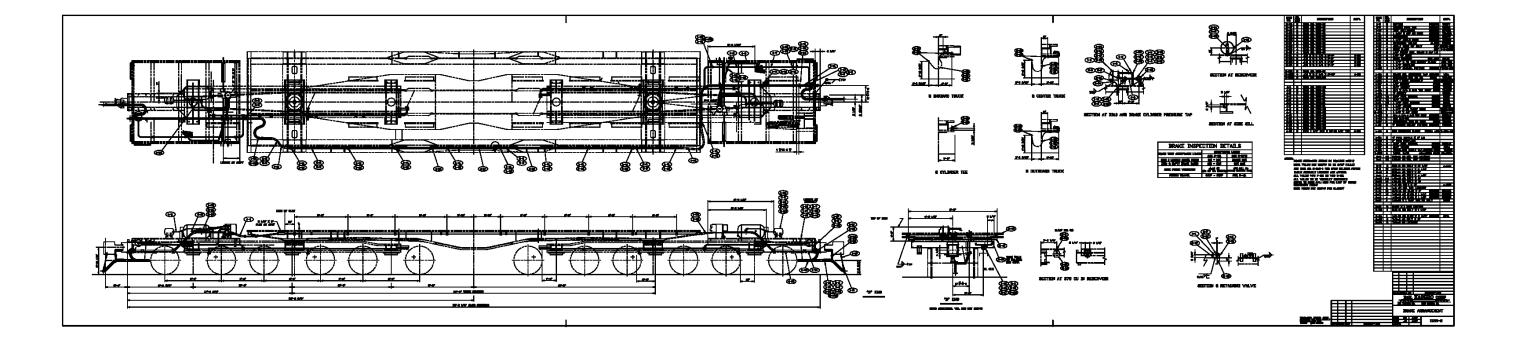
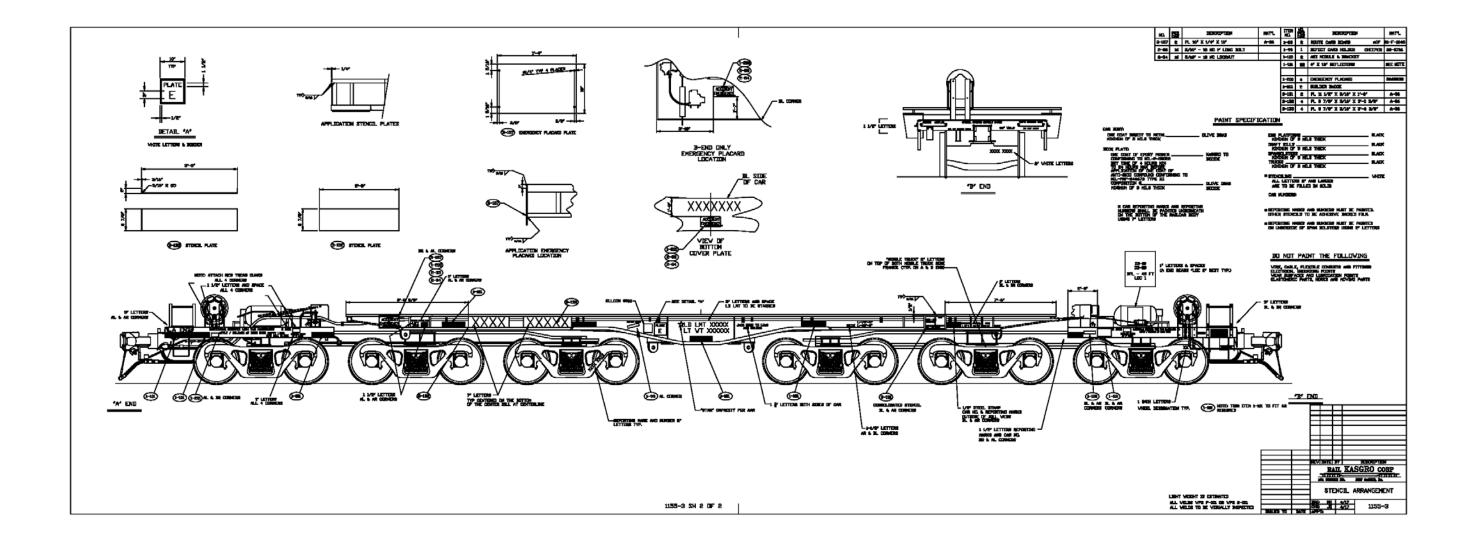

