

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Passively-Powered Adaptively-Located (P-PAL) Flexible Hybrid Sensors

Performing Organizations: Palo Alto Research Center, Inc. (PARC) & Energy ETC PI: David Eric Schwartz, Area Manager (650) 812-4733 David.Schwartz@parc.com

Project Summary

<u>Timeline</u>:

Start date: 10/1/2016 Planned end date: 9/30/2018

Key Milestones

1. Milestone 1; 12/31/2017 – Demonstration of system with conventional hardware (complete)

Read distance ≥ 10 -m, positional accuracy ≤ 0.5 -m with 5-m read distance and ≤ 1 -m with 10-m read distance, successful transfer of 10-bit data from two sensors on tag to RF hub, and from RF hub to BMS. Preliminary commercial feasibility demonstrates a payback period of no more than 3 years.

2. Milestone 2; 9/30/2018: Demonstration of full system

Flexible hybrid system will achieve comparable performance to the conventionally fabricated system tested in Task 3.2 or will achieve target electrical specifications: read distance \geq 10-m, positional accuracy \leq 0.5-m with 5-m read distance and \leq 1-m with 10-m read distance, successful transfer of 10-bit data from two sensors on tag to RF hub, and from RF hub to BMS achieved. Rectification efficiency >70% demonstrated.

Budget:

Total Project \$ to Date: \$822,004

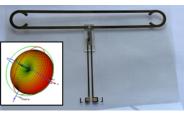
- DOE: \$657,221
- Cost Share: \$164,783

Total Project \$:993,858

- DOE: \$795,086
- Cost Share: \$198,772

Key Partner:

Energy ETC


Project Outcome:

Facilitation of fine-grained building sensing via low-cost enabled by RF powered self-locating peeland-stick sensors to enable reductions in HVAC power consumption

Team

- David Schwartz, PI; Clinton Smith; Shabnam Ladan
- Leading research institution practicing open innovation
- Deep expertise in printed and flexible electronics
- Broad capability in electronics, algorithms, sensor systems, and RF

- Rick Costanza
- Building controls system integrator
- Specialization in cloud-based, <u>supplier-agnostic</u> BMS software
- Provides interoperability support and field-testing sites

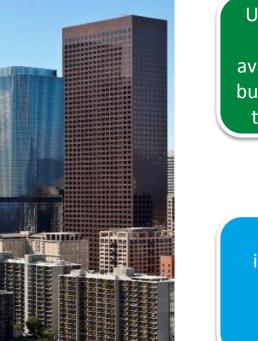
Challenge

Commercial buildings generally have just **one** temperature sensor per zone

Up to 30% energy savings are available with more building sensors: up to 1,800 Tbtu/yr

BUT

Hardware, installation, and commissioning costs are prohibitive



A system of 10 temperature/humidity sensors to cover a room can cost \$2,700-\$4,000 installed.

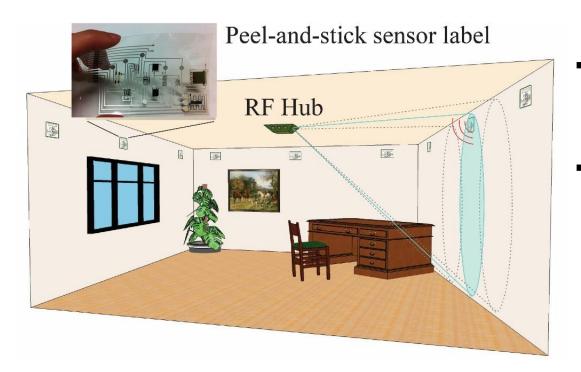
Siemens, 2012, "Building Automation - impact on energy efficiency."

Challenge

Buildings generally have just **one** temperature sensor per zone

Up to 30% energy savings are available with more building sensors: up to 1,800 Tbtu/yr

