
	Preempt	Yield
TelosB/TinyOS (4 MHz)	38.9 µs	21.0 µs
TelosB/Contiki (4 MHz)	87.6 μs	72.0 µs
Decimote/Contiki (48 MHz)	5.84 µs	4.36 µs
TelosB/RIOT (4 MHz)	92.2 μs	83.0 µs
Decimote/RIOT (4 MHz)	79.4 μs	74.6 µs
Decimote/RIOT (48 MHz)	8.30 µs	7.76 µs
n 11 - co - c - c - 1 - 1 - c - r		

Efficient Sensing

	No DMA	DMA
ADC Sample Time	643 µs (busy)	599 µs (idle)
I2C Read Time	587 µs (busy)	492 µs (idle)

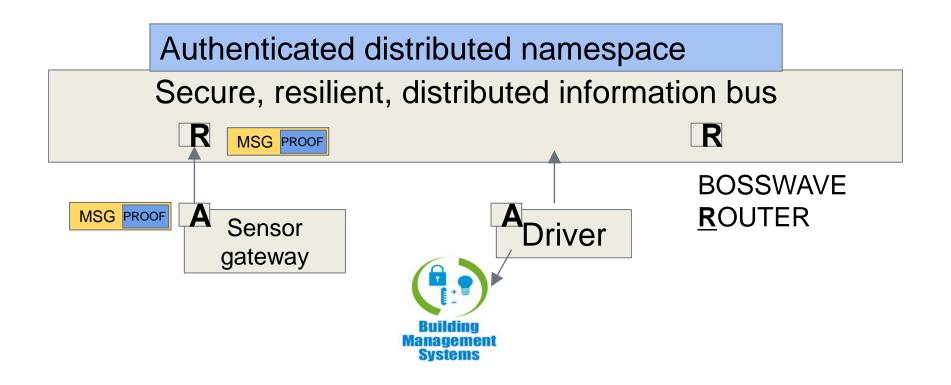

Decimote = Hamilton

- Very low cost, idle power, scheduling overhead
- Embedded OS designs have been based on event-driven execution and specialized network stacks to achieve low-power and high concurrency
- Highly optimized Post-SOC design permits threads & TCP/IP stack for application innovation (redesign/implementation of RIoT)
- Advanced clock domain & rate management


Advanced Network Stack

Study	[59]	[30]	[38]	[32][31]	[17]	This Paper (SAMR21 Platform)
TCP Stack	uIP	uIP	BLIP	Arch Rock	Linux	TCPlp (RIOT OS, OpenThread)
Max. Seg Size	1 Frame	4 Frames	1 Frame	1024 bytes	???	5 Frames
Window Size	1 Seg.	1 Seg.	1 Seg.	1 Seg.	variable	1848 bytes (4 Seg.)
Goodput (One Hop)	1.5 kb/s	12 kb/s	4.8 kb/s	15 kb/s	???	75 kb/s
Goodput (Multi-Hop)	0.55 kb/s ¹	12 kb/s	2.4 kb/s	9.6 kb/s	16 kb/s	20 kb/s

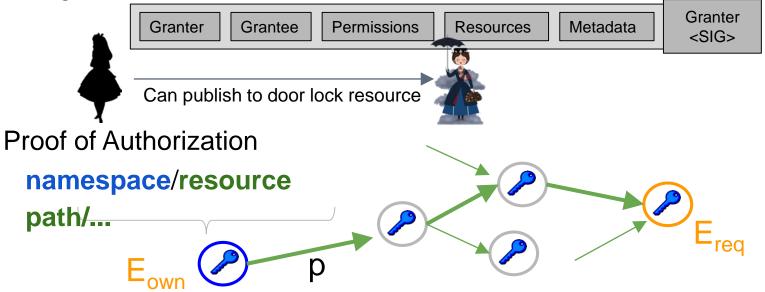
Table 1: Comparison of TCPlp to existing TCP implementations used in network studies over 802.15.4 networks



Platform	CPU Arch.	ROM (Code)	RAM (Data)
TelosB	16-bit, 25 MHz	48 kB	10 kB
SAMR21	32-bit, 48 MHz	256 kB	32 kB
Firestorm	32-bit, 48 MHz	512 kB	64 kB
Rasp. Pi	32-bit, 700 MHz	SD Card	256 MB

• Redesign/Implementation of OpenThread and FreeBSD TCP/IP stack for low-power, reliable communication

WAVE concept



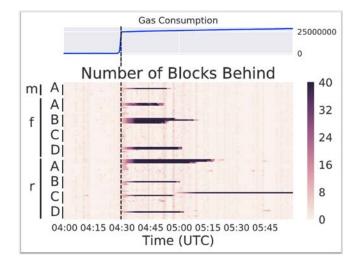
Multiple generations of BOSSwave router/agent

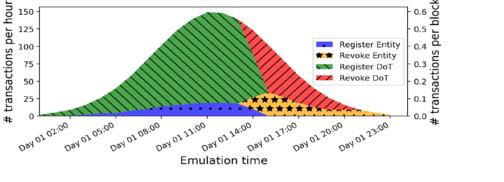
- Tracked, contributed to, & evaluated Ethereum Block Chain microcontract technology
- Secure encapsulation of commercial technology and direct realization
- Fine-grained dynamic delegation of trust, continuously verified

Bldg-City-Grid Scale Attack-Resistant Comm.