Appendix G – Preliminary Atlas Prototype Railcar Deliverables

Page G-1 February 2, 2018

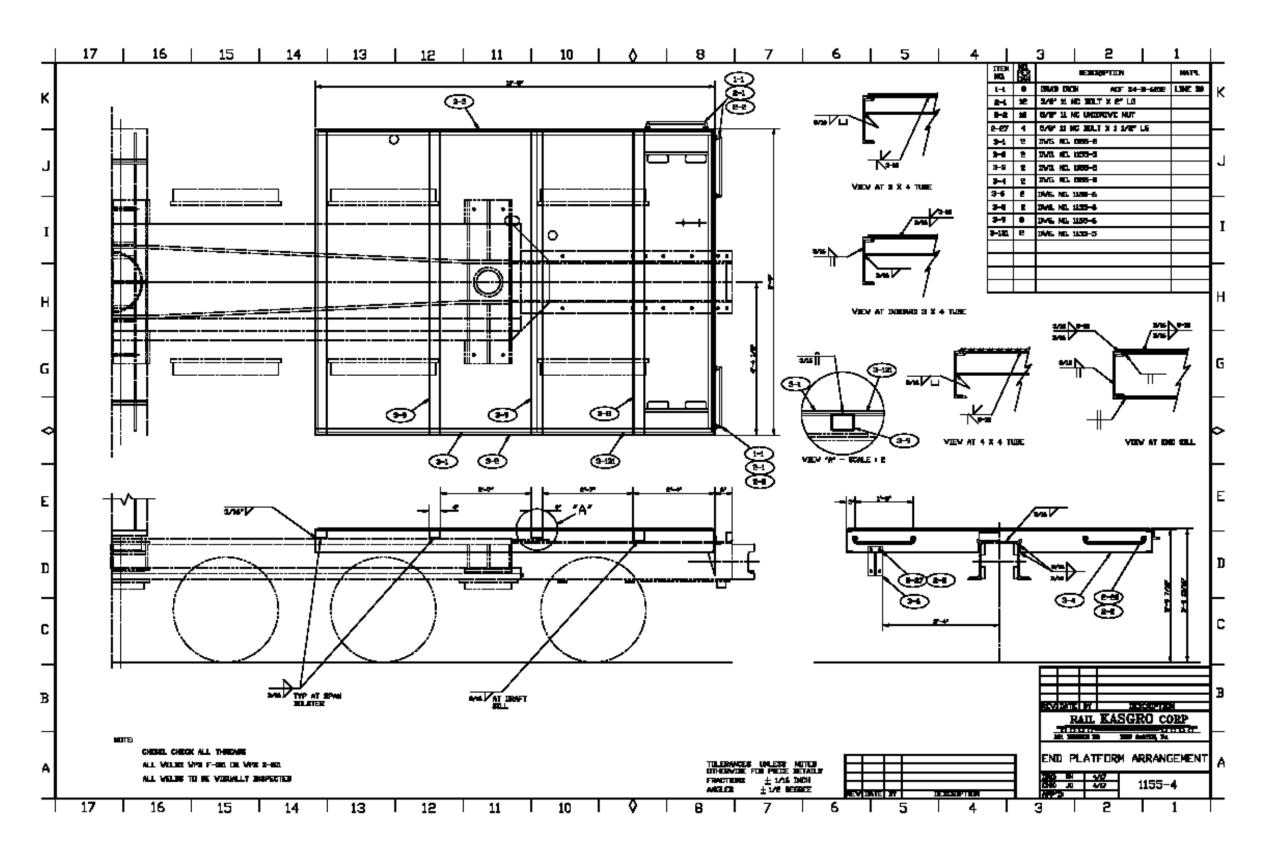
APPENDIX G-1 ATLAS RAILCAR PRELIMINARY FABRICATION DRAWINGS


Page G.1-1 February 2, 2018

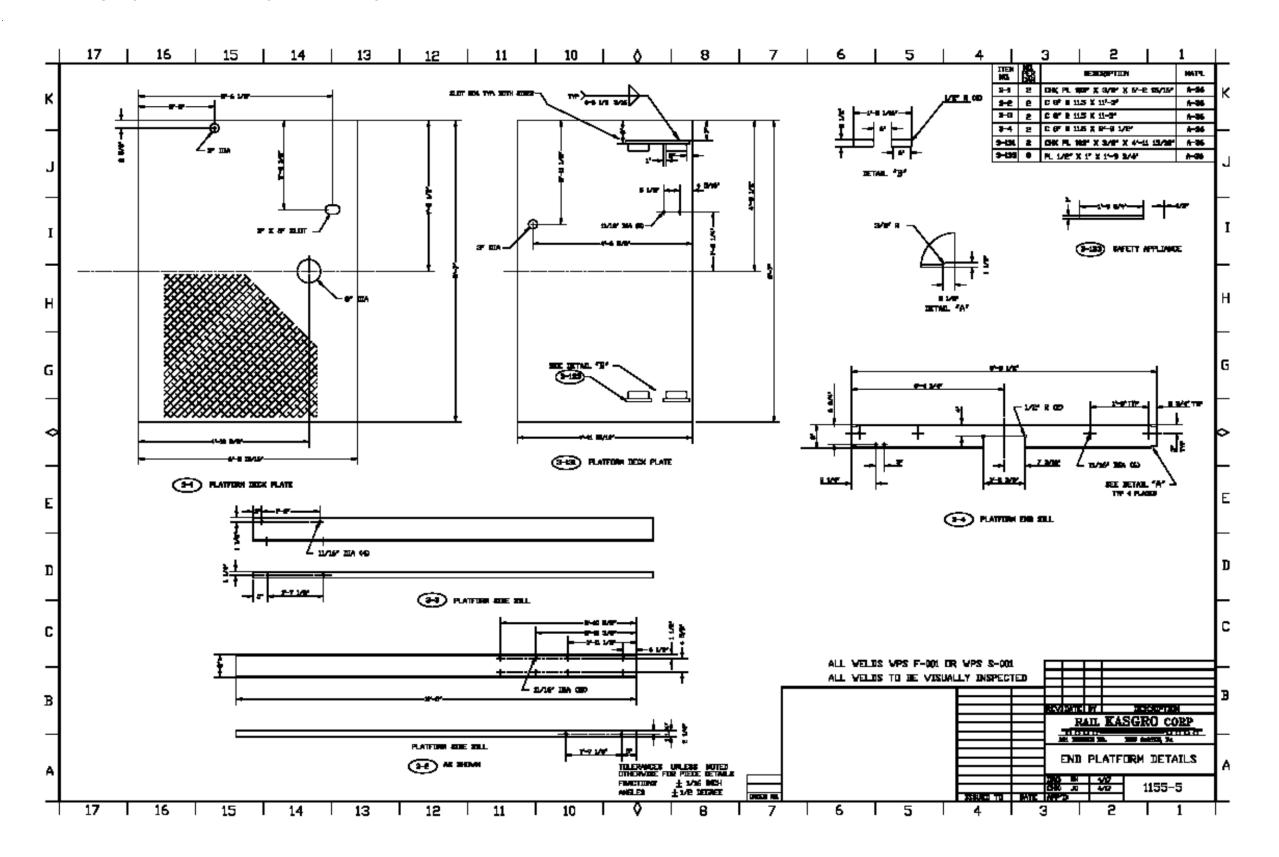
APPENDIX G-1.1 GENERAL ARRANGEMENT


PageG.1-2 February 2, 2018

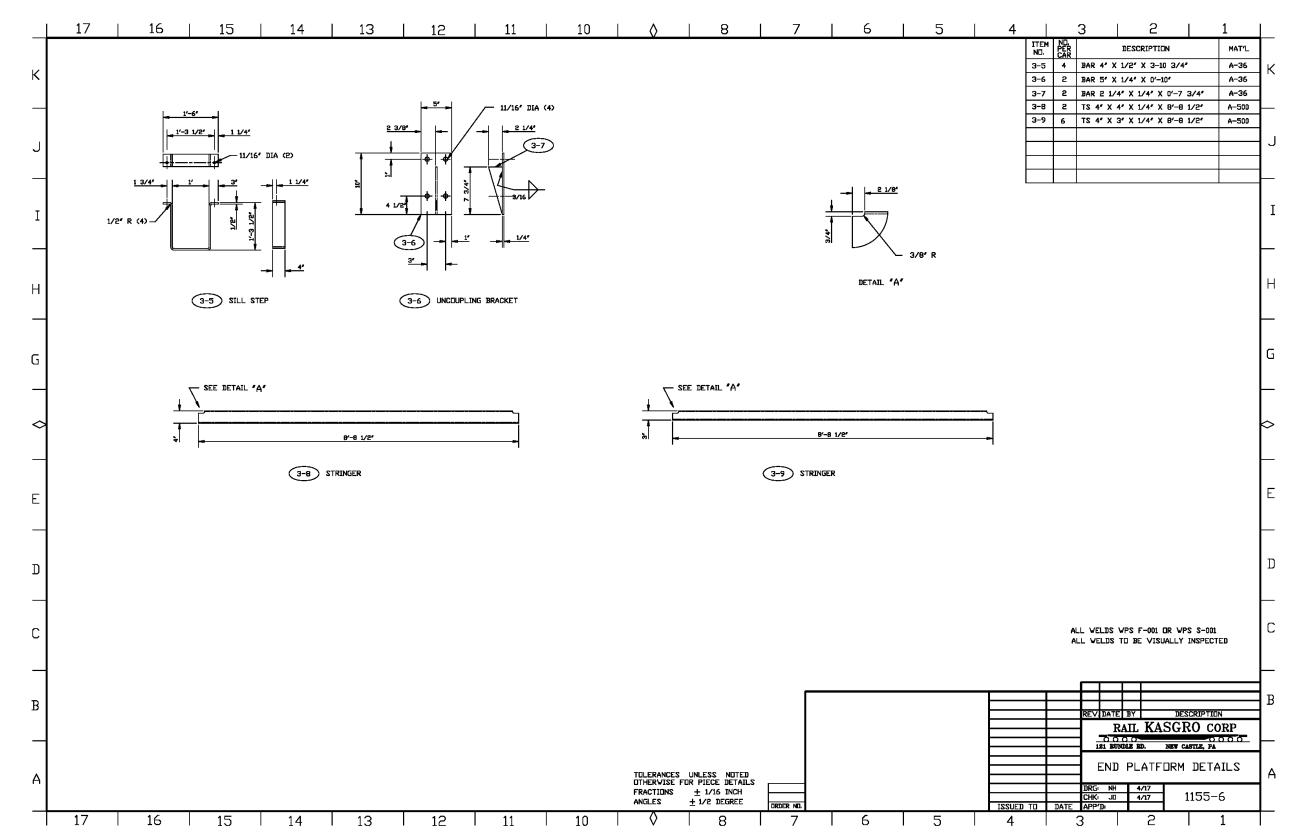
APPENDIX G-1.2 BRAKE ARRANGEMENT


PageG.1-3 February 2, 2018

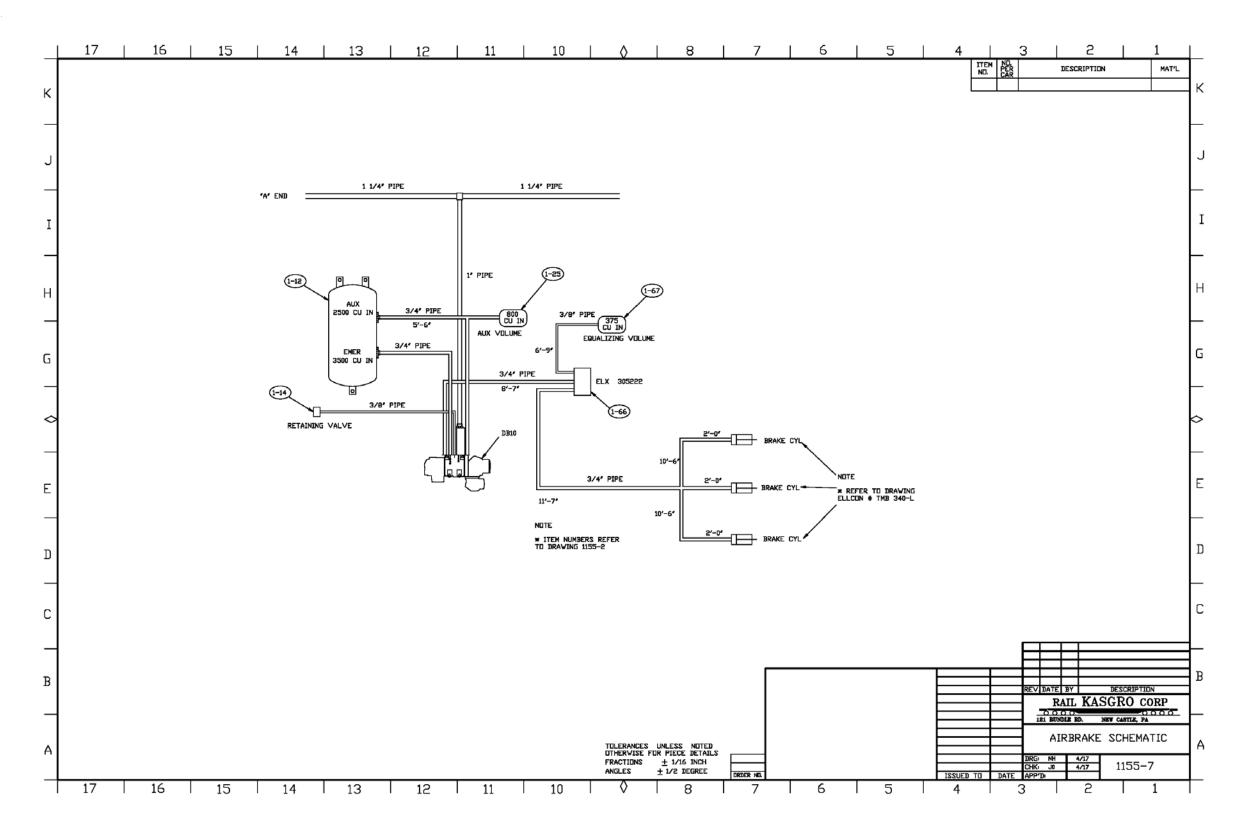
APPENDIX G-1.3 STENCIL ARRANGEMENT


PageG.1-4 February 2, 2018

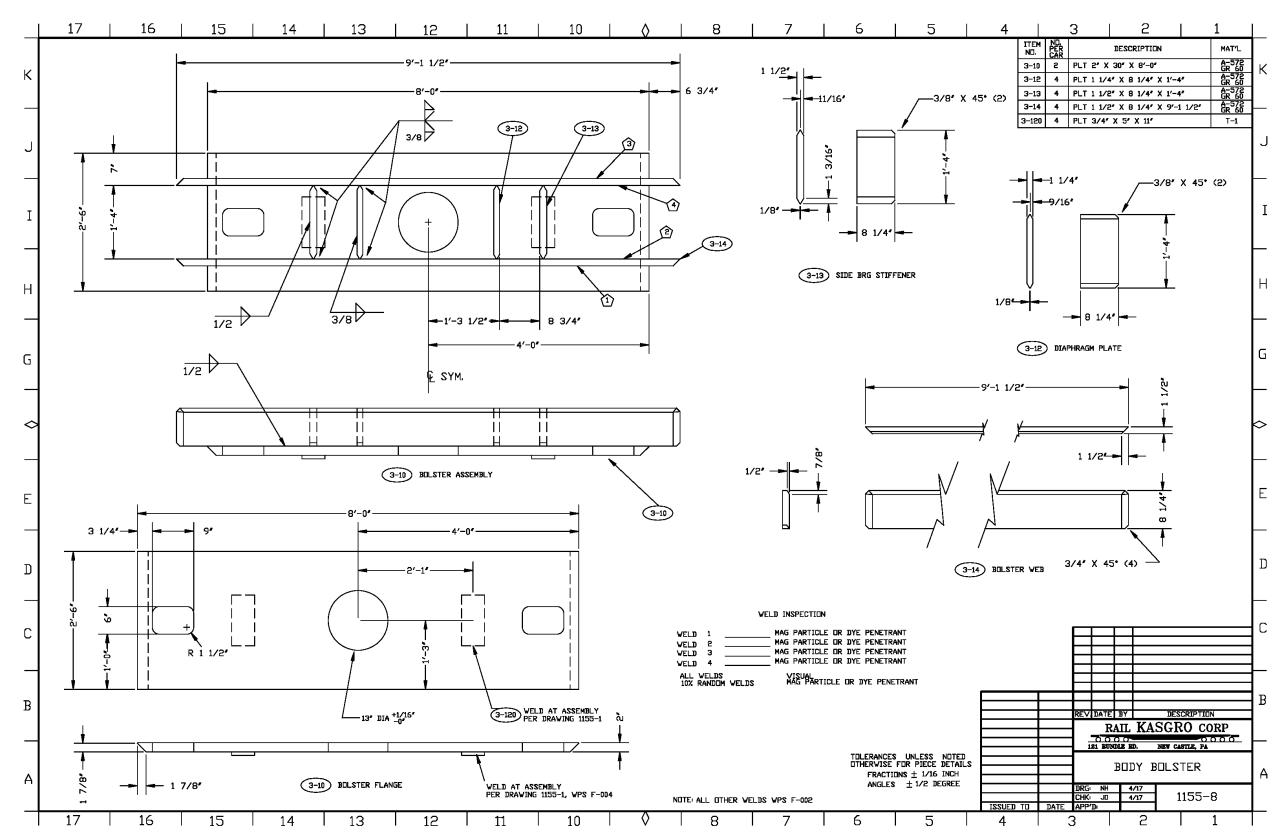
APPENDIX G-1.4 END PLATFORM ARRANGEMENT



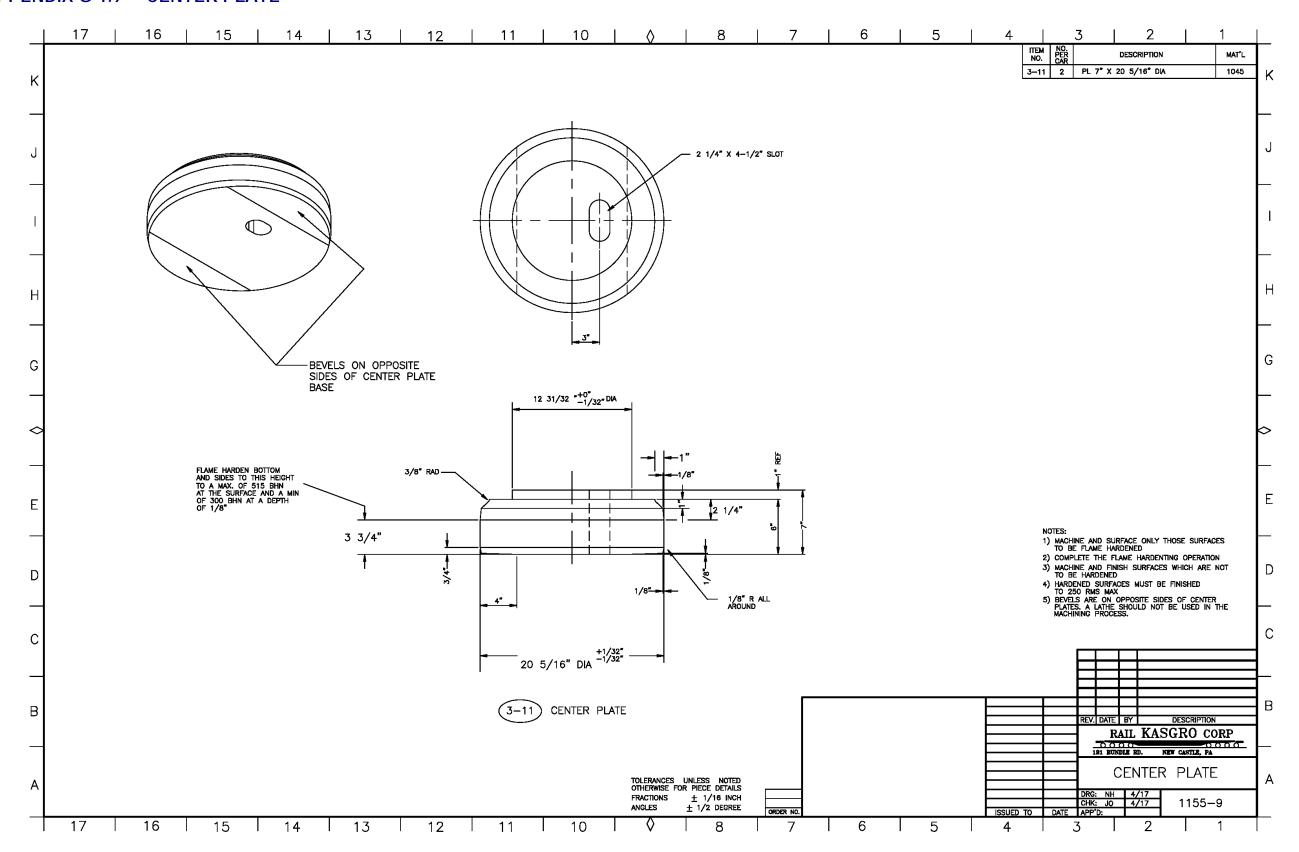
PageG.1-5


APPENDIX G-1.5 END PLATFORM DETAILS

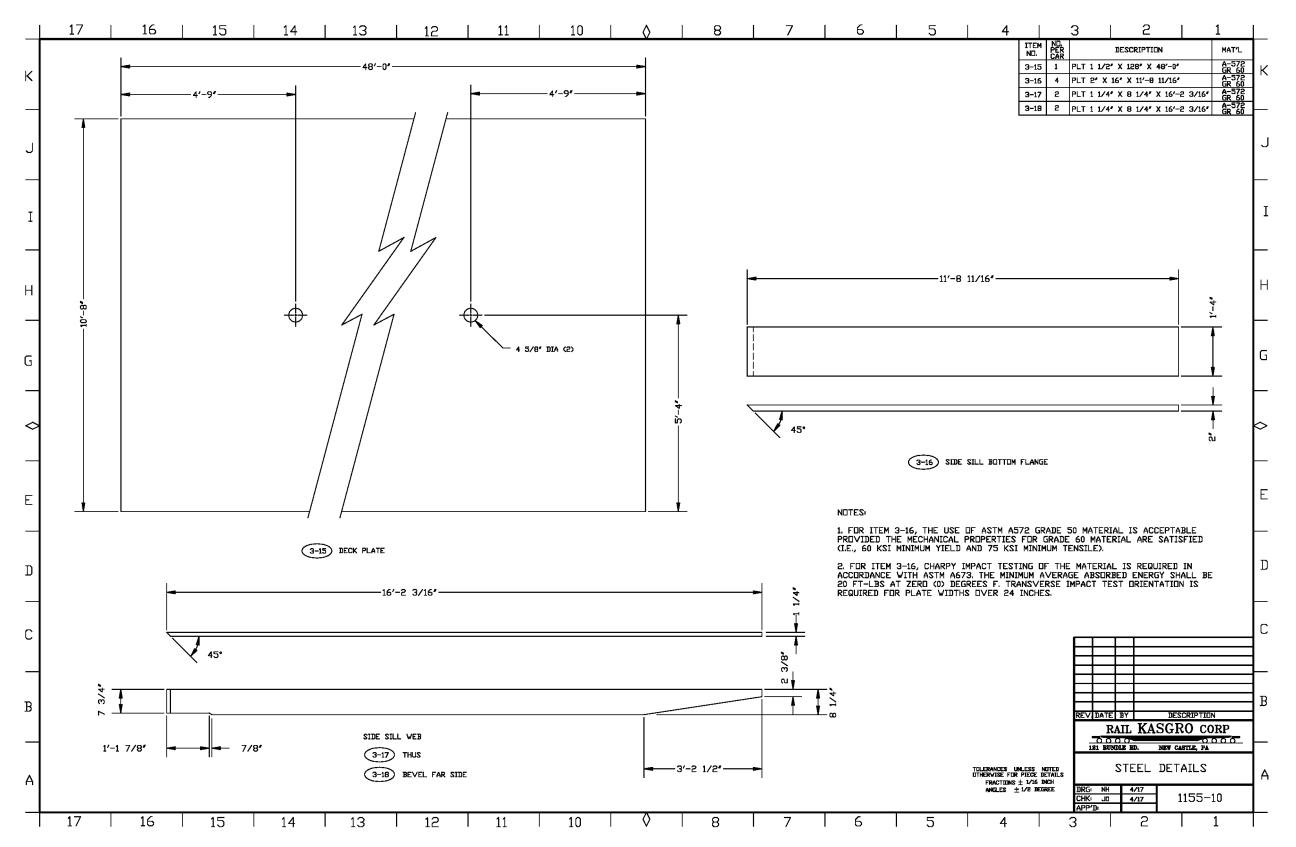
APPENDIX G-1.6 END PLATFORM DETAILS