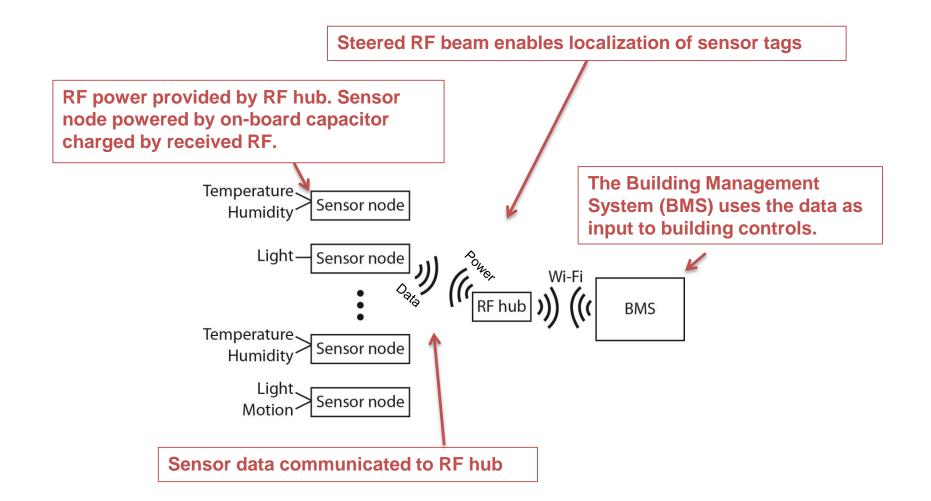
BUT


Hardware, installation, and commissioning costs are prohibitive

P-PAL is a self-commissioning, remotely-powered wireless sensor system

Siemens, 2012, "Building Automation - impact on energy efficiency."

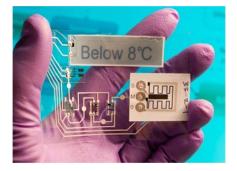
Passively-Powered Adaptively-Located (P-PAL) Flexible Hybrid Sensors

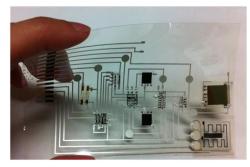

- Leverages PARC's flexiblehybrid electronics fabrication capability
- Project work includes:
 - Development of sensor tag electronics
 - RF power delivery
 - Tag localization techniques
 - BMS integration

P-PAL is a self-commissioning, remotely-powered wireless sensor system

Advantages

- Peel-and-stick form factor, based on flexible-hybrid electronics (FHE) technology for easy plug-and-play installation.
- Remote power delivery, based on PARC's unique printed high-efficiency antennas, eliminating battery costs, limited battery lifetime and charge, and light harvesting.
- Wireless communication to building management systems, based on Energy ETC's system-agnostic platform, for reduced installation cost.
- Self-locating sensors to within 0.5-m, via PARC's steered antenna topology, for reduced commissioning cost, and enabling automatic sensor recommissioning upon replacement.
- Adaptability to multiple sensors of different types (temperature, humidity, light, occupancy, air quality, etc.), for customizability.


System architecture

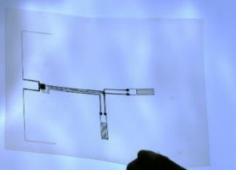

Background: Flexible-Hybrid Electroncs (FHE)

Fully Printed

Temperature tag

Time-temperature dose tag

Temperature logger



Temperature/light sensor system

Hybrid printed/conventional

2-axis strain sensor

Mouth guard biosensor

Impact

Key differentiators:

- Ultra low cost hardware
 - FHE fabrication
 - Use of common RF frequency bands

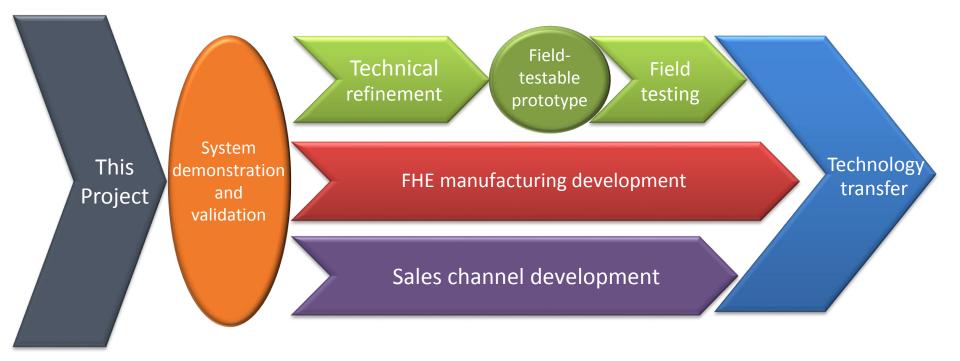
Ease of installation/commissioning

- Battery-free RF power
- Peel-and-stick form factor
- Self-localization

Interoperability

- MODBUS over WiFi
- Easily adapted to other protocols

Adaptability


Compatible with multiple sensor types

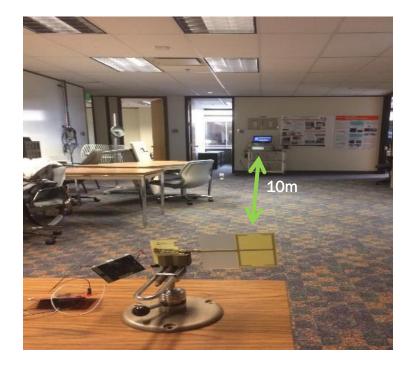
Cost Model

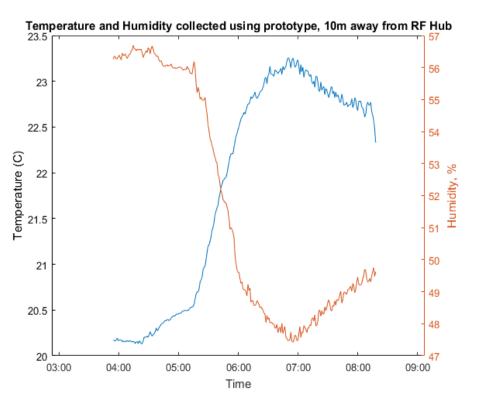
- Detailed cost model including multiple scenarios and hardware, manufacturing, & labor cost
- Cost/10 sensors ~\$200 (as compared to \$2,700-\$4,000)
- Payback time 2.1 3 years in most commercial installations and < 2 years in residences

	Commercial										
	Heating and Cooling Lighting		Lighting			Heating an	d Cooling				
Labor rate	Low	Low	High	High	Cost scenario	Low	High		Cost scenario	Low	High
Power availability	Yes	No	Yes	No		-	Ŭ			-	0
Cost/sensor tag (\$)	\$8.46	\$8.46	\$8.46	\$8.46		\$8.46	\$8.46		Cost/sensor tag (\$)	\$8.46	\$8.46
Area covered by RF hub (sq ft)	400	400	400	400		400	400		Area covered by sen	400	400
Sensors/RF hub	10	10	10	10		10	10		Sensors/RF hub	10	10
RF hub installed cost (wireless) (\$)	\$120.75	\$215.75	\$164.75	\$339.75		\$164.75	\$339.75		RF hub cost (\$)	\$68.50	\$68.50
Sensor cost per RF hub (\$)	\$ 84.63	\$ 84.63	\$ 84.63	\$ 84.63		\$ 84.63	\$ 84.63		Sensor cost per RF h	\$ 84.63	\$ 84.63
System cost per area (\$/sq ft)	0.51	0.75	0.62	1.06		\$ 0.62	\$ 1.06		System cost per are	\$0.38	\$0.38
									House size (sq ft)	1500	1500
									System installed cos	\$574	\$574
Baseline energy use (kWh/sq ft/y)	8.0	8.0	8.0	8.0		2.3	2.3		Baseline energy use	9463.9	9463.9
Energy cost (\$/kWh)	\$0.104	\$0.104	\$0.104	\$0.104		\$0.104			Energy cost (\$/kWh		\$0.127
Baseline energy cost (\$/sq ft/y)	\$0.83	\$0.83	\$0.83	\$0.83		\$0.24	\$0.24		Baseline energy cos		\$1201.92
Projected energy savings (%)	30%	30%	30%	30%		13%	13%		Projected energy sa		30%
Energy cost savings (\$/sq ft/y)	\$0.250	\$0.250	\$0.250	\$0.250		\$0.031	\$0.031		Energy cost savings	\$360.57	\$360.57
Simple payback (y)	2.1	3.0		4.3		20.0			Simple payback (y)	1.6	1.6

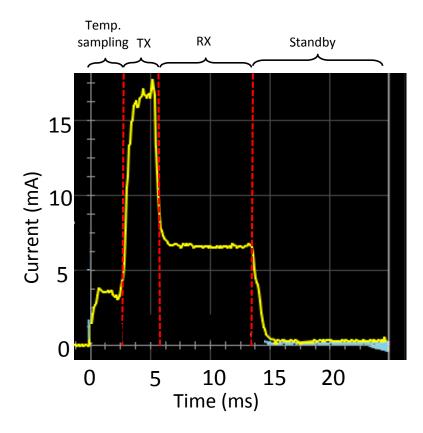
Realization Strategy

Project overview


 Data communication over 10 m Localization to 1 m at 10 m and 0.5-m at 5 m 	 Rectifier and antenna as and being tested Rectifier and antenna as and being tested RF hub rede Components complete Mechanical assembly un Received power measurement easurement, encoding and 						
 RF hub design and verification Power transmission over 10 m Communication to BMS via MODBUS over WiFi 		communication already demonstrated					
measurement Basi							
Firmware Sensor tag microcontroller programm RF hub programming nearly completed 							

