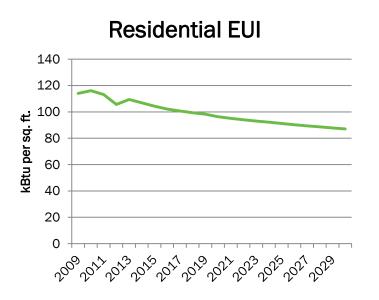
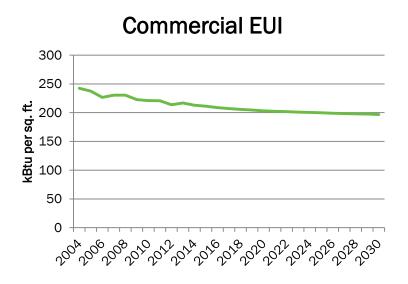


Transactive Energy Management


Sven Mumme, Technology Manager, Emerging Technologies
May 1, 2018



Transactive Field Validation Session Agenda

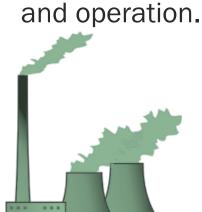
10:40-11:10	Introduction
11:10-11:40	PNNL Connected Homes Project
11:40-12:10	ORNL Connected Homes Task
12:10-12:40	ORNL Connected Neighborhoods Project
12:40-1:30	BREAK
1:30-2:00	PNNL Virtual Battery Project
2:00-2:30	ORNL Virtual Battery Characterization Task
2:30-3:30	PNNL Campus Project
3:30-4:00	BREAK
4:00-4:30	PNNL Transformer Project
4:30-500	Wrap-up with Reviewers

BTO Goal: Reduce Building Energy Use by 30% by 2030

2030 sector-wide goal: reduce energy use 30% per sq. ft. Long term goal: reduce energy use 50% per sq. ft.

Metric: energy use intensity (EUI)

Baseline: 2010


Rationale: allows comparisons across fuel types, building types, building sectors, end uses, that are more internationally relevant.

Grid-Interactive Efficient Buildings (GEB)

BTO is developing a new GEB strategy that will outline specific technical challenges and goals related to building-grid interaction.

- The concept of GEB is about the integration of energy efficiency and grid services recognizing that:
 - Building energy efficiency is an important grid resource,
 - Buildings can act as flexible, dispatchable grid resources,
 - The value of energy changes based on time and location, and
 - Buildings have a role in aggregating other DERs including electric vehicles (EVs), variable renewable energy (VRE) resources, and energy storage.

Buildings are an underutilized resource when it comes to grid planning

Emerging Technologies

Goal

By 2030, develop cost-effective technologies capable of reducing a building's energy use per square foot by 45%, relative to 2010.

Strategy

- Use Scout to analyze building energy efficiency technology potential impacts
- Fund early-stage R&D through competitive solicitations and National Lab technical capabilities
- Work with DOE's Grid Modernization Lab Consortium (GMLC) as part of DOE's grid modernization activities

Technology Areas

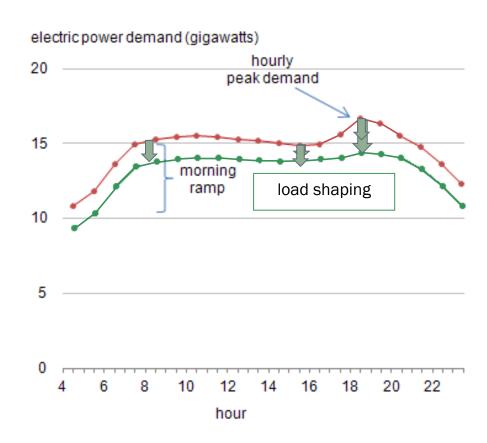
What are grid services?

 In the context of buildings, grid services are actions buildings can take in response to real-time grid conditions that provide value through avoided costs.

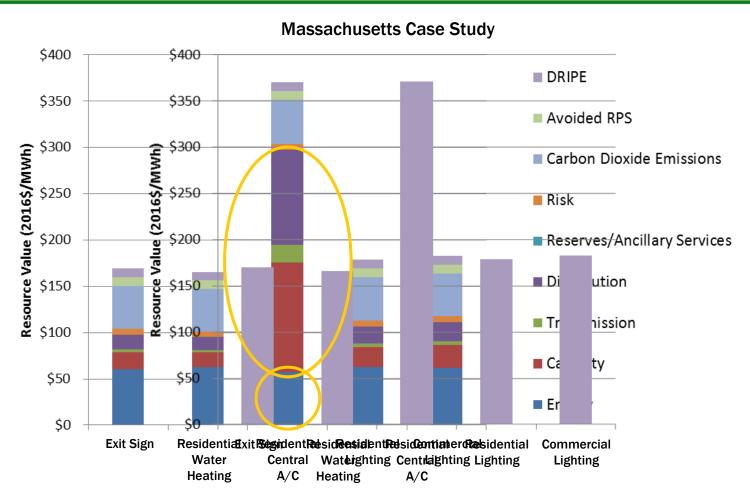
- Grid services can be subdivided into services that:
 - Avoid generation costs by offsetting generation capacity investments, load-shifting to lower-cost generation, or providing ancillary services (frequency regulation and operating reserves)
 - Avoid delivery costs by offsetting transmission and distribution capacity investments, or supporting distribution-level voltage control