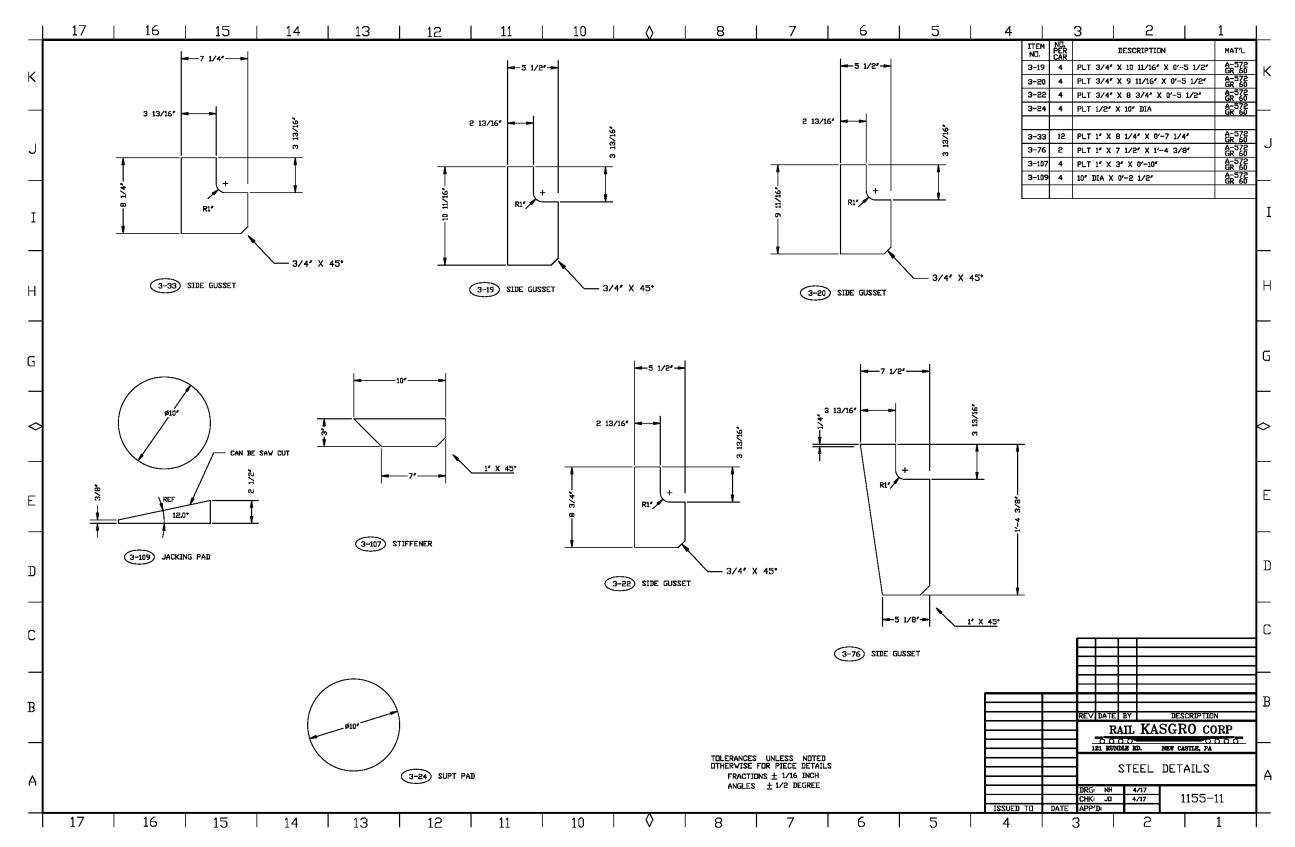
APPENDIX G-1.7 AIR BRAKE SCHEMATIC



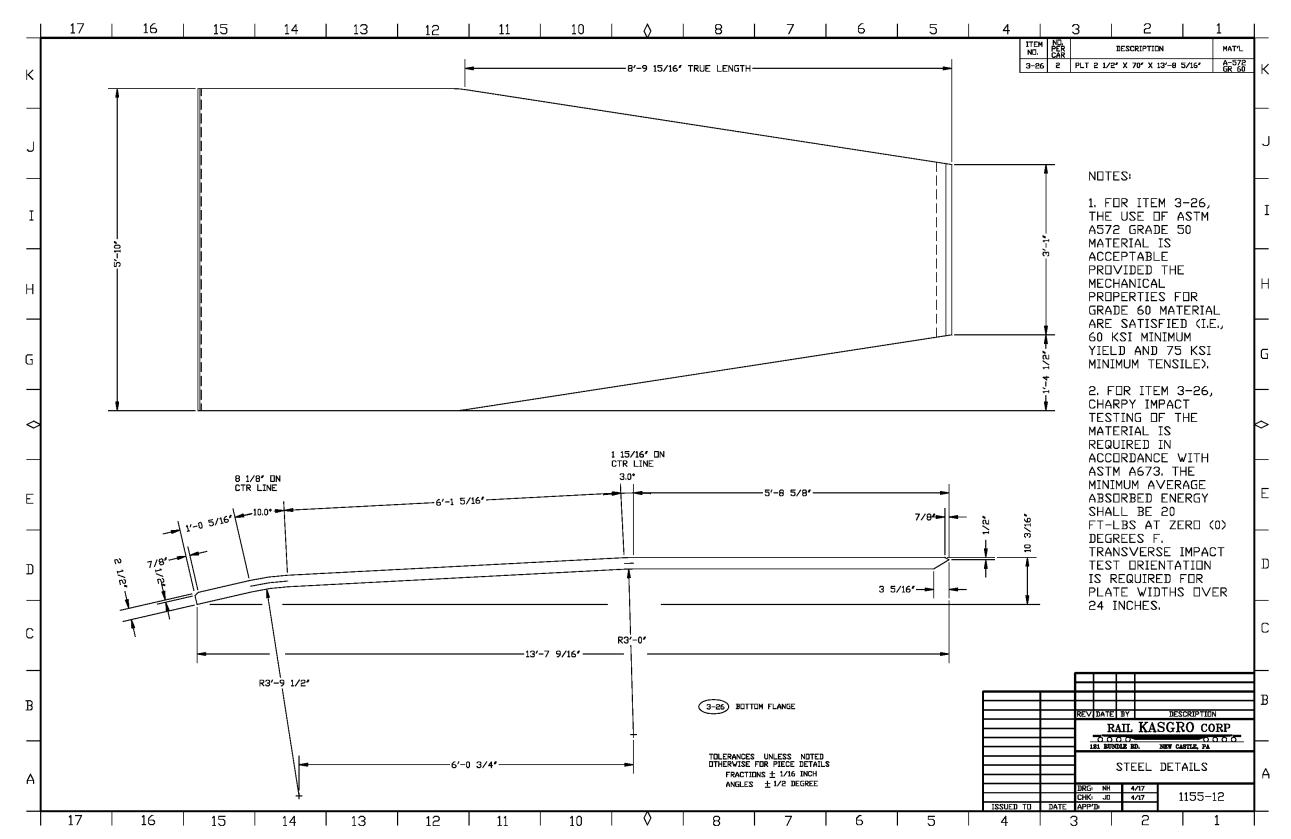
PageG.1-8


APPENDIX G-1.8 BODY BOLSTER

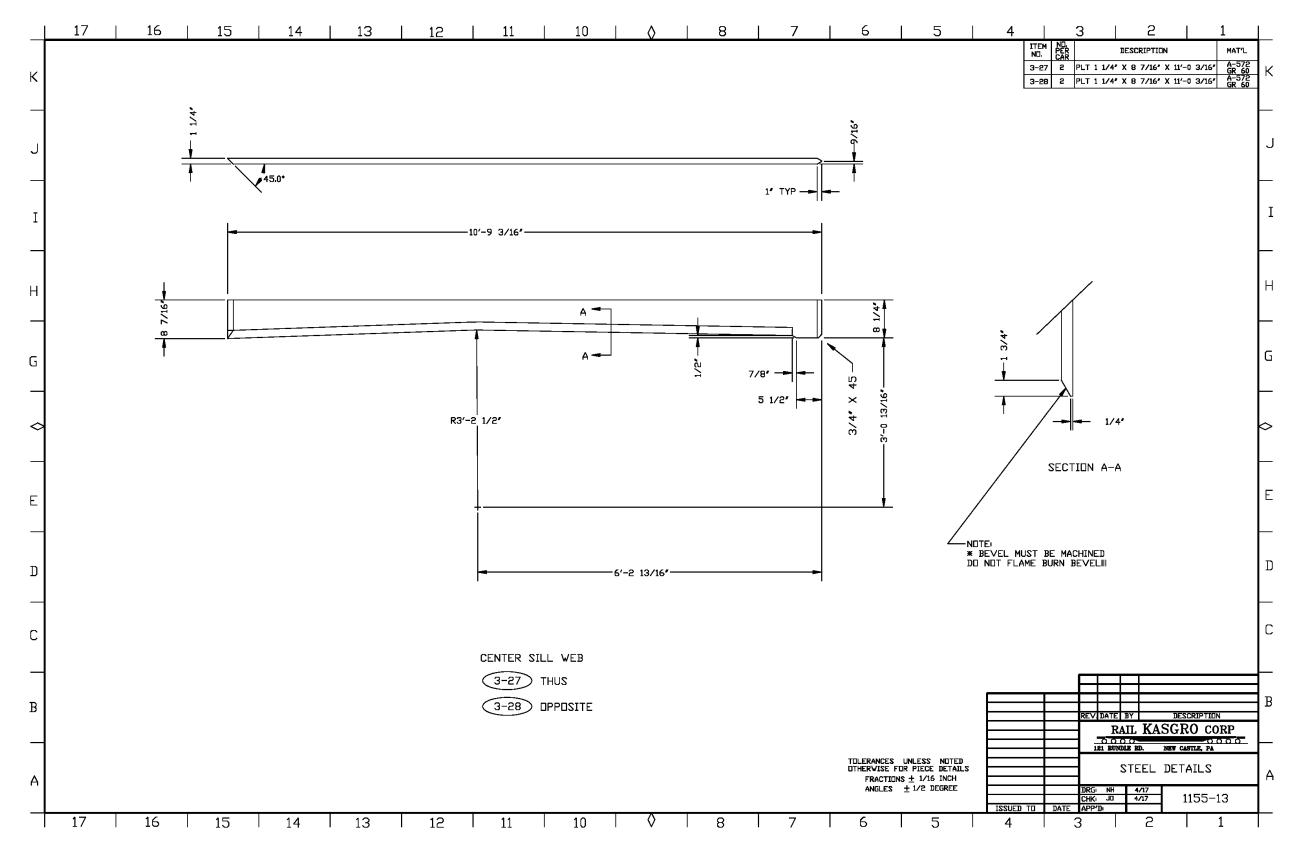
APPENDIX G-1.9 CENTER PLATE



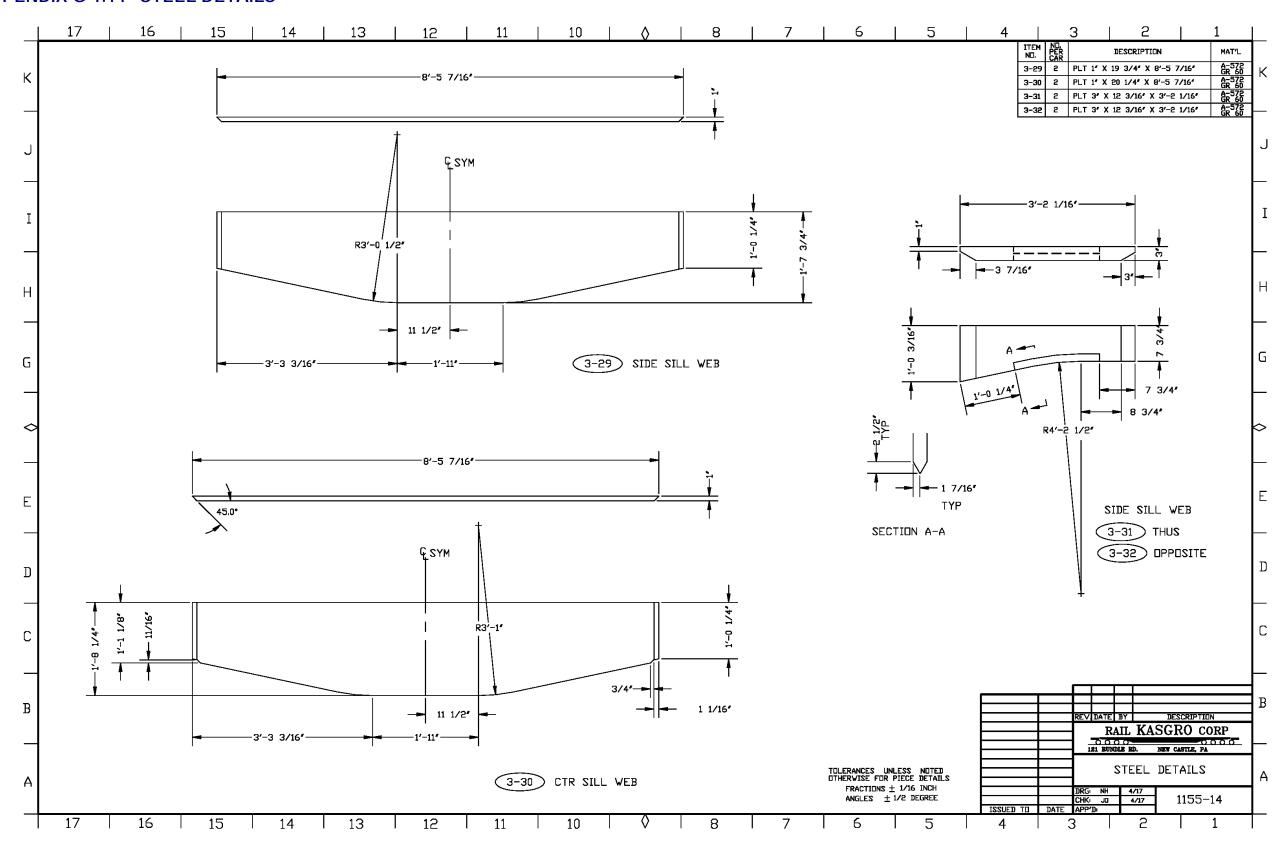
APPENDIX G-1.10 STEEL DETAILS

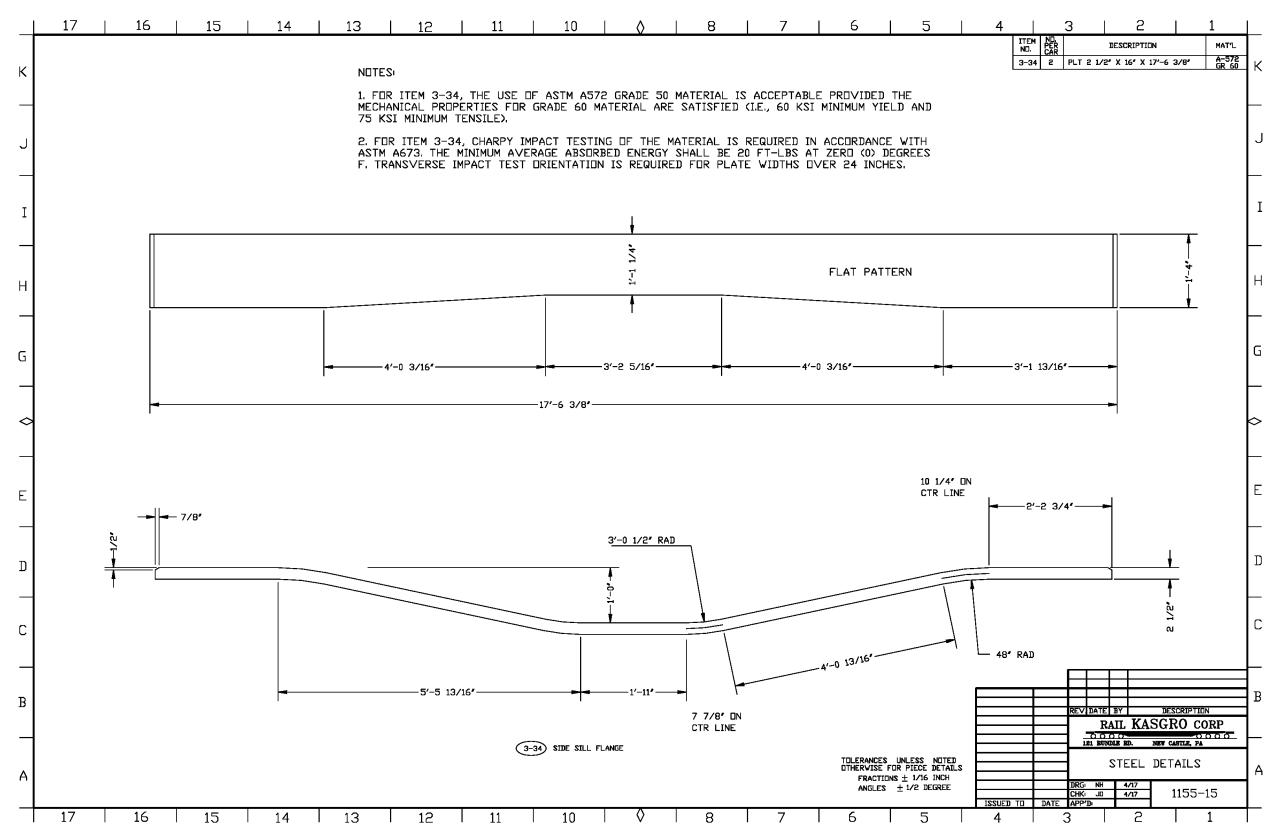

PageG.1-11 February 2, 2018

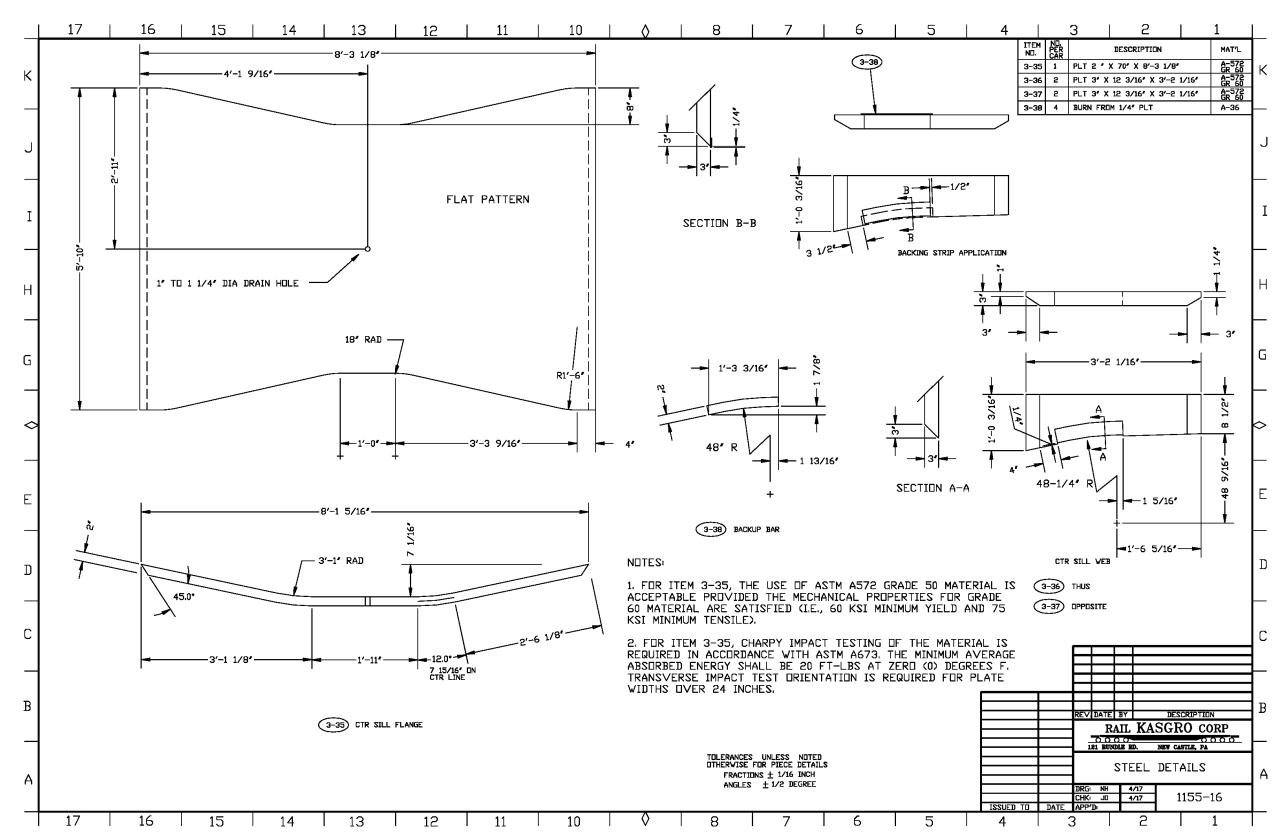
APPENDIX G-1.11 STEEL DETAILS



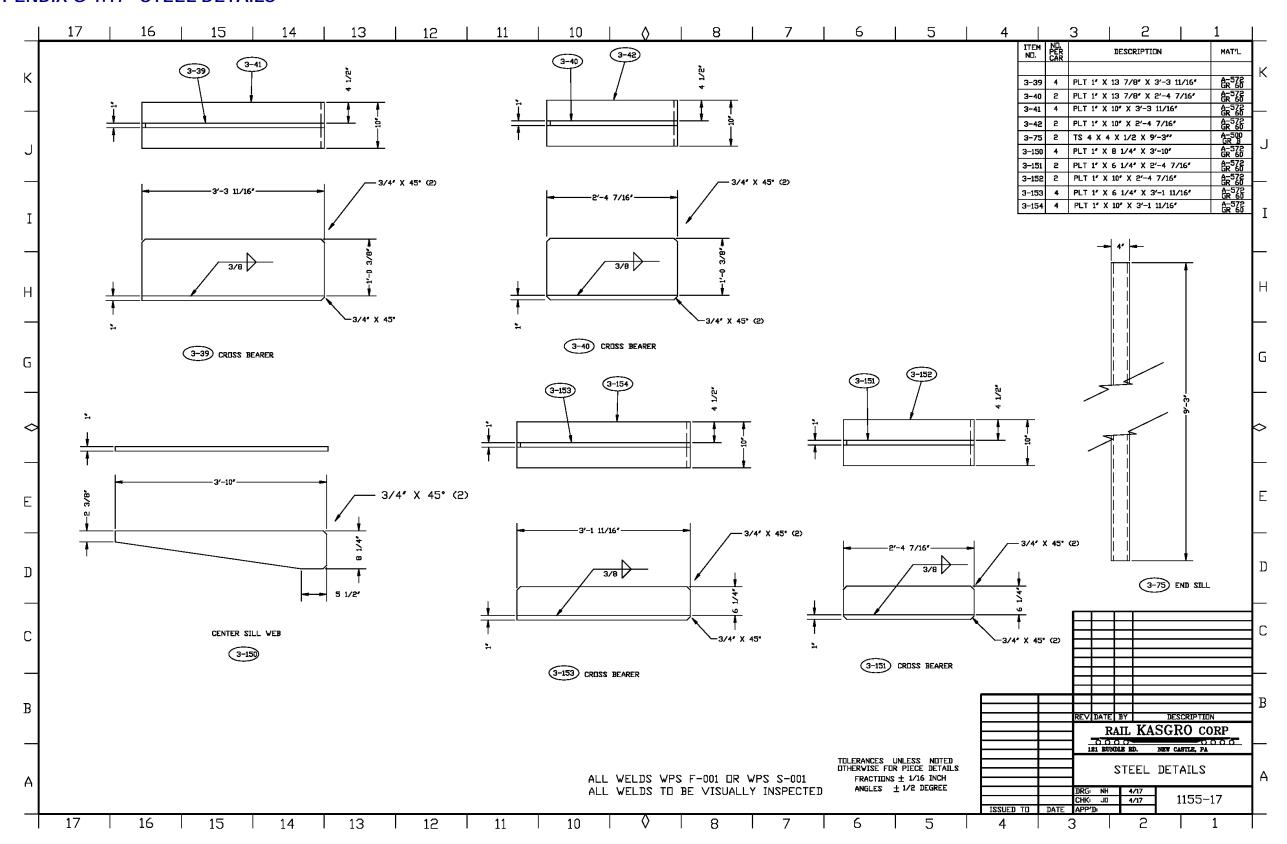
PageG.1-12 February 2, 2018


APPENDIX G-1.12 STEEL DETAILS

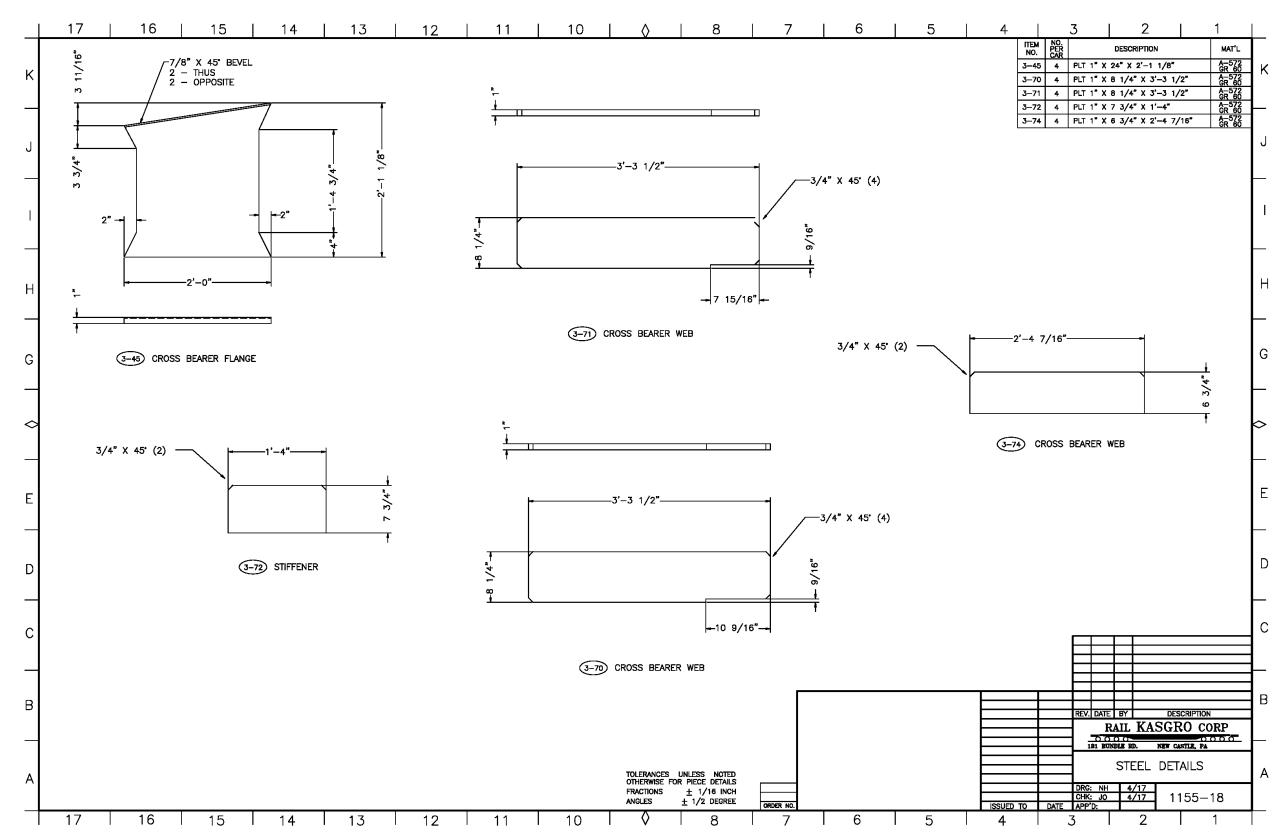

APPENDIX G-1.13 STEEL DETAILS


APPENDIX G-1.14 STEEL DETAILS

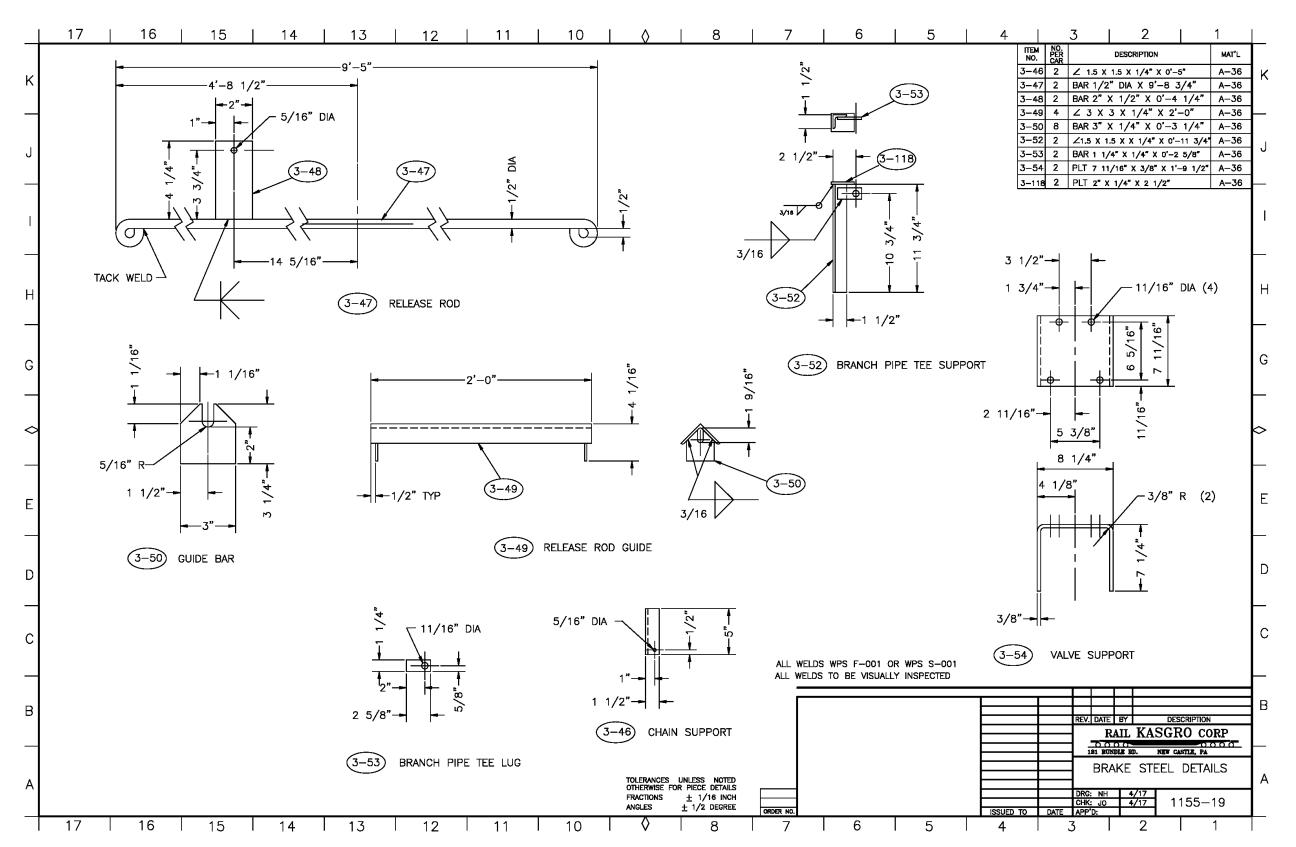
APPENDIX G-1.15 STEEL DETAILS



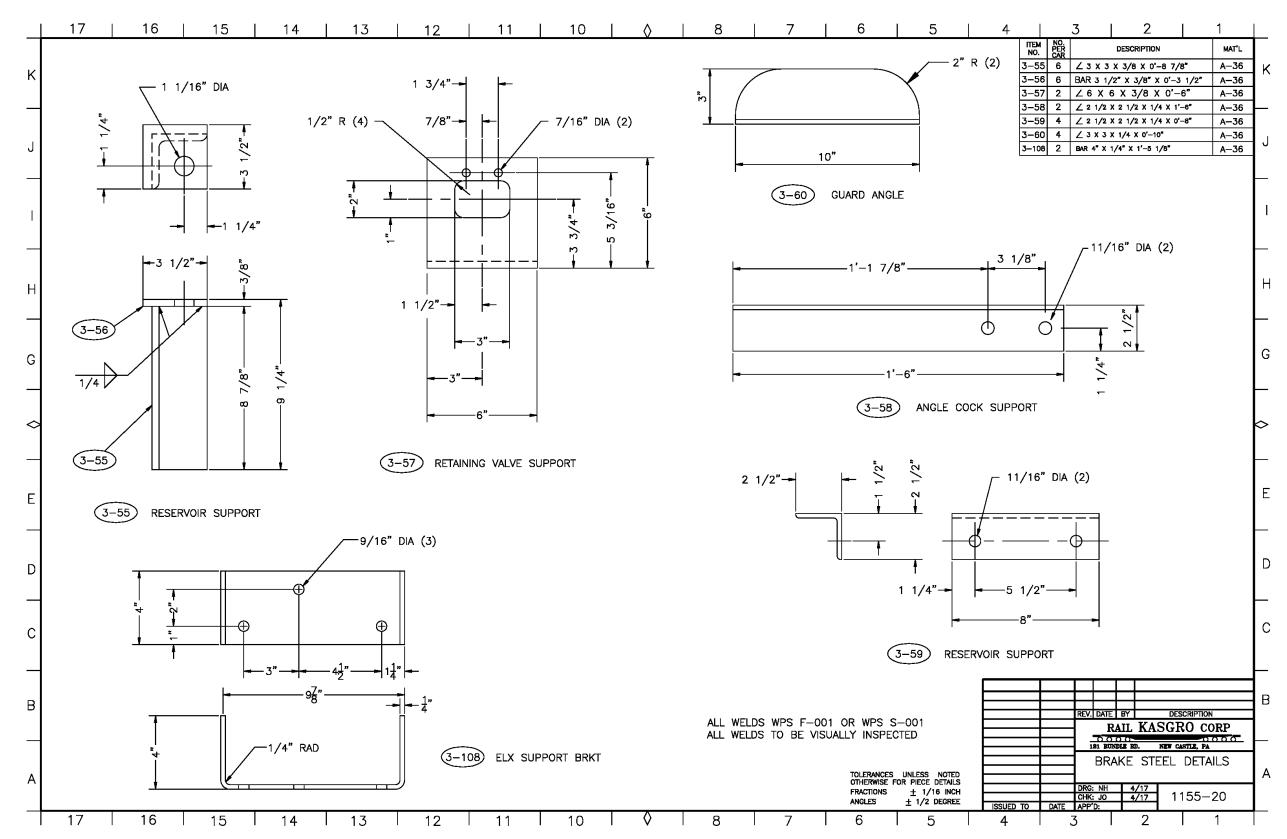
APPENDIX G-1.16 STEEL DETAILS


