

PORTFOLIO REVIEW 2018

Dispatchable Solar Power

Adapting CSTP to modern grid needs

Hank Price, Managing Director Solar Dynamics LLC

Flexible Generation Needed

- The CAISO "Duck Curve" is a sign of success.
- Managing the Duck is one of the key challenges to moving to higher renewable contributions on the grid.
- Utilities are responding by:
 - Reducing procurement of utility scale solar.
 - Closing baseload plants.
 - Adding flexible or "Peaking" natural gas resources.
- Western states proposing more aggressive RPS targets
 - California 100% by 2045
 - Nevada 80% by 2040
 - New Mexico 80% by 2040

CAISO Duck Curve

Can a dispatchable CSTP plant fill the need for flexible peaking capacity?

Example based on Actual 2016/2017 CAISO System Load

Technology 2 Market: Dispatchable Solar Power Plant

- Market Assessment
- DSP Operational Requirements
 - Fast Starts & Ramps
 - Store solar energy during the day
 - Dispatch power anytime during next 24 hrs
- **Cost Reduction**
 - Standardized design
 - **Power Parks**
 - Compressed EPC schedule
- Commercialization
 - Conceptual engineering design and FPC cost estimate
 - Vendors identified for all key equipment
 - Address tower sensitive development issues
 - Outreach to Developers, EPCs, Utilities

Dispatchable Solar Power (DSP) Plant

Uses Conventional Molten-Salt Tower Technology

Arizona Public Service 2017 Peaking Capacity RFP

Option 1: Time of Delivery Power Purchase Agreement

- Preferred = 3X Less Preferred
- More Preferred = 9x Less Preferred
- No power during "No Must Take Energy

Option 2: Thermal Tolling Power Purchase Agreement

- Capable of operating for 4 hours at 46°C at 100% contract capacity.
- Dispatchable by APS with AGC (load following capability)
- Stable operation at a 25% loading.
- · Capable of at least 2 starts per day.
- · Faster starts and ramp rates are better

Dispatchable Solar Power Plant Design

Configuration	Summer On-Peak
	5 hours
Turbine Nominal Gross Power	250 MW _e
Turbine Nominal Net Power	230 MW _e
Power cycle gross thermal efficiency	44%
Power cycle cooling system	hybrid
Power cycle design ambient temperature	46°C
Solar Receiver design duty	400 MW _t
Solar Multiple	0.65
Tower Optical Height	170 m
Total Heliostat Area	700,000 m ²
Solar Field Area	256 ha
Storage Capacity	3,000 MWh _e
Storage Capacity	5 hr
Annual Gross Capacity Factor	16.5%
1 st year Net Generation	334.2 GWh _e

Fast Start Power Cycle

Siemens SST900 Steam Turbine

- Up to 250 MW
- Fast Start & Ramp
- Automated Start-up
- Ships in 3 pieces
- 30 years with daily starts

Aalborg Steam Generator

- Header Coil HX
- Allows 5x temperature gradients
- Starts up in under 10 min
- Modular design
- Passive circulation
- Salt drains back.

Typical steam generator layout with Natural circulation is shown above.

Two units are required for 50 MWe.

DSP Plant Output for APS TOD Schedule

This shows the modeled output of a DSP plant optimized for a specific TOD schedule requested by Arizona Public Service (APS).

- The plant achieves very high capacity factors during the more preferred and preferred TOD periods.
- Approximately 82% of the total energy from the plant is delivered during these periods.

SolarDynamics

Design Enhancements to Facilitate Permitting

Site Selection

- Selecting a site with low permitting and development costs.
- Build on previously disturbed private land.

Square Mile Site

- Infrastructure often set on section lines (roads, utilities, drainage)
- More sites available to choose from.

Reduce Avian Impacts

- Reduce high flux standby zones
- Minimize onsite habitat for animals and birds, reduce perching locations
- Reduce bird "impacts" on heliostats and other structures

Minimize Visual Impacts

- Location away from population centers and airports.
- Reduce brightness of spilled light on the tower, improved heliostat optics to reduce beam spillage, dark tower.
- Aesthetically pleasing design

Reduced Water Consumption

- Dry or hybrid cooling,
- Dry or reduced water cleaning of heliostats, ground cover
- Improved water treatment, sCO2 power cycle

Square Mile Site

Visual Impacts

Avian Concerns

DSP Plant vs. Combustion Turbine in Arizona

Capacity Cost [\$/kW-yr]

DSP Plant vs. Combustion Turbine in Arizona

All-In Capacity Cost [\$/kW-yr]

Summary

- Markets of the future need flexible renewable peaking capacity.
- Molten-salt tower technology can be used to be "dispatchable solar power" plants.
 - A reliable source of capacity
 - Can operate in flexible manner as a peaker
 - Can compete with new fossil plants in good resource locations.
- CSTP Needs:
 - Address siting issues
 - Accelerate deployment
 - Cost reduction
 - Stakeholder Outreach

SolarDynamics

Thank you for your attention!

Hank Price, P.E.

Hank.Price@SolarDynLLC.com (720) 955-6404