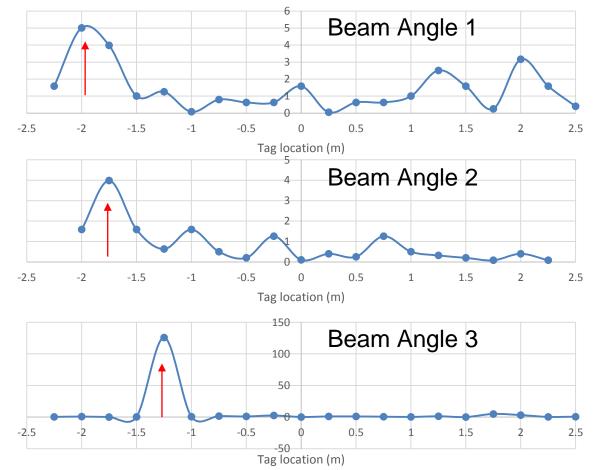

.

Current status:

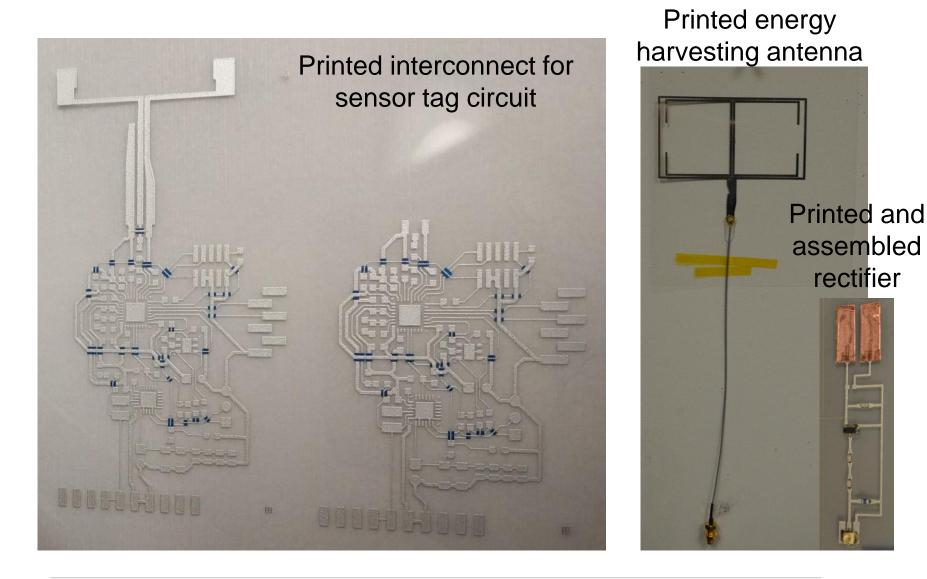

- Have demonstrated system using conventional hardware
- Implementing flexible hybrid sensor tag
- Data communication to BMS established
- Building final version of RF hub (electronics completed, firmware and mechanics nearly completed)

Power and data transmission over 10 m

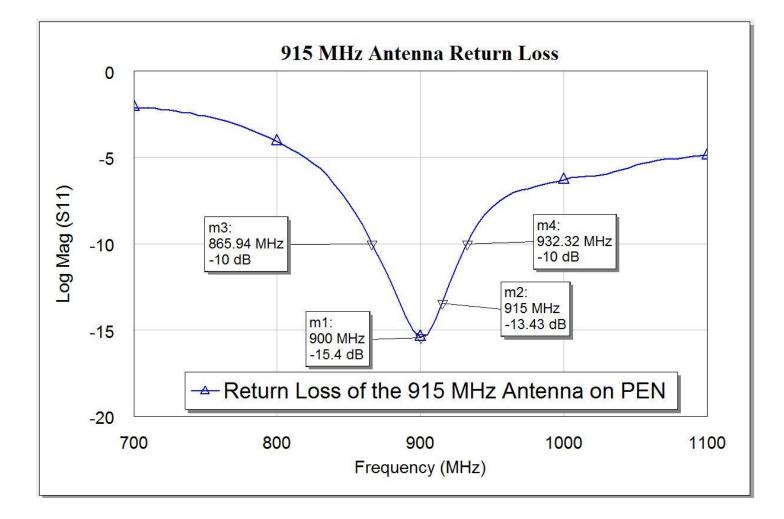
Power consumption profile (preliminary)



Phase	Current	Duration	Energy
Turn on			500 µJ
Temperature sampling	4 mA	2.5 ms	33 µJ
ТХ	16 mA	3.5 ms	184 µJ
RX	6 mA	11 ms	217 µJ
Total			834 µJ


Energy required at the sensor for one measurement cycle	Charging power available	Charging time required
834 μJ	11.7 μW	71 s