PageG.1-17 February 2, 2018

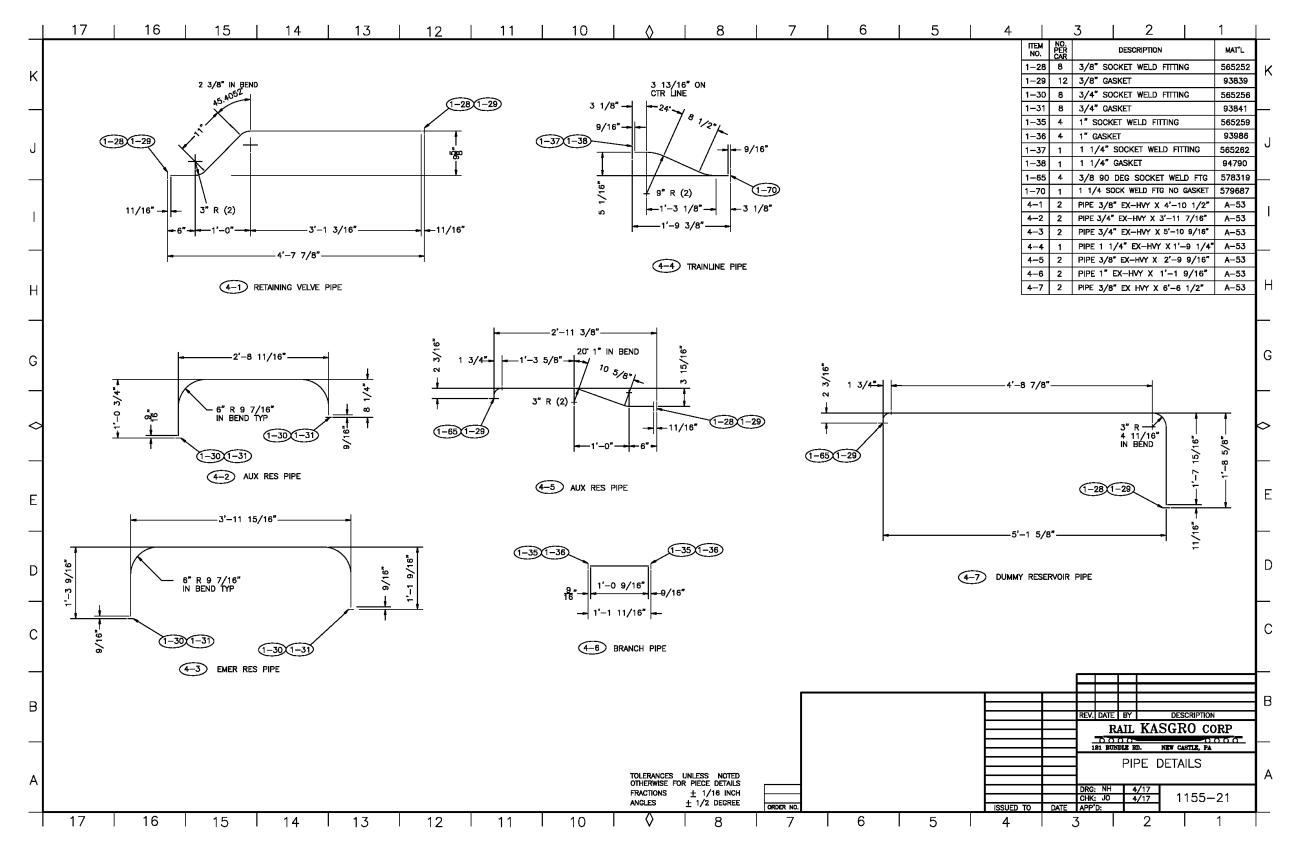
APPENDIX G-1.17 STEEL DETAILS



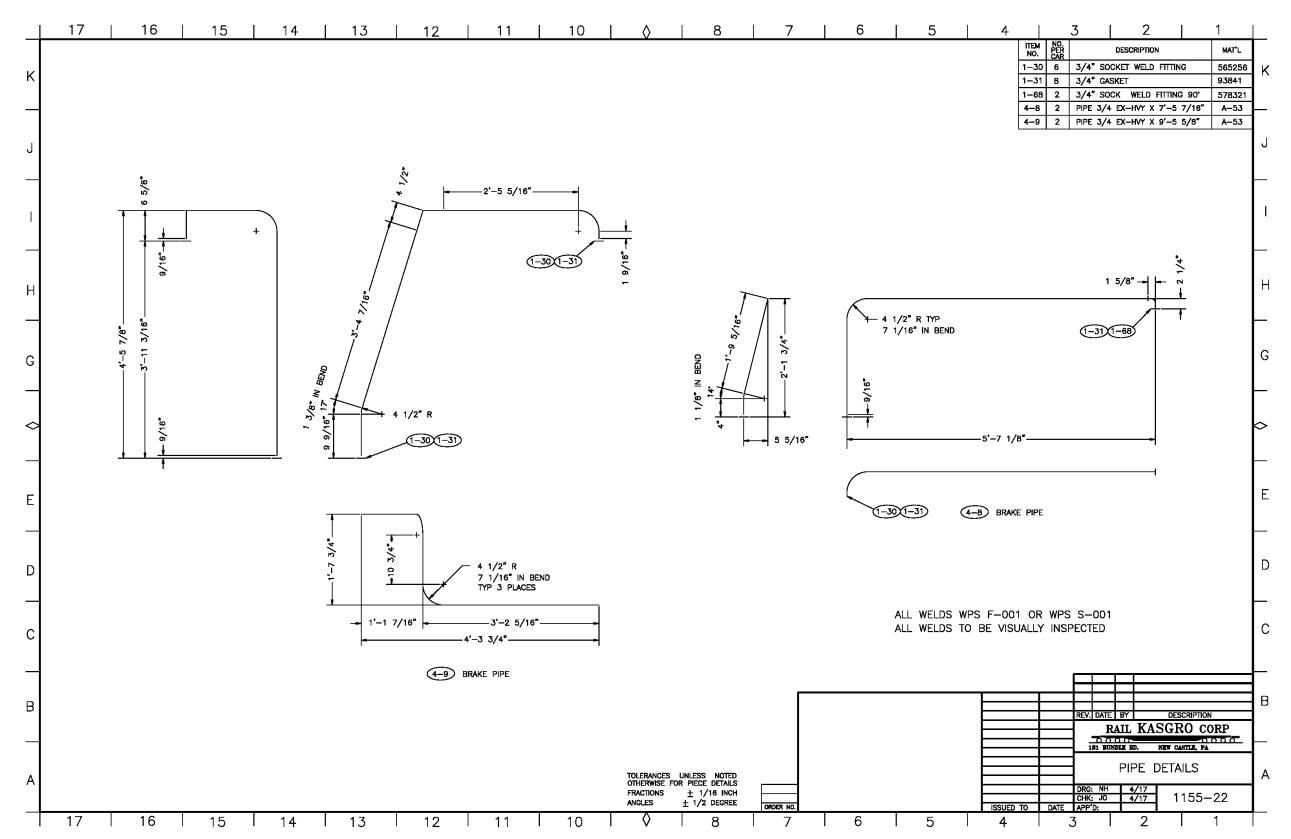
PageG.1-18


APPENDIX G-1.18 STEEL DETAILS

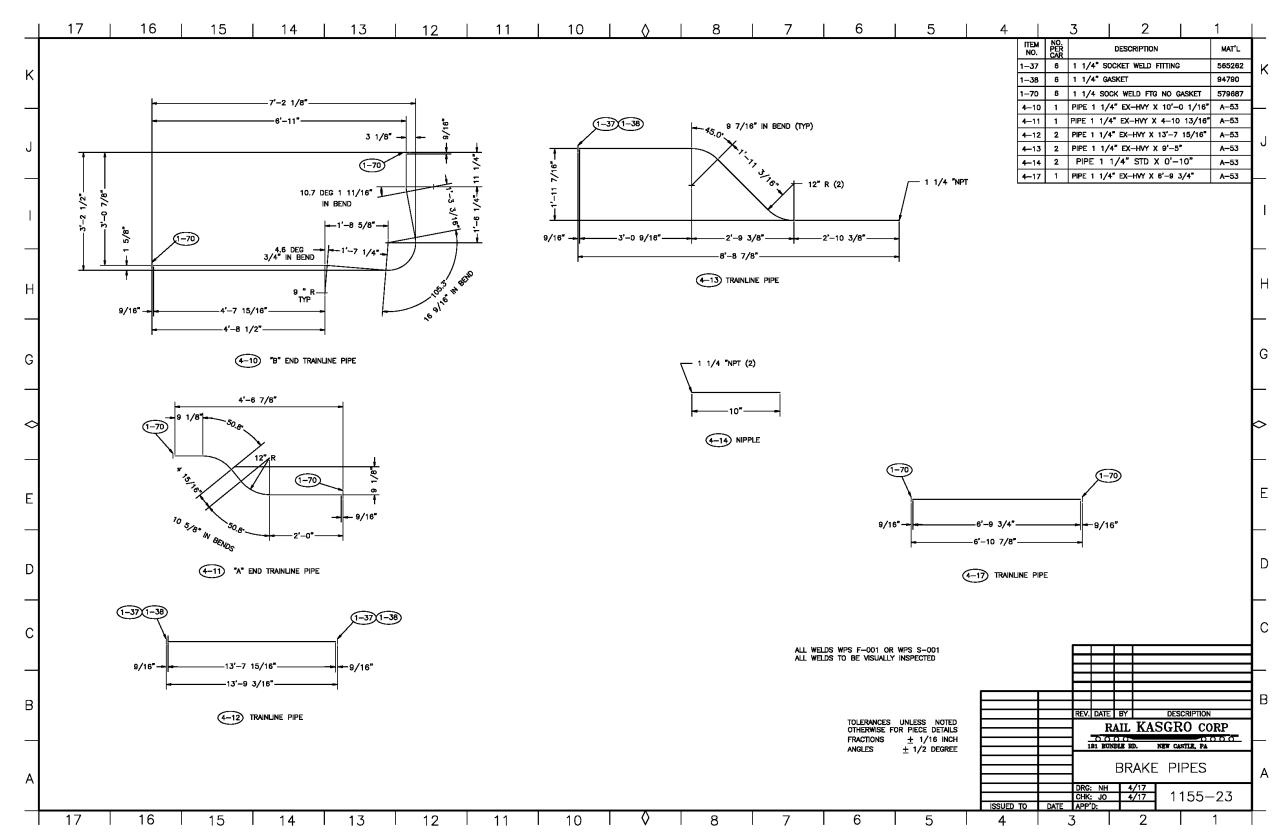
APPENDIX G-1.19 BRAKE STEEL DETAILS



APPENDIX G-1.20 BRAKE STEEL DETAILS

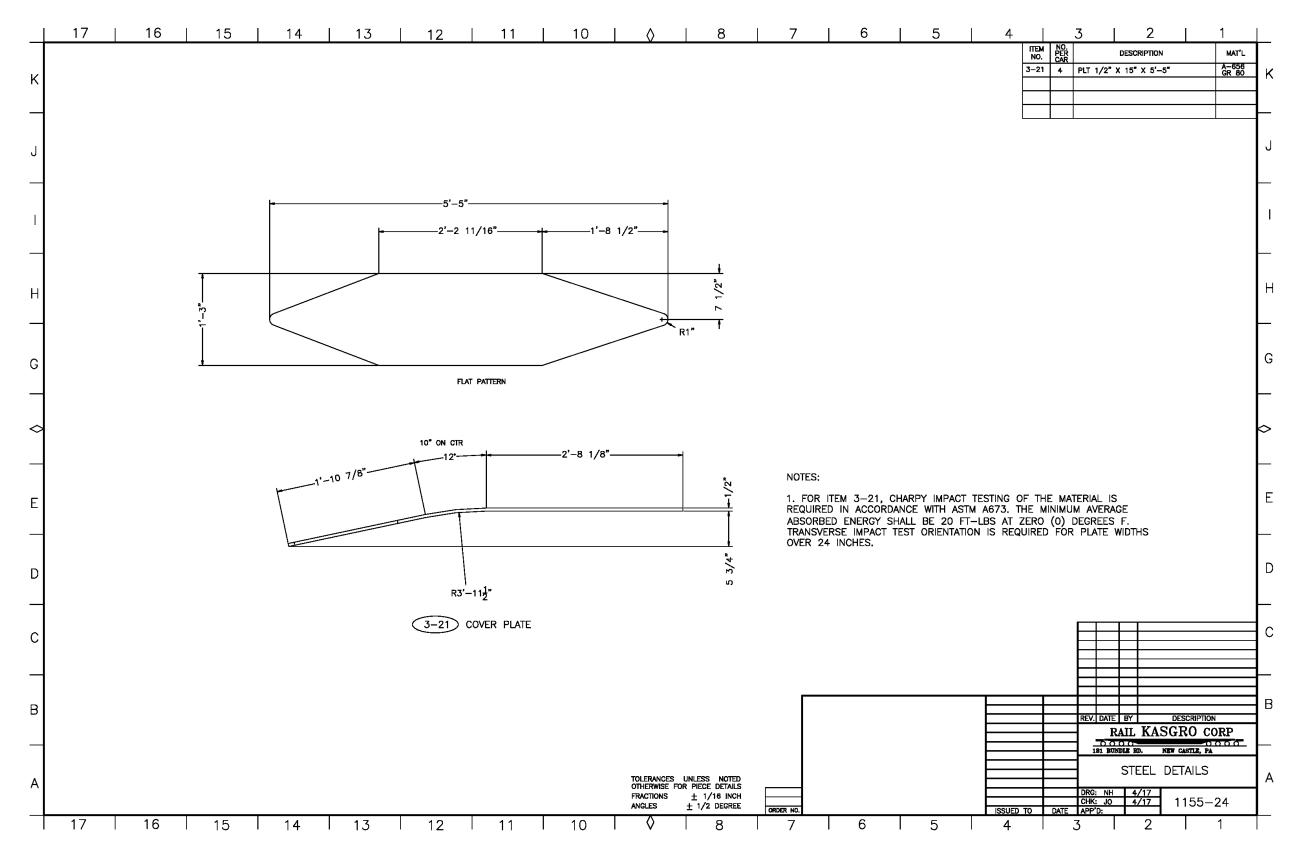

PageG.1-21 February 2, 2018

APPENDIX G-1.21 PIPE DETAILS

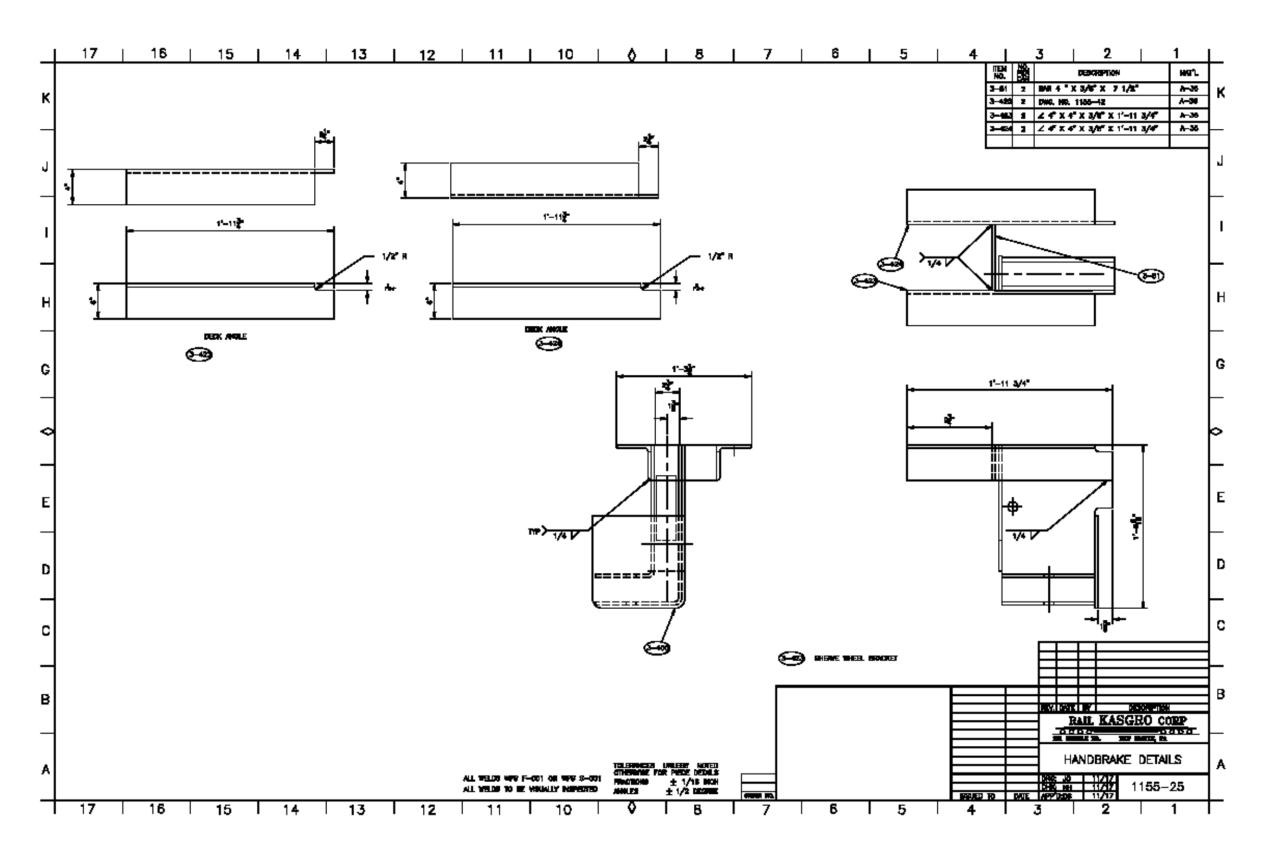


February 2, 2018

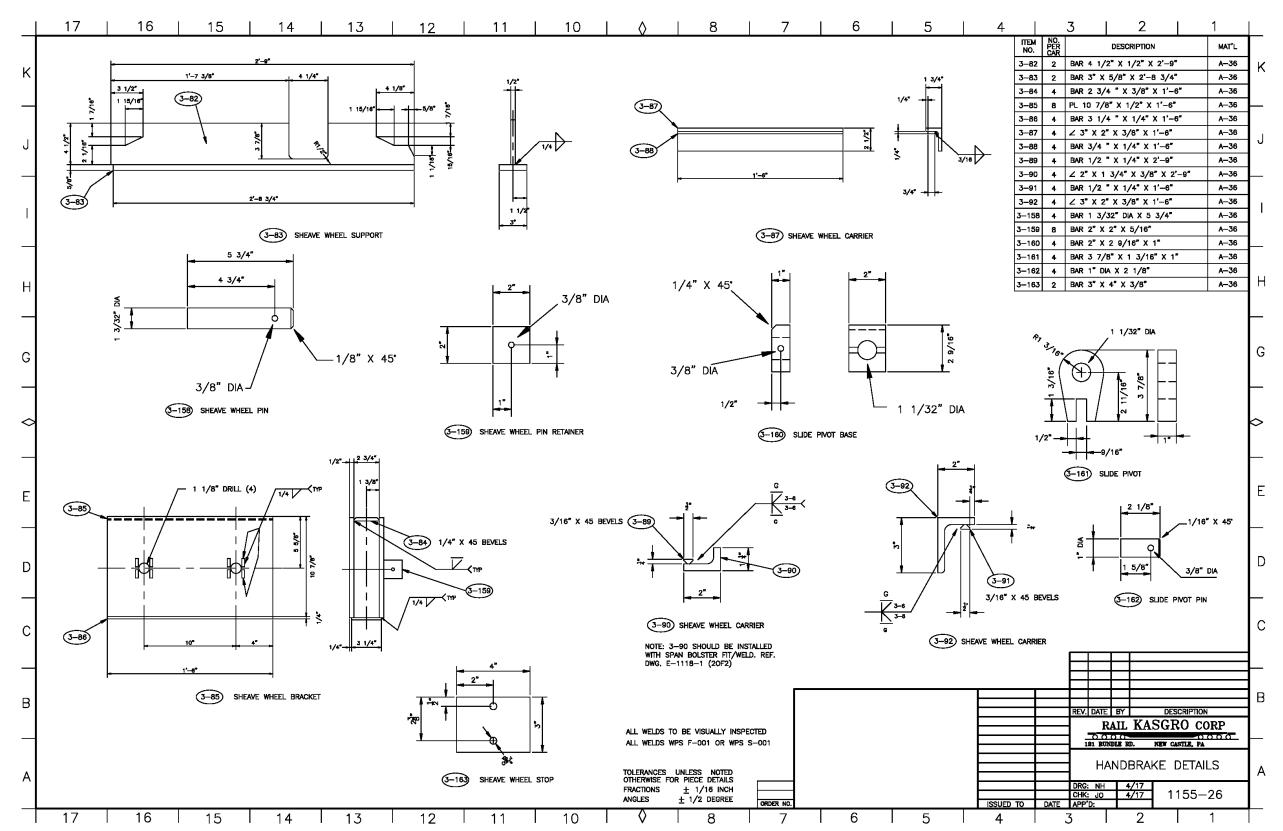
APPENDIX G-1.22 PIPE DETAILS



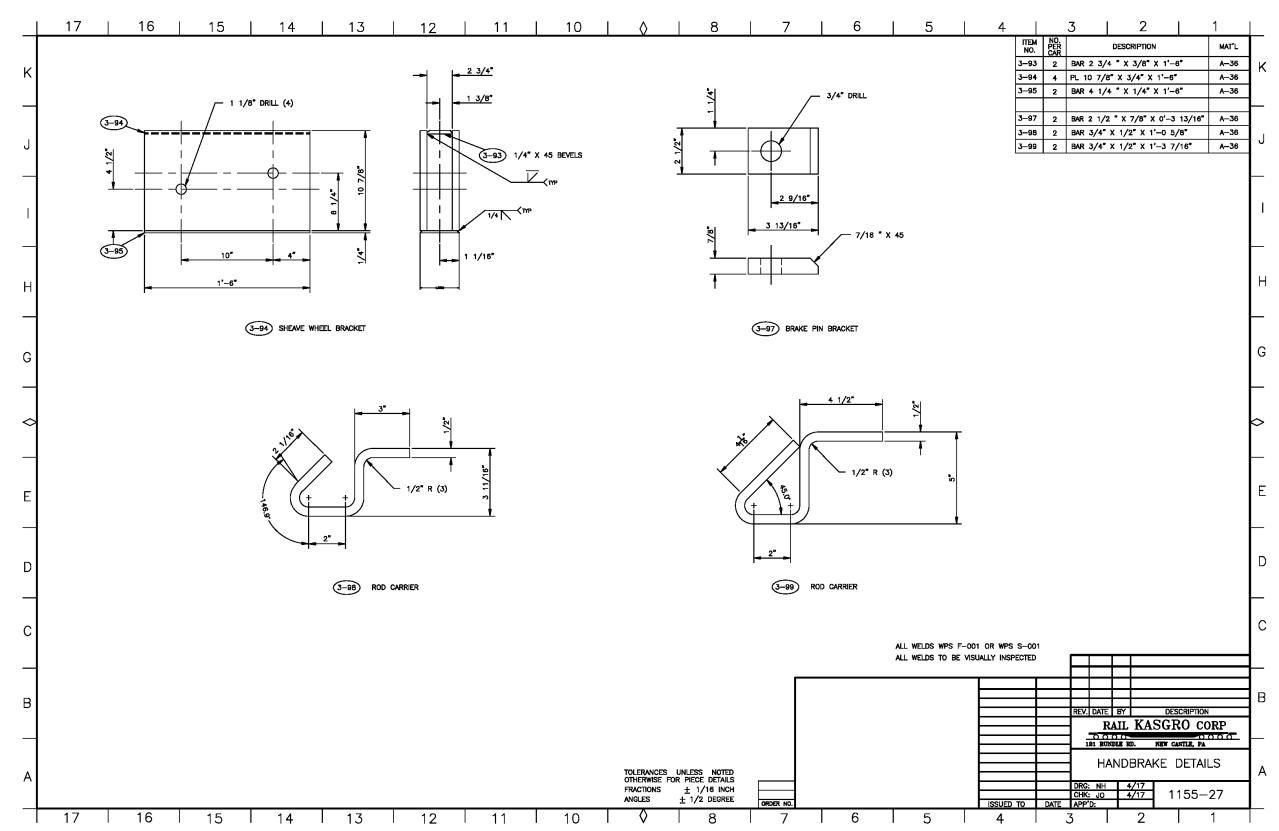
APPENDIX G-1.23 BRAKE PIPES


PageG.1-24
February 2, 2018

APPENDIX G-1.24 STEEL DETAILS

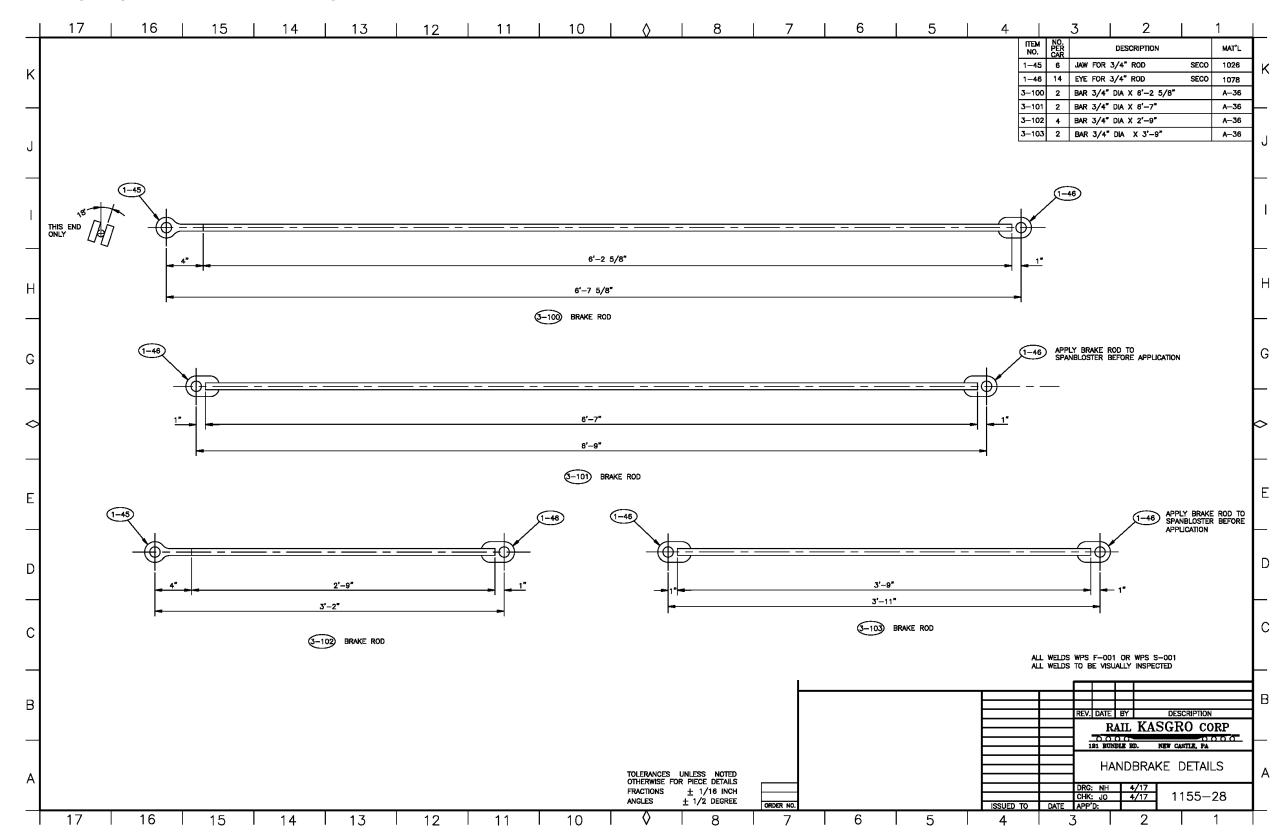

PageG.1-25

APPENDIX G-1.25 HAND BRAKE DETAILS

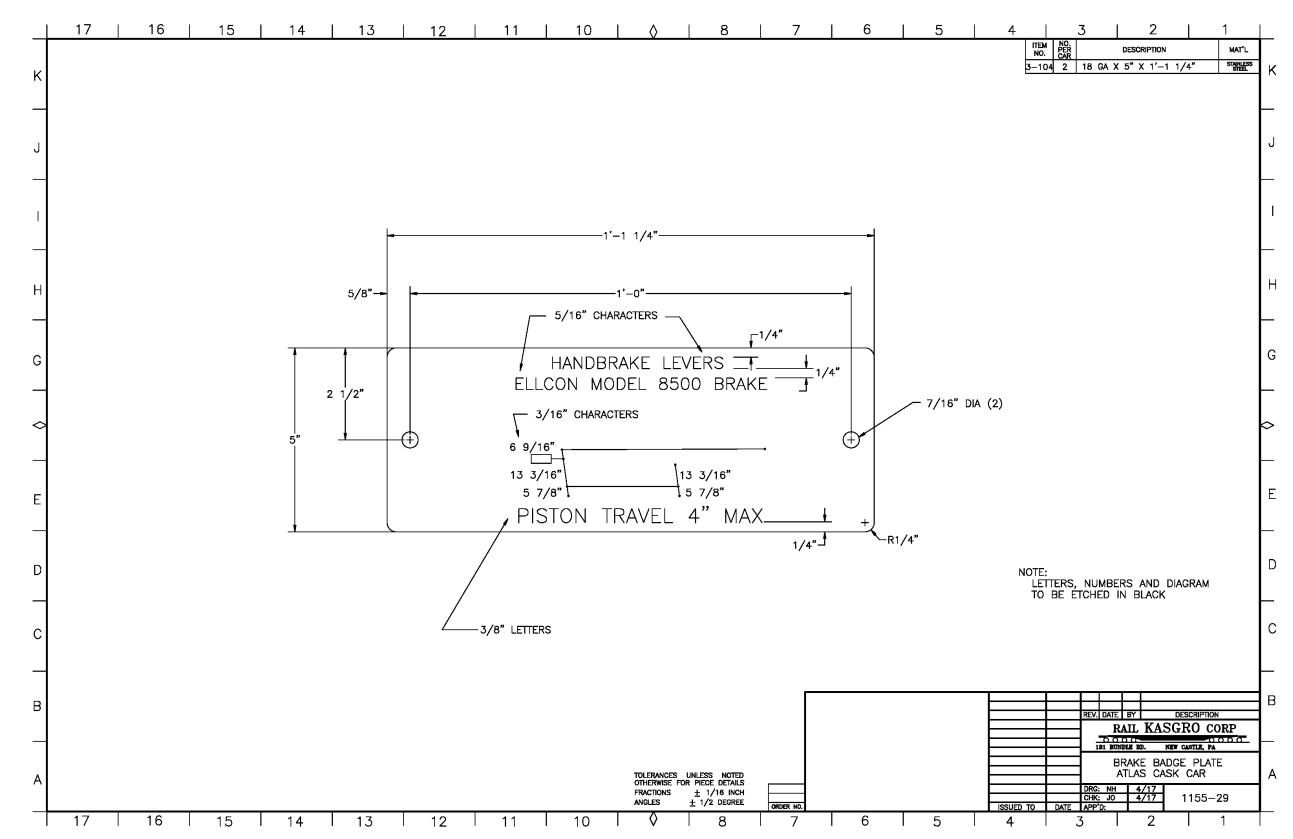