Different grid services have different technical requirements

Moving Towards the Grid of the Future



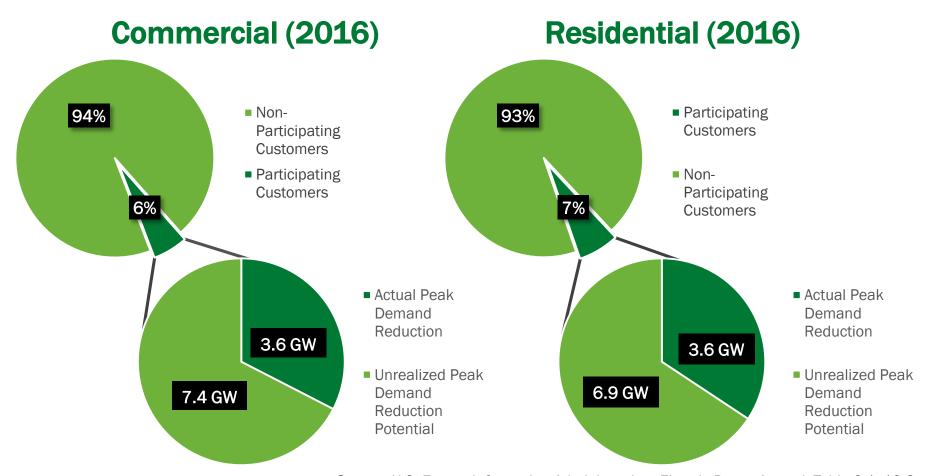
Source: Navigant


Energy Efficiency can be Key Responsive Grid Resource

Energy efficiency projects remove energy loads from the grid, reducing the energy supply required.

- Defers or eliminate investments in new electric generation capacity or the T&D system; and
- Reduces peak demand and the strain placed on existing T&D infrastructure.

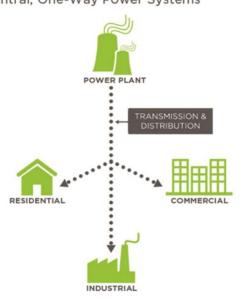
Not All Energy Efficiency is Equally Valuable



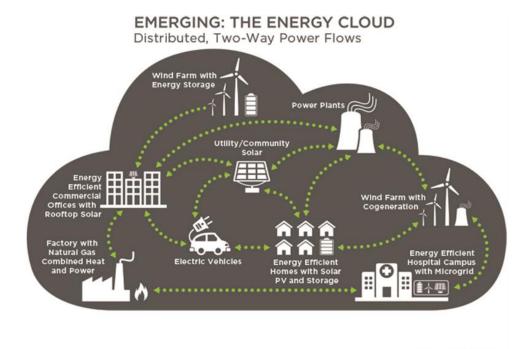
Time-varying value of energy efficiency savings by load shape (reflects publicly available data only)

Source: Time-Varying Value of Electric Energy Efficiency June 2017 N.Mims, T.Eckman & C.Goldman, LBNL, for BTO

Today's Grid-Responsive Buildings


In 2009, FERC estimated **138 GW** of *achievable* participation in grid demand response (DR) programs by residential, commercial, and industrial customers.

Source: U.S. Energy Information Administration, Electric Power Annual, Table 2.1, 10.8


Changing Energy System Means Changing How We Think About Buildings

TODAY: ONE-WAY POWER SYSTEM Central, One-Way Power Systems

©2016 Navigant Consulting, Inc. All rights reserved.

- Large central dispatchable generation facilities
- Designed for one-way energy flow
- Rules-based and labor intensive operation of infrastructure by utilities
- Technologically inflexible
- · Simple market structures and transactions
- Highly regulated with costs passed to rate base

(Source: Navigant)

- · Renewable and distributed energy resources
- Multiple inputs and users, supporting two-way energy flows
- Digitalization of the electro-mechanical infrastructure (e.g., smart meters, internet of things, distribution automation) with near real-time condition monitoring
- · Technologies are adaptable and scalable
- Supports dynamic market structures and transactional platforms
- · Adaptive regulations for evolving mix of service providers and customers needs

Projects being reviewed today

PNNL Connected Homes Project – Nora Wang

ORNL Connected Homes Task – Helia Zandi

ORNL Connected Neighborhoods Project – Michael Starke

PNNL Virtual Battery Project - Di Wu

ORNL Virtual Battery Characterization Task – Jeff Munk

PNNL Campus Project – Srinivas Katipamula

PNNL Transformer Project – Jianming "Jamie" Lian & Klaehn Burkes

Sven Mumme

Technology Manager, Emerging Technologies

DOE Building Technologies Office

sven.mumme@ee.doe.gov