Tag Localization at 5-m distance


- Plots show tag in different positions for fixed beam angle
- Localization to 0.5 m is demonstrated in this case
- Also have demonstrated localization at 8 m and 10 m

Flexible-Hybrid Implementation Progress

Preliminary measurements

Stakeholder Engagement

Technology is still in early stage – developing first lab-scale prototype \geq system

Working with (energy etc) to ensure system is interoperable

- Engaging with major BMS hardware and service providers as well as Energy ETC to seek input into desirable characteristics as well as input into cost model
- \blacktriangleright Working with the NEXTELEX manufacturing institute, PARC's parent company, **xerox** , and other major players to ensure FHE manufacturing is available
- Demonstration of energy savings in field trials critical to success. Initial field tests at PARC facility. Working with Energy ETC to identify and engage with field test sites.

Remaining Project Work

Flexible-hybrid tag implementation

- Goal: Flexible hybrid system will achieve comparable performance to the conventionally fabricated system
- Status: Design and print layout complete; fabrication and initial testing underway

Final RF hub implementation

- Goal: RF hub that can transmit power 360°, receive data from multiple tags, transmit data to BMS
- Status: Electronics complete; firmware nearly complete; integration underway

Final demonstration

- Goal: Read distance ≥10-m, positional accuracy ≤0.5-m with 5-m read distance and ≤1-m with 10-m read distance, successful transfer of 10-bit data from two sensors on tag to RF hub, and from RF hub to BMS
- Status: Integration of software with PARC BMS complete; preliminary localization algorithm demonstrated; will refine localization, power management, high-level system application during testing with FHE system

Thank You

PARC, Energy ETC David Eric Schwartz, Area Manager (PARC) (650) 812-4733 David.Schwartz@parc.com

REFERENCE SLIDES

Project Budget

Variances: Some funding was moved to BP1 (2016-2017) from BP2 (2018) to cover redesign work and transfer of Milestone 5.2.1 to BP1
Cost to Date: \$822,030 total cost
Additional Funding: There are no additional funding sources

Budget History												
, ,	6– FY 2017 ast)		9/30/2018 rent)		2019 nned)							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share							
\$657,247	\$164,783	\$137,839	\$33,989	N/A	N/A							

Project Plan and Schedule

- Start date: 10/1/2016; Planned end date: 9/30/2018
- All milestones achieved on or ahead of schedule
- Go/No-Go; 12/31/2017 Demonstration of system with conventional hardware (Passed)
- Future work: Completion of flexible hybrid tag and demonstration of full system

															L													
Та	sk	Description	eam memb	dget Peri								1						-						2				
			Pi	oject Mo	1	2	3	4	5	6	7	8	9	10	11	. 12	13	14	15	16	17	18	19	20	21	22	23	24
0		Management																										
1		Sensor tag electronics development																										
	1.1	Antenna design, modeling, fabrication	PARC				M1.1.1																					
	1.2	Sensor tag electronics design and fabrication on PCB	PARC						M1.2.1																			
	1.3	Design revision												M1.3.1														
2		Transceiver development																										
	2.1	Design and fabrication of monodirectional transceiver	PARC					M2.1.1																				
	2.2	Design of multidirectional transceiver	PARC										M2.2.1															
	2.3	Fabrication of multidirectional transceiver													M2.3.1													
	2.4	Implementation of localization algorithm															M2.4.1											
3		System testing																										
	3.1	Test and verify system with monodirectional transceiver	PARC								M3.1.1																	
	3.2	Test full system																	M3.2.1									
4		Interoperability assessment and commissioning plan	Energy ETC																M4.0.1									
5		Flexible hybrid integration and testing																										
		Flexible hybrid implementation	PARC																						M5.1.1			
	5.2	Integration into PARC building management system	- And																			M5.2.1						
	5.3	Testing of full system																										M5.3.1
6		Market Transformation Plan I														M6.1.3			M6.2.2									
	6.1	Intellectual Property	PARC/				M6.1.1																					
	6.2	Technoeconomic Analysis (TEA) and Cost Model	EETC							M6.2.1			M6.2.2						M6.2.3									
	6.3	Market Discovery	LEIC										M6.3.1			M6.3.2			M6.3.3									
	6.4	Technology to Market (T2M) Plan					M6.4.1			M6.4.2									M6.4.3									
7		Market Transformation Plan II	PARC/		_																							
	7.1	Technoeconomic Analysis (TEA) and Cost Model	EETC		_																				M7.1.1			
	7.2	Transition Activities	EEIC																			M7.2.1			M7.2.2		1	M7.2.3

Current status