PageG.1-26

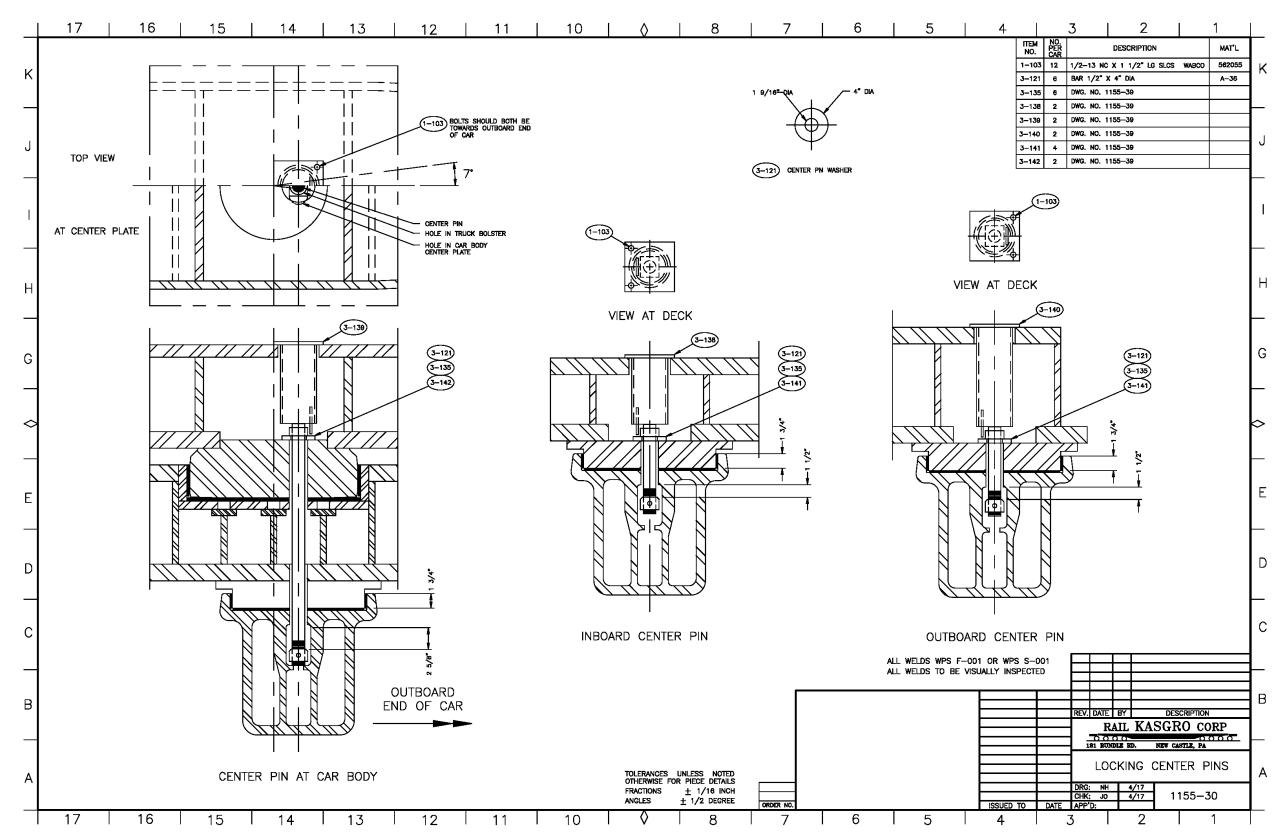
APPENDIX G-1.26 HAND BRAKE DETAILS



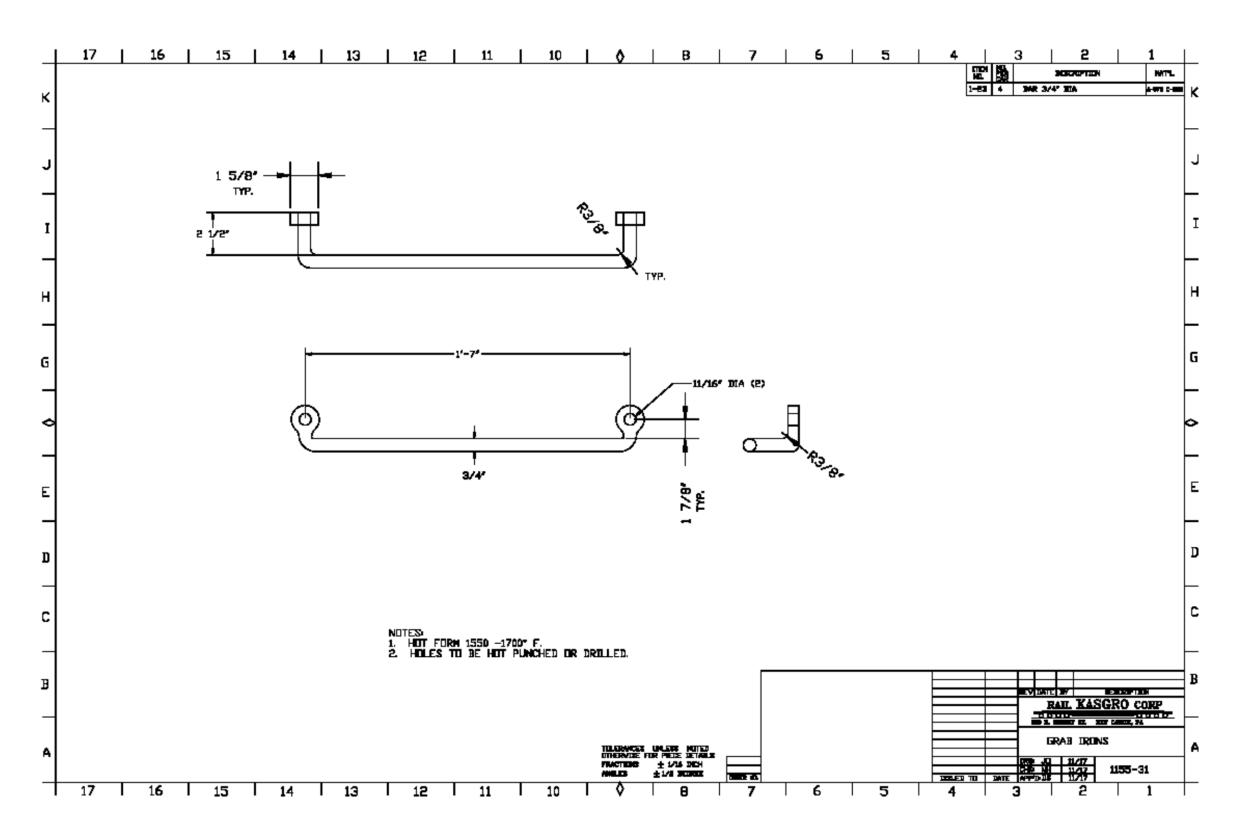
APPENDIX G-1.27 HAND BRAKE DETAILS



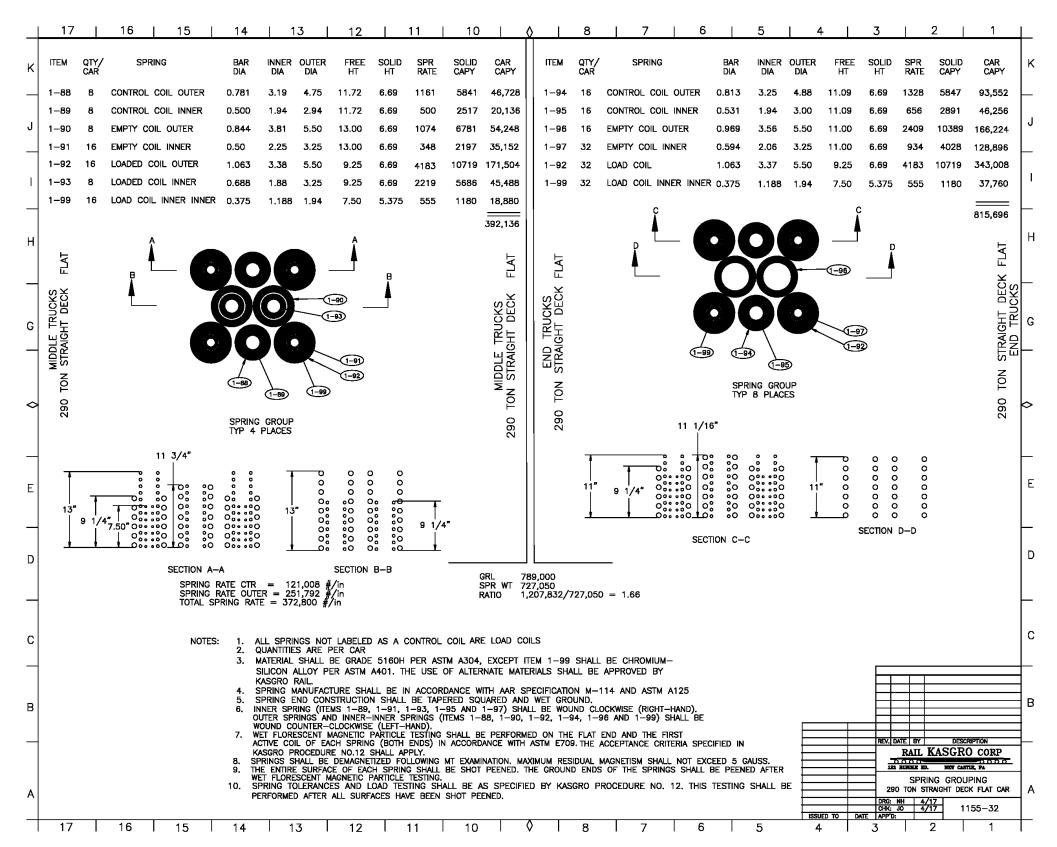
February 2, 2018


APPENDIX G-1.28 HAND BRAKE DETAILS

APPENDIX G-1.29 BRAKE BADGE PLATE

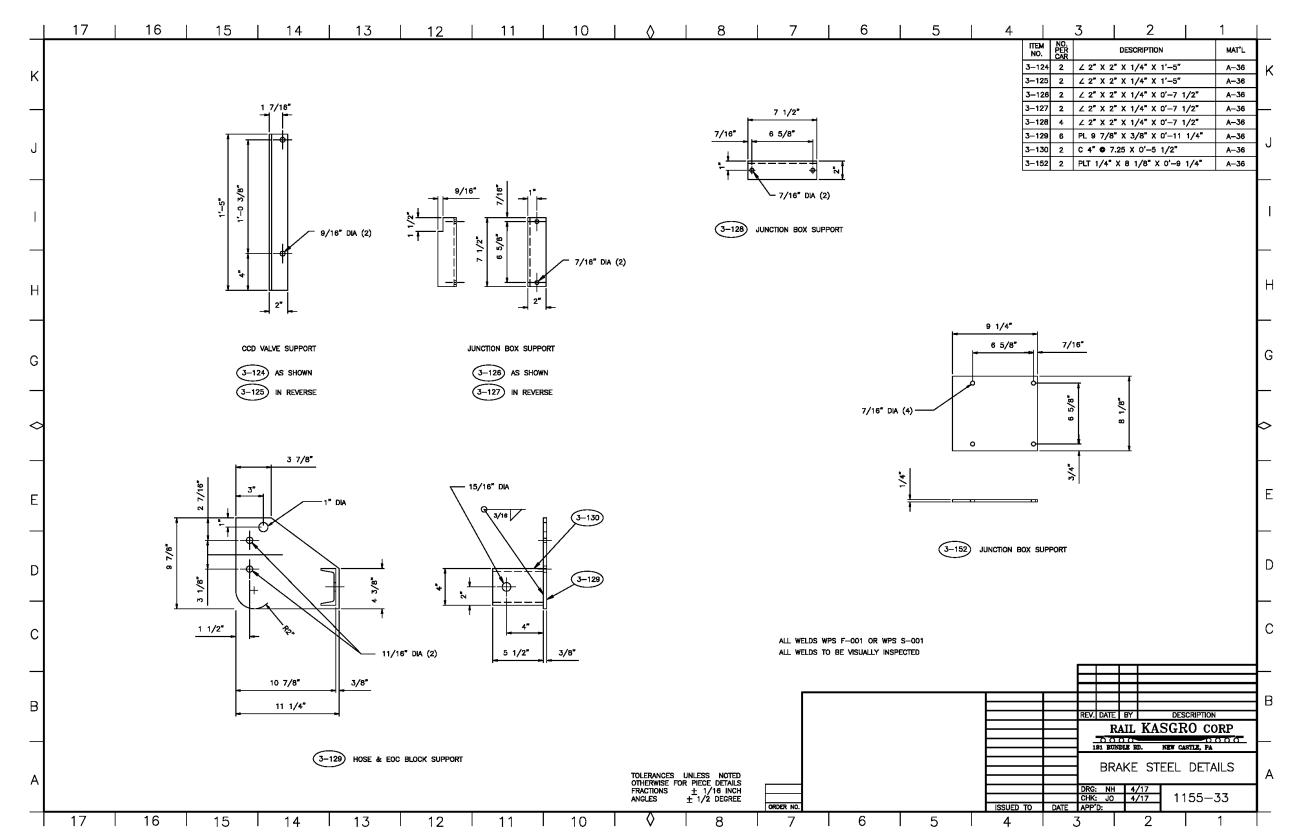


APPENDIX G-1.30 LOCKING CENTER PINS

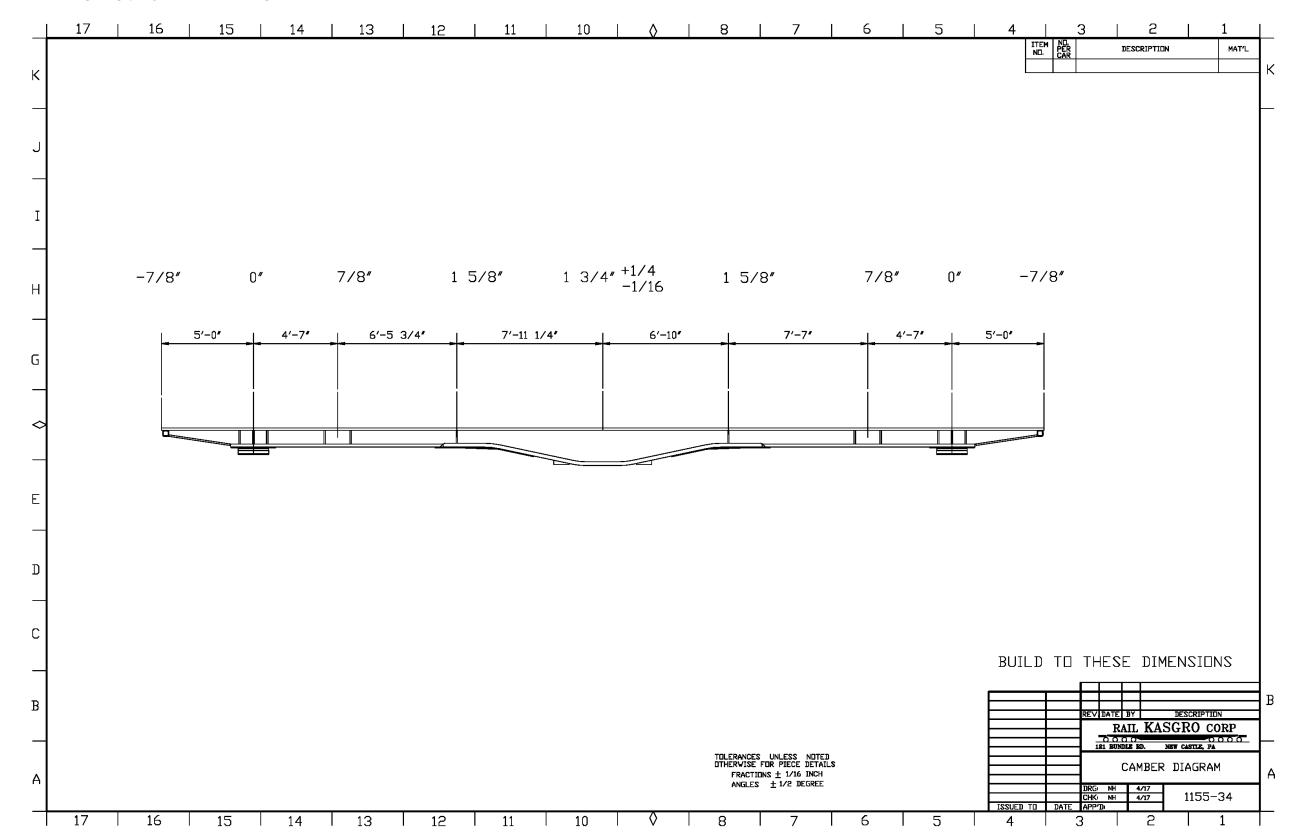


PageG.1-31 February 2, 2018

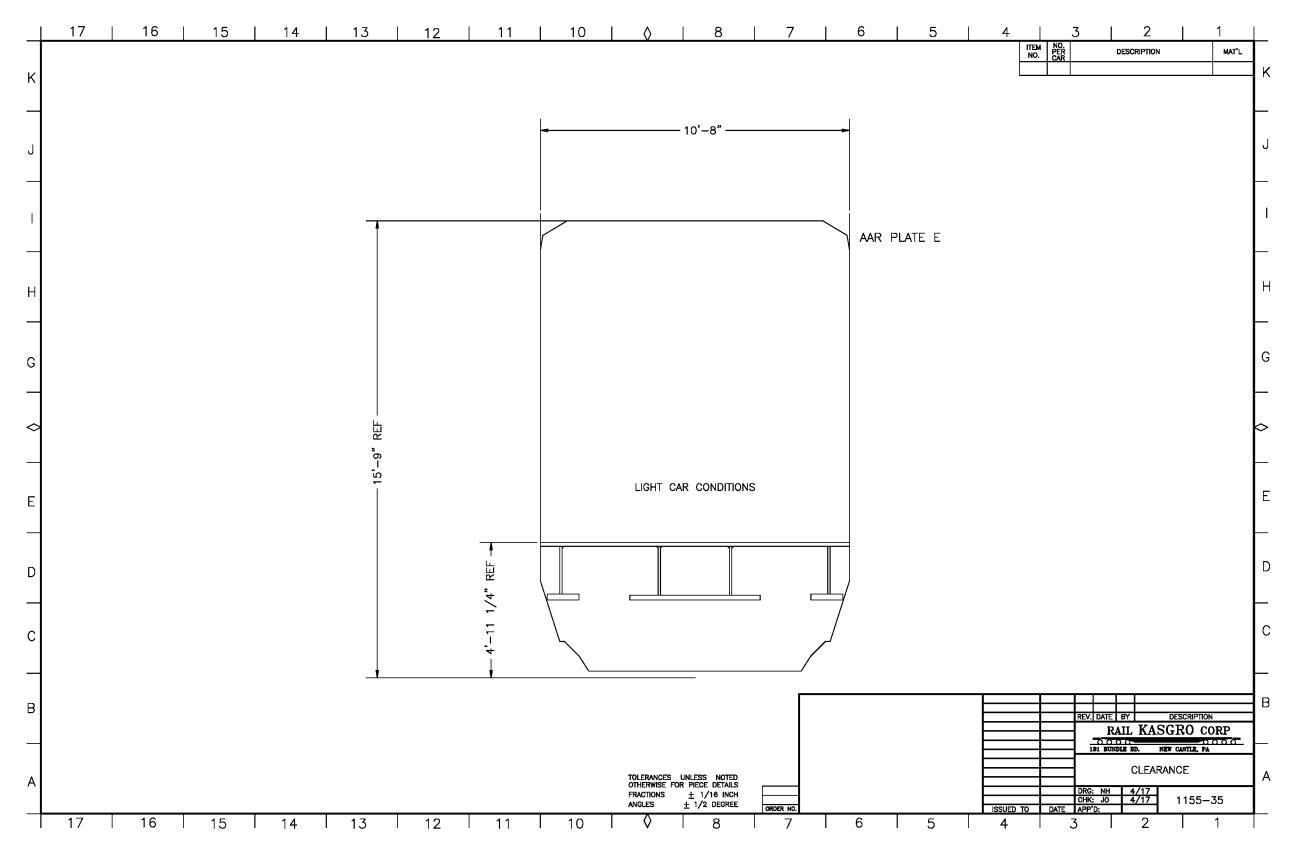
APPENDIX G-1.31 HAND BRAKE DETAILS

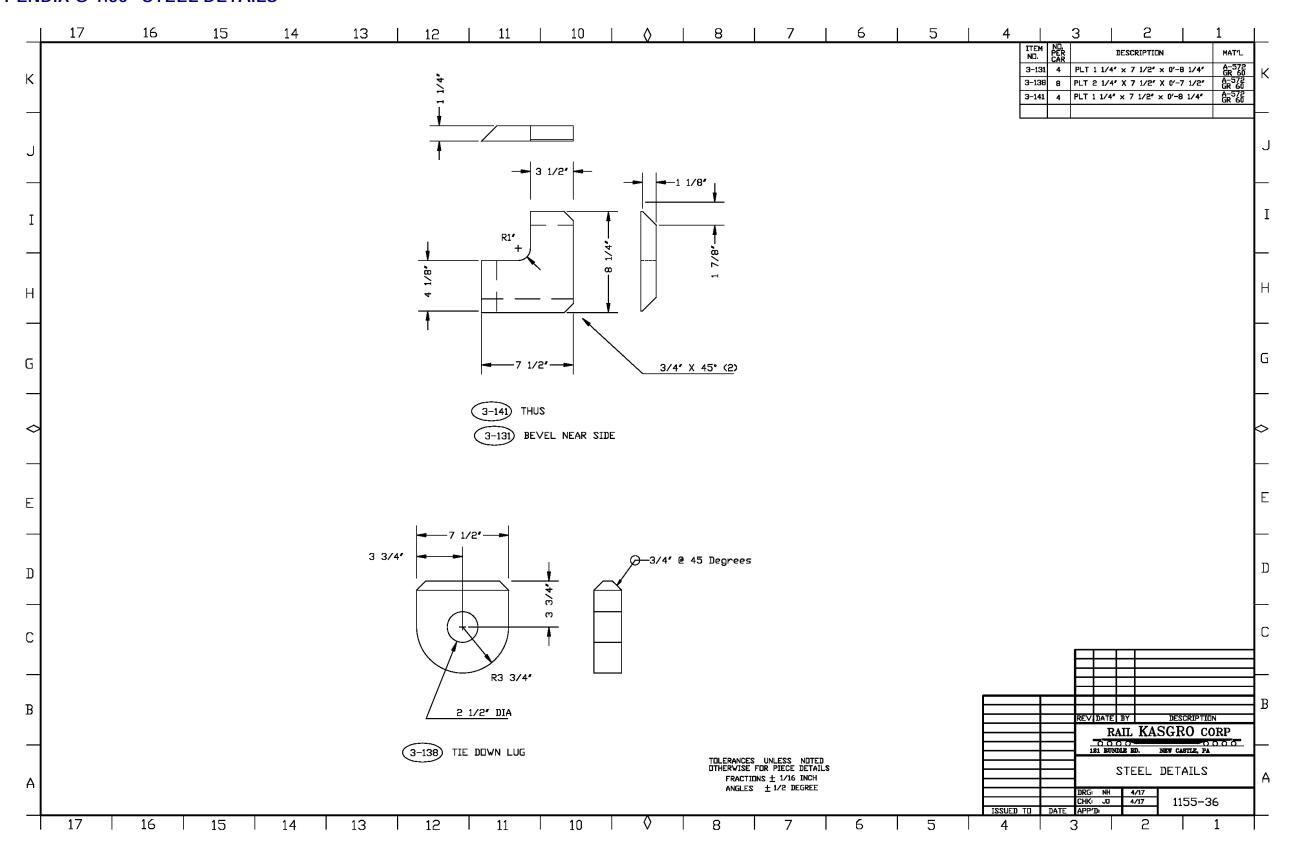


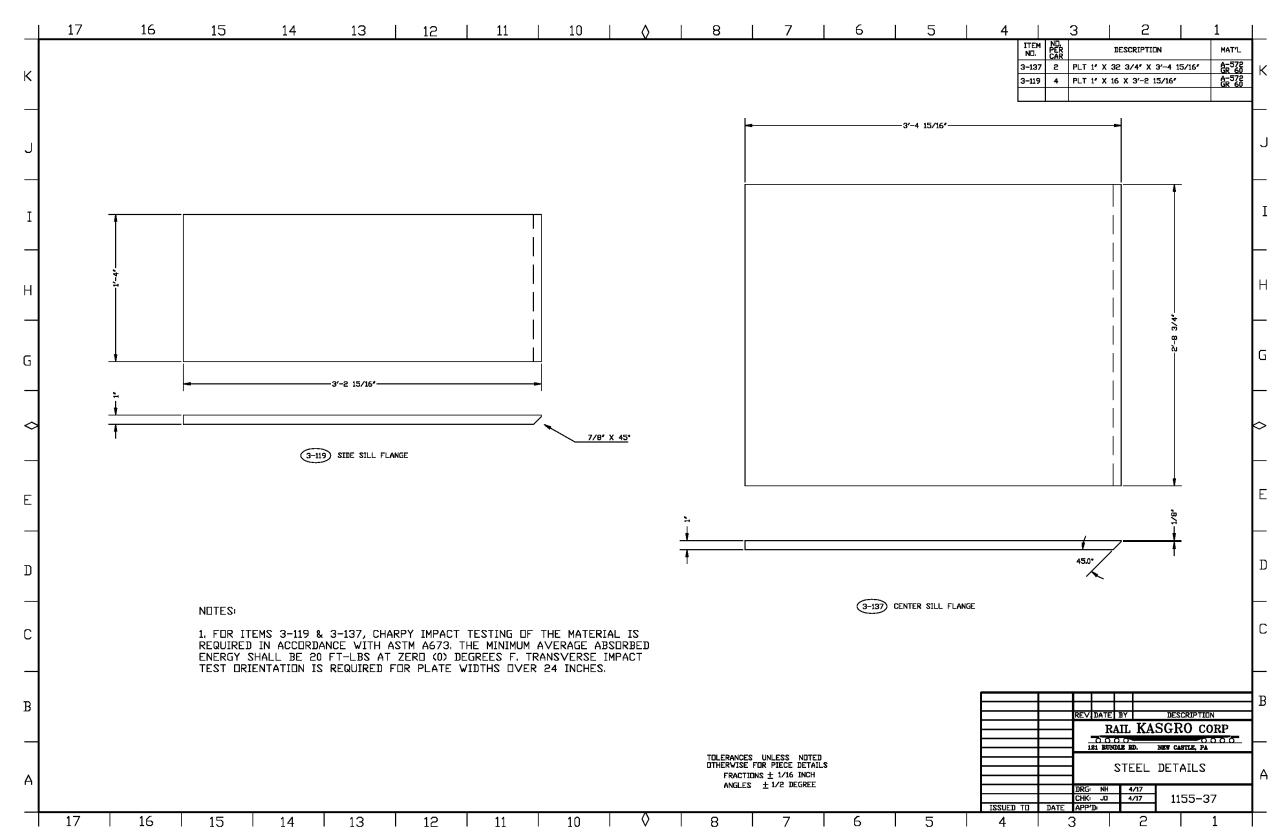
APPENDIX G-1.32 SPRING GROUPING

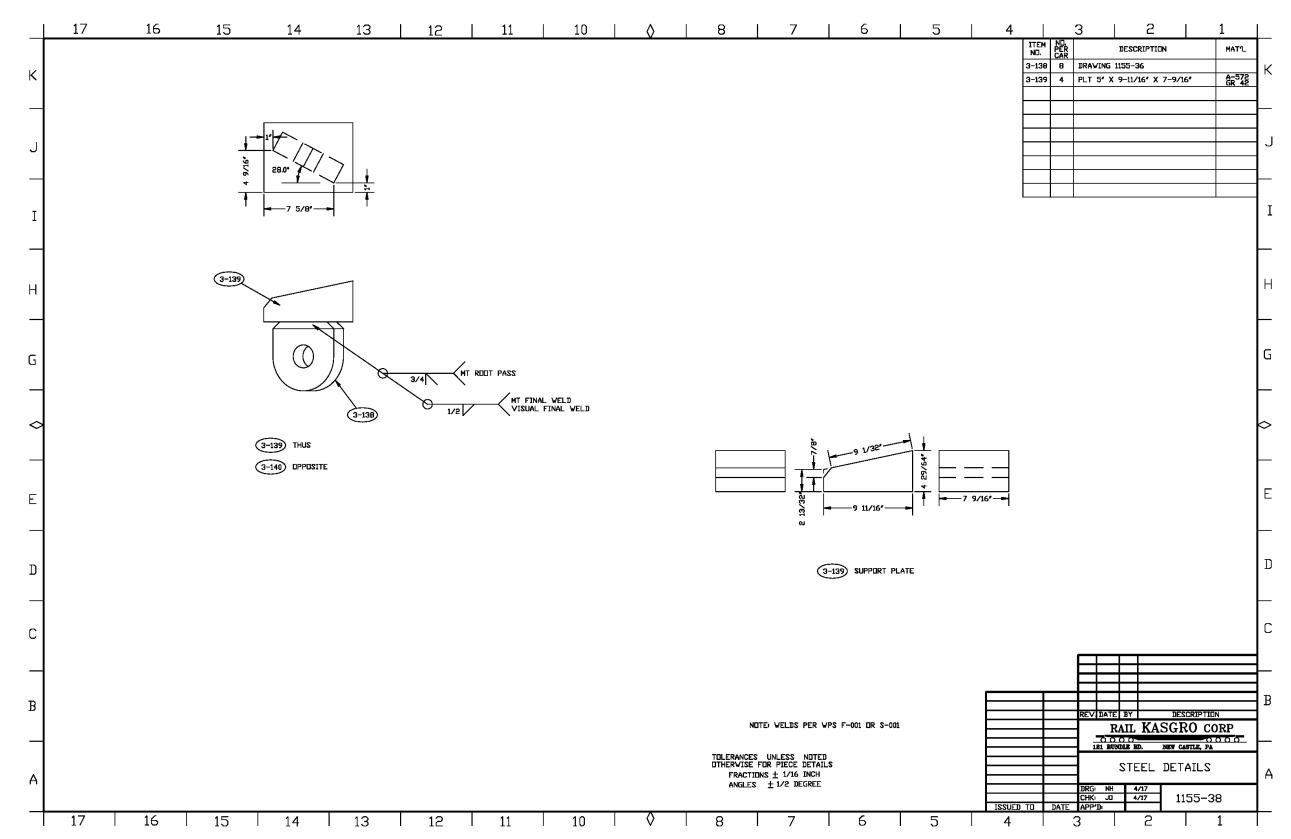


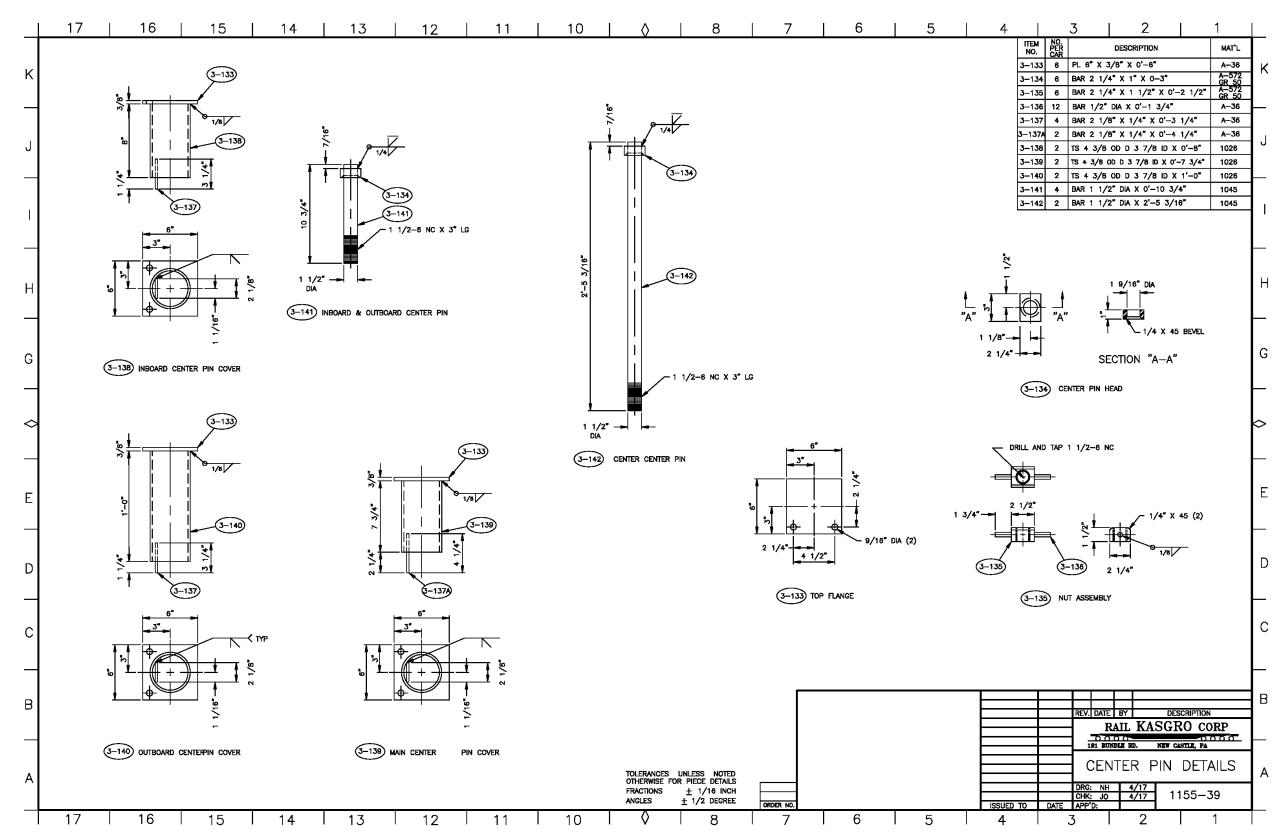
PageG.1-33 February 2, 2018

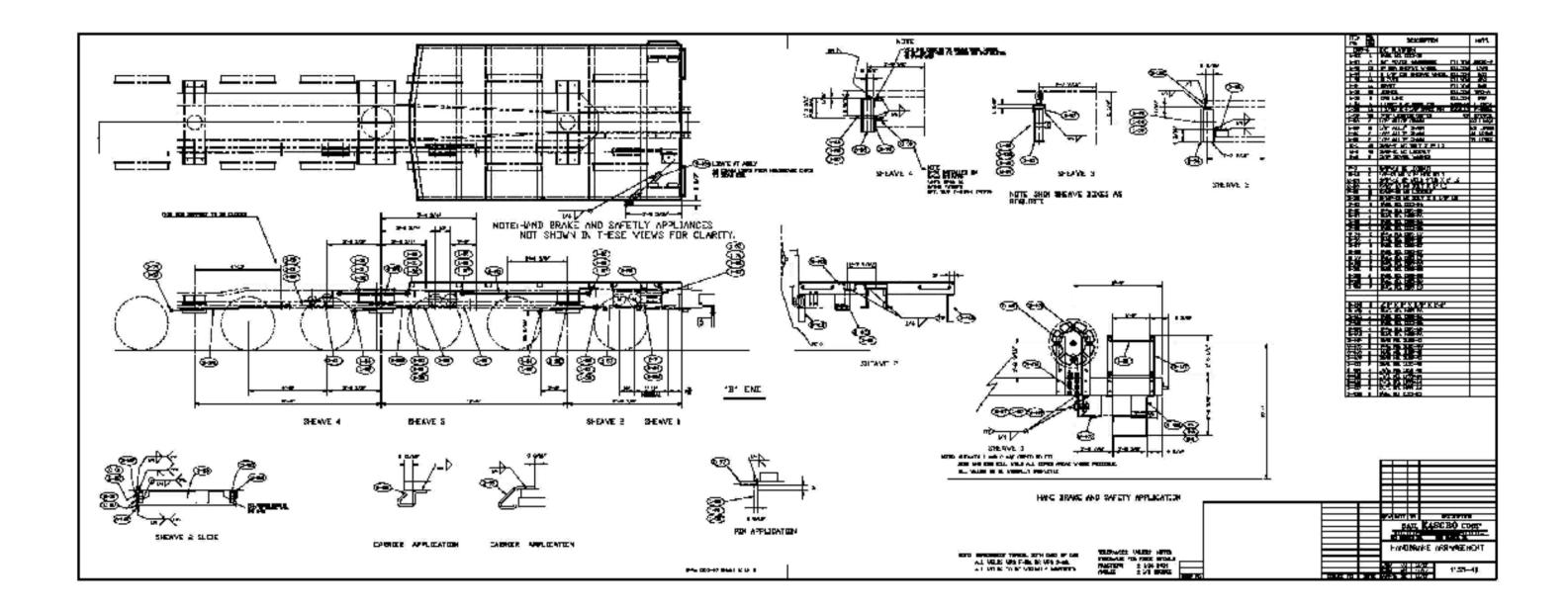