Delegation of Trust

- Designed to support delegation of permission across administrative domains, which is fundamental to building operations
- Authentication & Authorization built-in to fundamental communication primitives
- Requestor must present proof of authorization with every request
 - Validated by communication fabric and Receiver
- Fully distributed, without relying on any central authority or vendor


Demonstrations of WAVE Scale and Resilience


Туре	Entities	DoTs granted	Avg Out°
Occupant	951,293	1,312,005	1.38
Apt Owner	15,787	529,562	33.54
Apt Bldg	40,921	40,921	1
Apt Lease	264,781	264,781	1
House Title	95,931	95,931	1
Thermostat	360,712	N/A	N/A
Meter	360,712	N/A	N/A
Utility	603	722,026	1197.39
Total	2,090,740	2,965,226	1.42

150

Processing

Туре	Idle	Normal	Attack	
Турс	(1h)	(30h)	(4h)	
M,10,20,x64	3.80 ± 0.72	3.96 ± 0.26	4.84 ± 0.75	
A,45,20,x64	$0.04 {\pm} 0.01$	$0.03 {\pm} 0.01$	0.59 ± 0.30	
A,45,2,x64	$0.05 {\pm} 0.01$	0.03 ± 0.01	0.48 ± 0.32	
A,1,20,armv7	$0.46 {\pm} 0.08$		1.39 ± 0.10	
A,2,2,armv7	$0.15 {\pm} 0.01$		1.58 ± 0.11	
A,1,20,atom	1.22 ± 0.14		1.37 ± 0.09	
A,1,2,atom	$0.47 {\pm} 0.06$		0.61 ± 0.10	

Emulated churn of Energy Services DoTs at full San Francisco scale (thermostatic load mgmt.)

0.6

Evaluated massive attack scenarios

Rich Scalable Bldg Services Infrastructure

- Rapid assembly of portable building application
- Driven from semantically rich metadata
- Modern container from cloud to on-premises

Stakeholder Engagement

We are halfway through the project

- Very strong engagement internally and externally
 - UCB CS team developing technology closely with CIEE team connected to Field Studies & Market
- Five papers published and presented at conferences
- The technology has been presented at multiple university-industry meetings
- Interest from
 - Building component manufacturers (Sage Glass. Armstrong, Price)
 - Building service software (Comfy, BuildingOS, Harmony.ai)
 - Architecture and engineering firms (Perkins and Will/Architecture, Integral Group/ Green Engineering, LPA inc./Sustainable Design Architecture Firm, Ingersoll Rand, Genentec/campus buildings, Intel)
 - Academic and start-up research (CBE/UC Berkeley, Prof. Ko/Korea University Hospital, Alsen, ChirpMicro)
 - Data management--BTrDB (PingThings)
 - Standards organizations (ASHRAE—BRICK)

Remaining Project Work

In the next 18 months:

- Identify component offerings that advance the sensor system design through detailed design study of new offerings from the relevant industry providers.
- More advanced and more fully integrated analytics and control algorithms, e.g., Learning-based models, schedules, etc.
- Continue to deploy and evaluate building scale proof point.
- Assess the secure, attack-resistant middleware theoretically and empirically.
- Demonstrate functionality with building applications providing occupantcentered control and continuous demand response.
- Identify how the technology developed could be utilized for securing and authenticating the delivery of a demand responsive event.
- Assess the potential market inclusion of the developed technology and application solutions.

Thank You

University of California, Berkeley Professor David Culler culler@berkeley.edu

REFERENCE SLIDES

Project Budget: The project is within budget.

Variances: No variances or changes to project plan (the current expenditures are slightly under budget, but expected to catch up).

Cost to Date: We have spent about 40% of the DOE share and 60% of the cost share.

Additional Funding: Deployments and hardware applications have leveraged other projects funded by California Energy Commission and ARPA-E.

Budget History						
October 1, 2016 – FY				FY 2019 - S	eptember 30,	
2017 FY 2018		B (current)	2019			
(past)				(plar	nned)	
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share	
\$387,360	\$74,074	\$429,003	\$55,848	\$770,494	\$46,450	

Project Plan and Schedule

Project Start: October 1, 2016 Projected End: September 30, 2019

DOE BENEFIT Hamilton

Low Cost Wireless Sensor Hardware Design Generation 1 System Software Design Generation 1 Go/No-Go #1: Design and manufactu... Second-generation sensor node with... Building Scale proof of sensor netwo...

Secure Attack-resistant Middleware

Design BOSSwave router Go/No-Go #2: Functional implementa... Demonstrate cloud-based building e... Assess and test the middle ware

Application Components and Servi...

Design interface to data managemen... Demonstrate application control co... Go/No-Go #3: Functional application ... Go/No-Go #4: Functional border rout... Go/No-Go #5: Functional proxy and d... Demonstrate occupant-centered envi... Demonstrate continuous demand-re...

Technology to Market Strategy and... Intellectual Property

Technology to Market Plan Personnel Technology to Market Plan Roadmap Technology to Market Plan Industry ... Market Discovery: Near-term market... Market Validation Cost Model and Demonstration

Market Discovery Assessment study ... Market Discovery Applicability study Transition Activities #1 Transition Activities #2

Transition Activities #3