APPENDIX G-1.33 BRAKE STEEL DETAILS


APPENDIX G-1.34 CAMBER DIAGRAM

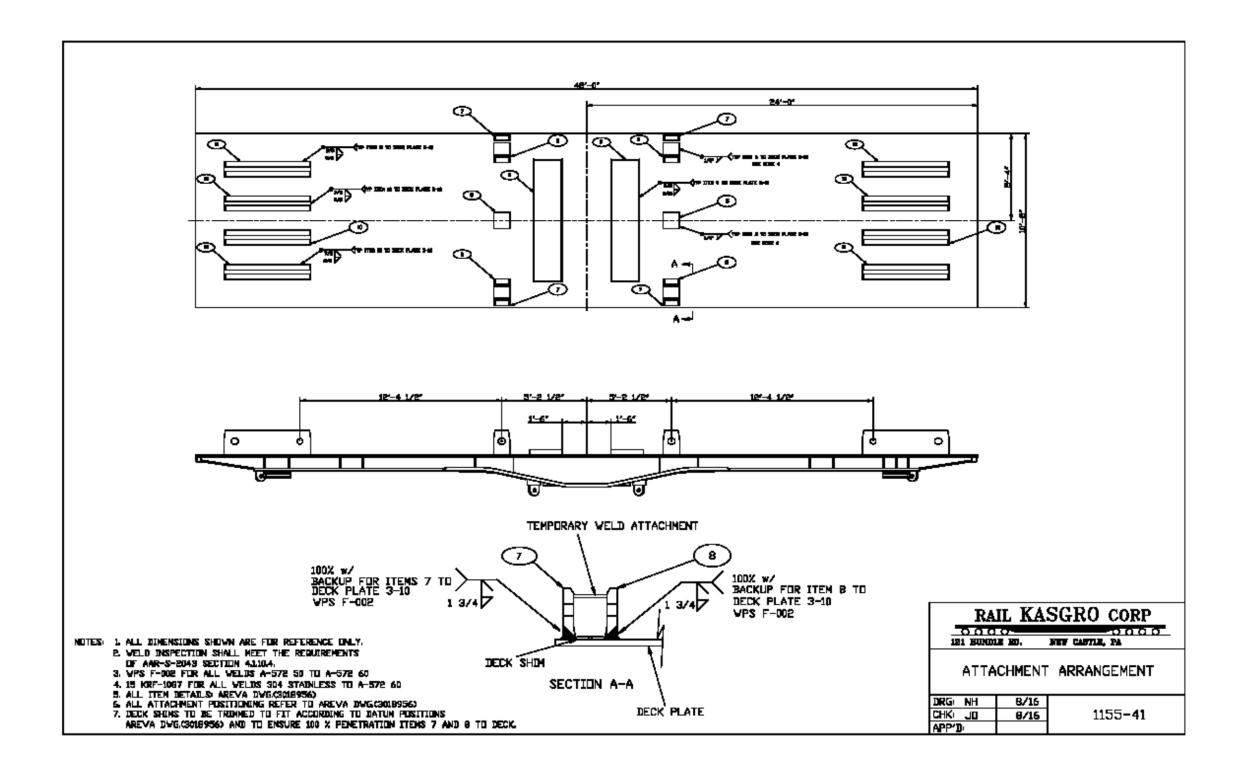

APPENDIX G-1.35 CLEARANCE


APPENDIX G-1.36 STEEL DETAILS

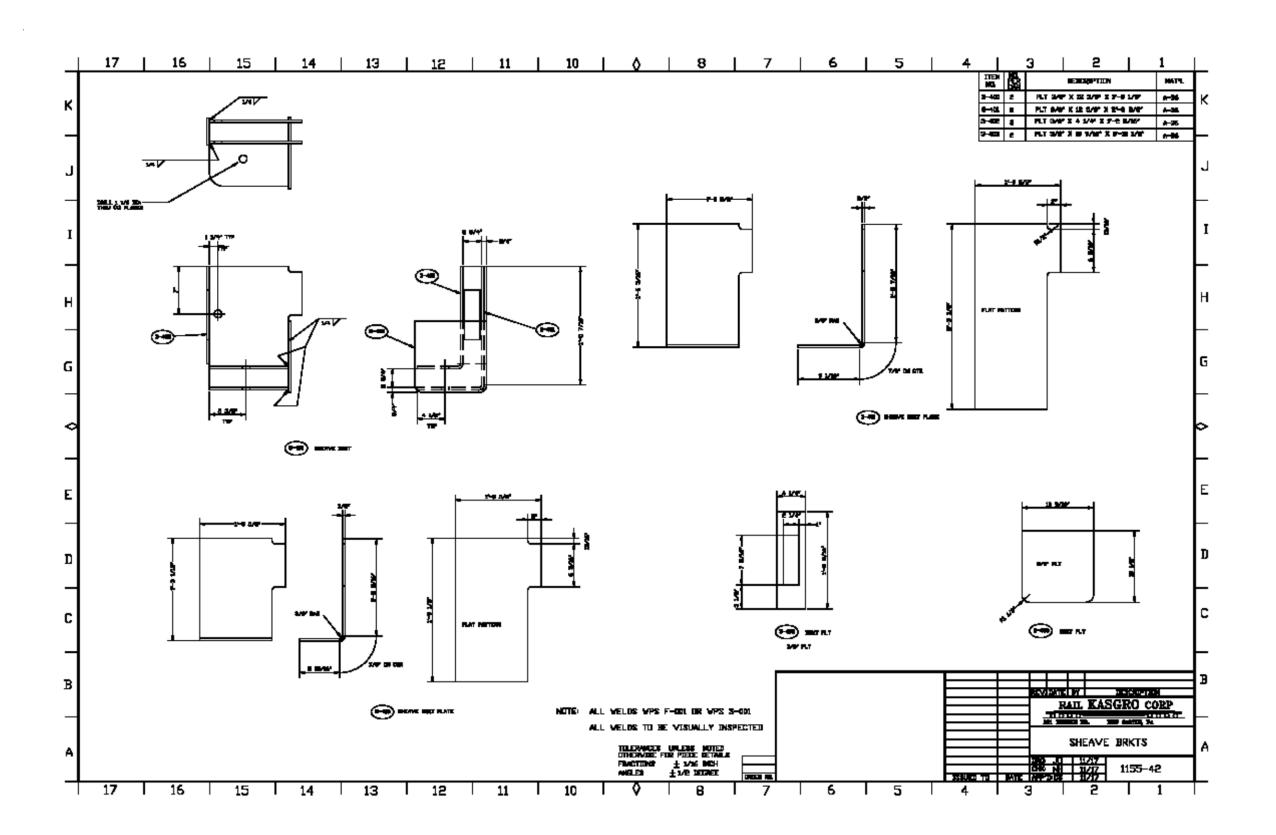

APPENDIX G-1.37 STEEL DETAILS


APPENDIX G-1.38 STEEL DETAILS

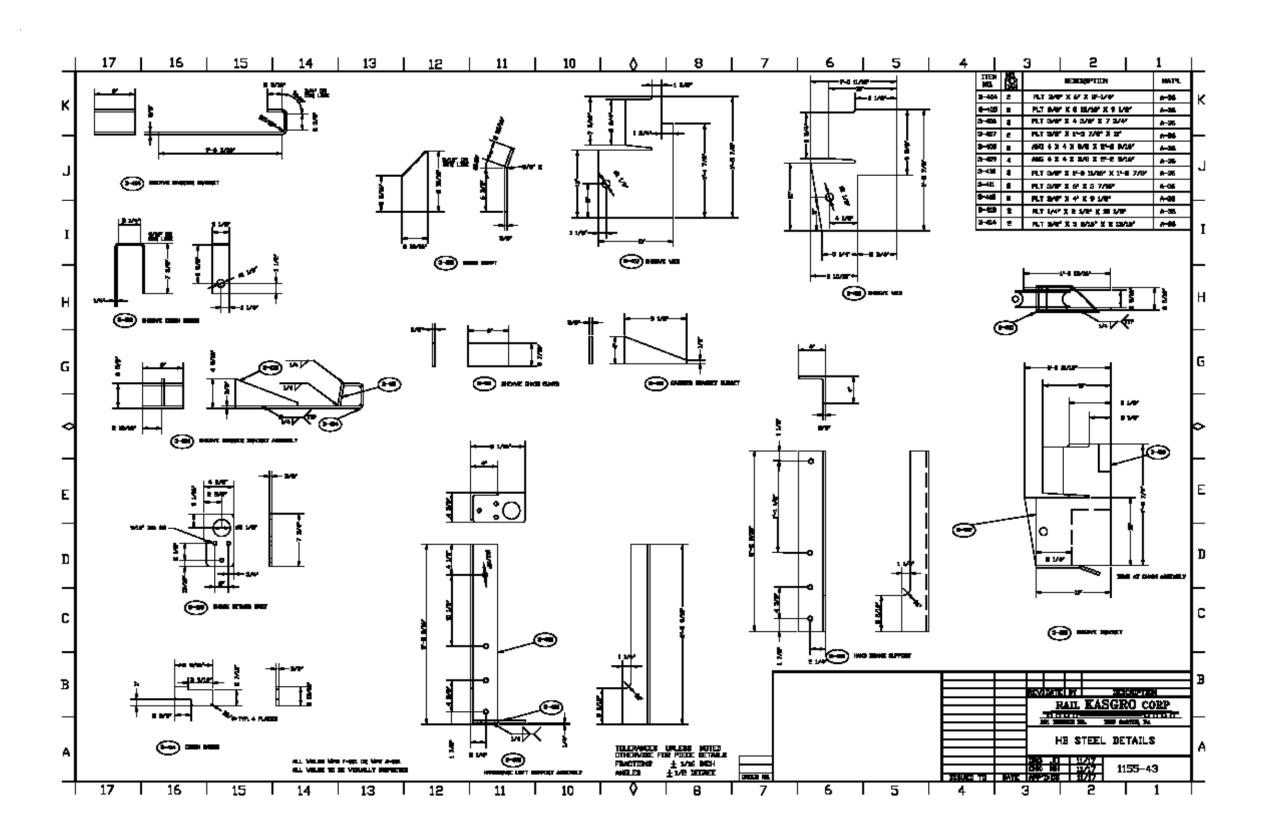
APPENDIX G-1.39 CENTER PIN DETAILS



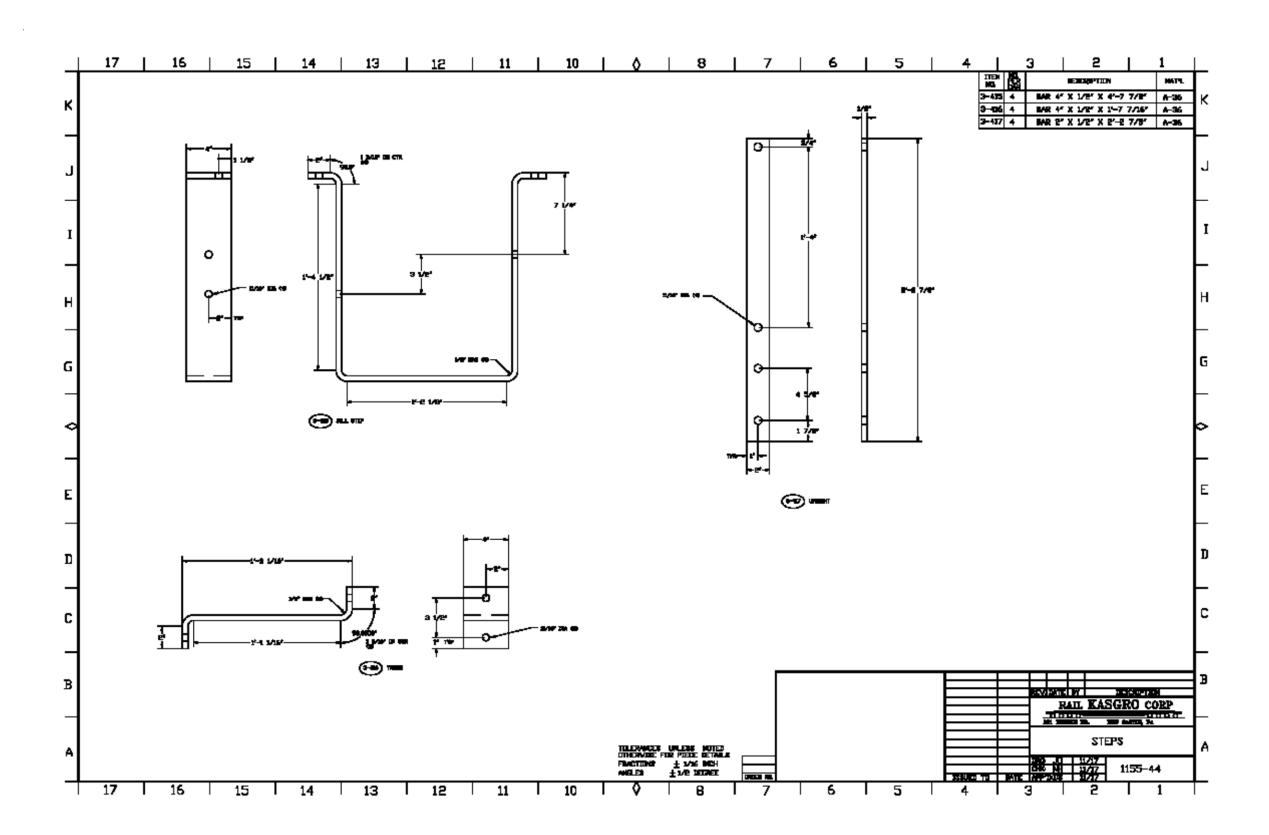
APPENDIX G-1.40 HANDBRAKE ARRANGEMENT


PageG.1-41 February 2, 2018

APPENDIX G-1.41 ATTACHMENT ARRANGEMENT



PageG.1-42 February 2, 2018


APPENDIX G-1.42 SHEAVE BRKTS

APPENDIX G-1.43 HB STEEL DETAILS

APPENDIX G-1.44 STEPS

PageG.1-45

APPENDIX G-1.45 ATLAS CASK RAILCAR STRUCTURAL ANALYSIS

ATLAS 12 AXLE FLAT CAR

S-2043 4.1 Structural Analysis

HLRM Service

November 2017

Prepared by:

Nicholas Hinsch

Checked by:

Jon Odden

CONTENTS

Introduction	2
Material	2
Design Parameters	2
Margin of Safety	3
Spread Sheet Comments	4
Model for Analysis	5
Shear and Moment Diagrams	6
Loading Description	7
Section Properties and Combined Stresses Car Body	8-19
Cooper Rating	20-21
Finite Element	22-33
Unsymmetrical Loading FBD	34
Swing Out	35
Weights and CG	36
Brake Analysis	37-38
Weld Attachment	20.42
	35-42
Additional FEA	

Kasgro Rail Corporation Page 1

Page G.1-46 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

Introduction:

The 12 axle flat car is made up of a flat car body, two tri-spans and end platforms. The car body has been analyzed in FEA and classical methods. Classical methods are used to determine normal stresses. FEA was used to verify and refine the classical method.

The classical method was done using spreadsheets and hand calculations. Input data and output data are explained prior to the center line calculations. There are hand calculations shown to verify the spread sheet and show how the numbers are derived.

The finite element analysis was done first by modeling one quarter of the car body using Autodesk Inventor version 10. The model then was exported to Algor finite element analysis software 19.1. Symmetry was used to minimize model size. Models are shown prior to each input.

Component Stenciling: Refer to drawing 1155-3 for stencil details. (S-2043 4.1.7.2)

Material:

Multiple materials have been used for the car body including ASTM 1045, A-572 60 and A-656 80. Material selection has been assigned according to all stress results.

Top Flange (deck plate): A-572 60

Bolster Assembly: A-572 60

Center and side sill webs: A-572 60

Cross members: A-572 60

Center and side sill bottom flanges: A-572 60

Side Sill Cover Plate: A-656 80 Centers plates: ASTM 1045

Weld Rod Material:

All material is to be welded with E80XX weld wire. Majority of the car body and tri-span will be fabricated out of A-572 Grade 60 material.

Design Parameters:

The 12 axle analysis consists of the following for the car body: (S-2043 4.1.5) AAR Standard Load Cases

Vertical and longitudinal loads and forces are applied per AAR MSRP Section C Part II.

- Dead and Live Loads (S-2043 4.1.5.1,4.1.5.2) (M-1001, paragraph 4.1.2)
- Buff Load (350-kip compressive force applied at coupler and 517 kip vertical) (S-2043 4.1.5.1) (M-1001, paragraph 4.1.2)
- Draft Load (350-kip tension force applied at coupler and 517-kip vertical) (S-2043 4.1.5.6) (M-1001, paragraph 4.1.9)

Kasgro Rail Corporation Page 2

Page G.1-47 February 2, 2018

- Squeeze Load (1,000-kip compression force applied at coupler and 517-kip vertical) (S-2043 4.1.5.7) (M-1001, paragraph 4.1.9)
- Dead and Live Load deflections (517-kip vertical) (S-2043 4.1.5.1-4.1.5.2)
- The 517-kip vertical load will be applied at inboard and outboard attachments. The total vertical load consists of
 the Hi-Star 190 cask and cradle, the weight of the end stops and all attachments. However, the distributed dead
 load is shown in the shear and moments diagrams. The attachment weight will also be included in the light weight
 of the car.

A load factor of 1.8 will be applied to the live, dead, buff and draft loads. The squeeze load will only have a load factor of 1.0. Deflections will not include a load factor.

All stresses were below yield to where each steel grade was applied in both FEA and classical methods.

Margin of Safety: (S-2043 4.1.5.9)

This is a summary of maximum stresses and minimum margins of safety. Members of the car body with max stresses are made from A-572 Grade 60 and A-656-80 material. There are higher stresses found in the transition area. The car body bolsters are made from A-572 60, however the stresses in the bolster sections are well below the yield. The max stresses for each cross section of the car body were derived from the finite element analysis of both symmetrical and unsymmetrical loading. (S-2043 4.1.5.9)

Mechanical Properties of A-572 60: Yield = 60 ksi min, Ultimate Tensile = 75 ksi min

Mechanical Properties of A-572 60: Yield = 60 ksi min, Ultimate Tensile = 75 ksi min

Mechanical Properties of A-656 80: Yield = 80 ksi min, Ultimate Tensile = 90 ksi min

(T) – Member in Tension (C) – Member in Compression

AAR Section 4.2.2.1.2 (The allowable design stress shall be the yield or 80% of ultimate, whichever is lower.)

M.S. = (Allowable stress/Actual stress) -1

Member	Max Stress	Allowable Stress	Margin of Safety	Pg.
Top Flange (C)	51.1 ksi	60 ksi	0.17	25
Cover Plate (T)	49.7 ksi	72 ksi	0.45	26
Side Sill flange (T)	54 ksi	60 ksi	0.11	26
Center Sill Flange (T)	47.9ksi	60 ksi	0.25	27
Body Bolster Webs (Shear)	12.9 ksi	29 ksi	1.24	16
Body Bolster Flange (T)	27.6 ksi	60 ksi	1.17	16
Car Body Web (Shear)	9.46 ksi	29 ksi	2.07	12
Cross Bearer (Shear)	11.16 ksi	29 ksi	1.60	19

Kasgro Rail Corporation Page 3

Page G.1-48 February 2, 2018

Spreadsheet Analysis Comments:

Section properties, bending stress, axial stress, combined stress, shear flow, and shear stress are calculated using an excel spreadsheet.

Inputs:

CG Distance from element cg to top fiber

Deck Height Section Height

Moment Bending Moment (ft.-kips)

Shear Vertical Shear Force (kips)

Axial Axial Load (kips)

Load Factor Applied Load Factor to Stresses

Outputs:

Q-Full Static moment of section area about neutral axis using full section (in³)

Shear Flow Load factor (usually 1.8) times shear divided by moment of inertia (k/in). Used for weld sizes

Total Area Section Area (in²)

Inertia Moment of inertia (in⁴)

Eccentric Eccentricity between neutral axis and force applied at center plate

Induced moment Eccentric distance time axial for applied at center plate

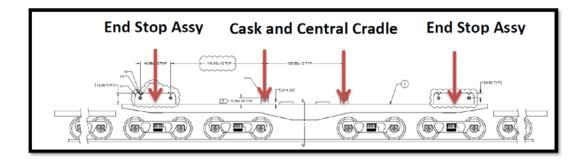
M/S Stress due to moment (ksi)

P/A Stress due to axial load (ksi)

M/S + P/A Total combined stress (ksi)

VQ/IT Shear stress at neutral axis (ksi)

T Thickness of a member

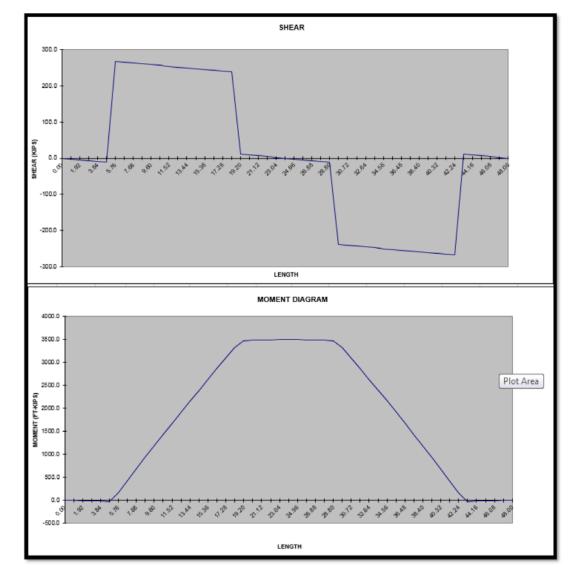

All stresses were below yield to where each steel grade was applied in both FEA and classical methods.

Kasgro Rail Corporation

Page 4

Page G.1-49 February 2, 2018

Model for Analysis:


Free Body Diagram for Different Cask Families

The Atlas rail car loading is shown in the figures above and below. A shear and moment diagram was created to show the HI-Star 190 loading on the car body of the Atlas rail car. The weight of the cask and cradle was applied at the inboard attachments shown below. The car body distributed load including attachment weight is shown in the uniform load columns. The car body comes out to 48 ft. in length and estimated at 2.34 kip/ft. which was derived from the FEA model. Concentrated loading of the cask and cradle of the HI- Star 190 are shown, due to symmetry, a vertical load of 112.5 kip was applied at each inboard attachment. This is done to find the max bending moment and shear force subjected to the car body. The distance between vertical supports (truck centers) is 38 ft. which is shown on the left. That leaves an overhang of 5 ft. on each side of the railcar. The concentrated loads occur 62.5 inches each way off center, dimensions (x) shown below are distances shown from left edge of the car body for hand calculation purposes.

			S	HEAR A	ND MON	IENT DIA	GRAMS			
		COI	NCENTR/	ATED L	OAD			UN	FORM LO	DAD
			Р	X				W	X1	X2
OH1=	5		225	18.8				2.34	0	48
TC=	38.0000		225	29.2				0	0	0
OH2=	5									
RL=	281.16									
RR=	281.16									
		SUM	450							

Kasgro Rail Corporation Page 5

Page G.1-50 February 2, 2018

Car Body Shear and Moment Diagram for Symmetrical Loading of HI- Star 190 on Center

Page G.1-51 February 2, 2018

Loading Summary:

Concentrated loading at pin connections

Horizontal distances from left side of car body: 18.8125ft. and 29.1825ft.

Overhang from left center plate (left vertical reaction) to left side of car: 5 ft.

Overhang from right center plate (right vertical reaction) to right side of car: 5 ft.

Vertical supports (5 ft. from each end): 38 ft.

Overall Length: 48 ft.

Dead Load: Distributed uniform over 48 ft.

Live Load: Concentrated loads applied on pin connections

Live Load: 450 kip (conservative for cask and cradle)

Dead Load: 112.32 kip (2.34 kip/ft. including weight of attachments)

Vertical Reaction Left: 281.16 lbs.

Vertical Reaction Right: 281.16 lbs.

Max Moment: 3500 kip-ft. on centerline.

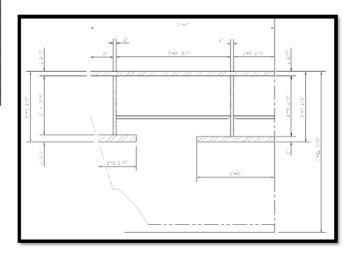
Max Vertical Shear Force on car body under symmetrical loading: 267.7 kip at vertical supports. (Just inboard of body bolsters)

Note: The HI-Star 190 loading of 450 kip is the max vertical loading of the railcar combined with the AAR train action forces. The HI-Star 180 loading (referred on page 34) is the max unsymmetrical loading while the car is being unloaded. The car will not experience train action forces but the load will be rotated off of centerline of the Atlas railcar.

Kasgro Rail Corporation Page 7

Page G.1-52 February 2, 2018

Section Elements and Properties on Center Line


This section of the car will be analyzed with the moment of the static HI-Star 190 loading scenario (worst case) along with the AAR Buff, Draft and Squeeze loading. Below is the base, height and centroid of each member in the cross section. A general image of the cross section is shown below. Refer to drawing 1155-1 for further cross section details.

Parallel Axis Theorem:

Part	Thickness (in)	CG (in)	Height (in)
Top Flange	128.00	0.75	1.50
Center Webs	2.00	11.63	20.25
Bottom Flange	54.00	22.75	2.00
Side Sill Webs	2.00	11.38	19.75
Side Sill Bottom	26.50	22.13	2.50
Flanges			

Section Properties and Plate E:

N-A (from top)	11.18 (in)
Total Area	446.25 (in²)
Deck Height	23.75 (in)
Eccentric	4.57 (in)
Moment	3500.0 (kip-ft)
Section Modulus Top	-4122.04(in ³)
Section Modulus Bottom	3663.21(in ³)
Inertia	46064.33 (in ⁴)

Normal Stresses:

AXIAL (kip)	MOMENT (kip-ft)	INDUCED MOMEMNT (kip-ft)	M/S	(ksi)	P/A (ksi)	COMBINED LOADING	
0	3500.00	0.00	top	-18.34	0.00	-18.34	ksi
350	3500.00	133.29	bottom	20.64	0.00	20.64	ksi
-350	3500.00	-133.29	top	-19.04	1.41	-17.63	ksi
-1000	3500.00	-380.83	bottom	21.42	1.41	22.84	ksi
			top	-17.64	-1.41	-19.05	ksi
			bottom	19.85	-1.41	18.44	ksi
			top	-9.08	-2.24	-11.32	ksi
			bottom	10.22	-2.24	7.98	ksi

Kasgro Rail Corporation Page 8

Page G.1-53 February 2, 2018

Shear stress on centerline cross section: (S-2043 4.1.10)

Max vertical shear force center cross section: 9.0 kip

Max vertical shear force between truck centers: 267.7 kip (Just Inboard of body bolster)

Vertical shearing stress = VQ/IT

V=9.0 kip

I=46064.33 in4

Q-value for cross section:

 $Q=A_pY$

Q-Deck plate (128 in x 1.5 in) (11.18in-.75in) = 2002.56 in^3

Q-NA: 2002.56in³ + (11.18in-1.5in) (4in) (4.84in) =2248in³

Shear flow for deck plate:

Q-deck= $(1.8(2002.56in^3) (9.0 kip))/46064.33in^4 = 0.70 k/in$

Shear stress at neutral axis:

 $1.8(9.0 \text{ kip}) (2248 \text{in}^3)/((46064.33 \text{in}^4) (4 \text{in})) = 0.20 \text{ ksi}$

Welding deck to webs:

Shear flow = (0.70 k/in)/4 = 0.18 k/in per web

Use 3/8 double sided fillet per web good for 0.375 (0.707) (33.06) (2) = 17.5k/in

Where:

0.375 = weld size (conservative)

0.707 = effective throat at 45 deg angle

33.06 = allowable weld shear stress per AAR Section C table 4.3.4.1.3

2 = double sided fillet

Check whether throat or leg of weld is stronger

Throat strength = 17.5 k/in from above

Leg to base metal strength = 60 (0.58) (0.375) (2) = 26.1 k/in

60 = base material yield stress

2 = double sided fillet

.58 = AAR conversion factor for shear stress

0.375 =weld throat size

Therefore throat calculation governs for Grade 60 Steel

Kasgro Rail Corporation

Page 9

Page G.1-54 February 2, 2018

Section Elements and Properties Above Inboard Wheel:


This section of the car will be analyzed with the moment of the static HI-Star 190 loading scenario (worst case) along with the AAR Buff, Draft and Squeeze loading. Below is the base, height and centroid of each member in the cross section. A general image of the cross section is shown below. Refer to drawing 1155-1 for further cross section details.

Parallel Axis Theorem:

Part	Thickness (in)	CG (in)	Height (in)
Top Flange	128.00	0.75	1.50
Center Webs	12	5.75	9.50
Bottom Flange	70.00	11.25	2.50
Side Flange	32.00	11.25	2.50
Cover Plate	30	12.50	0.50

Section Properties:

N-A (from top)	6.71 (in)
Total Area	564.00 (in ²)
Deck Height	13.00 (in)
Eccentric	8.25 (in)
Moment (HI-Star 190)	3100.0 (kip-ft)
Section Modulus Top	-2004.17(in ³)
Section Modulus Bottom	2140.70(in ³)
Inertia	13456.21 (in ⁴)

Normal Stresses:

AXIAL (kip)	MOMENT (kip-ft)	INDUCED MOMEMNT (kip-ft)	M/S	(ksi)	P/A (ksi)	COMBINED LOADING	
0	3100.00	0.00	top	-33.41	0.00	-33.41	ksi
350	3100.00	240.63	bottom	31.28	0.00	31.28	ksi
-350	3100.00	-240.63	top	-36.00	1.12	-34.89	ksi
-1000	3100.00	-687.50	bottom	33.71	1.12	34.82	ksi
			top	-30.82	-1.12	-31.93	ksi
			bottom	28.85	-1.12	27.73	ksi
			top	-14.44	-1.78	-16.22	ksi
			bottom	13.52	-1.78	11.74	ksi

Kasgro Rail Corporation Page 10

Page G.1-55 February 2, 2018

Shear stress above inboard wheel cross section:

(S-2043 4.1.10)

Max vertical shear force at section (Hi Star 190): 256.40 kip

Vertical shearing stress = VQ/IT = 4.62 ksi

V= 256.40 kip

Q-NA = 1307.67

I=11088.00in4

Q-full deck plate 1144.48 in³ Shear flow= 47.64 k/in

Q-full center and side sill bottom flanges 1285.20 in³ Shear flow = 53.49 k/in

Q-full cover plate 87.00 in^3 Shear flow = 3.62 k/in

Welding deck to webs:

Shear flow = (47.64 k/in)/4 = 11.91 k/in per web

Use 3/8 double sided fillet per web good for 0.375 (0.707) (33.06) (2) = 17.5 k/in

Welding flanges to webs: = (53.49 k/in)/4 = 13.37 k/in per web

Side sills use 3/8" double sided fillet per web good for = 17.5 k/in

Center Sill use 3/4" single sided fillet per web good for 17.5 k/in (refer to drawing 1155-1)

Where:

0.375 = weld size (conservative)

0.707 = effective throat at 45 deg angle

33.06 = allowable weld shear stress per AAR Section C table 4.3.4.1.3

2 = double sided fillet

Check whether throat or leg of weld is stronger

Throat strength = 17.5 k/in from above

Leg to base metal strength = 60 (0.58) (0.375) (2) = 26.1 k/in

Where:

60 = base material yield stress

2 = double sided fillet

.58 = AAR conversion factor for shear stress

0.375 =weld throat size

Therefore throat calculation governs for Grade 60 Steel

Kasgro Rail Corporation

Page 11

Page G.1-56 February 2, 2018

Shear stress at 10 ft. inboard of body bolster:

(S-2043 4.1.10) Refer to drawing 1155-1 for further cross section details.

Max vertical shear force at section (Hi Star 190): 267.70 kip

Vertical shearing stress = VQ/IT = 9.46 ksi

V= 267.70 kip

 $Q-NA = 935.10 \text{ in}^3$

I=9527.00in4

Q-full deck plate: 891.00 in³ Shear flow= 45.07 k/in

Q-full side sill bottom flanges: 88.32in³ Shear flow = 17.56 k/in

Q-full bottom flange: 724.5 in^3 Shear flow = 36.64 k/in

Welding deck to webs:

Shear flow = (45.07 k/in)/4 = 11.26 k/in per web

Use 3/8 double sided fillet per web good for 0.375 (0.707) (33.06) (2) = 17.5 k/in

Welding side sill flanges to webs: = (17.56 k/in)/2 = 8.75 k/in per web, Center sill: (36.64 k/in)/2 = 18.32 k/in

Side sills use 3/8" double sided fillet per web good for = 17.5 k/in

Center Sill use 3/8" single sided fillet plus 1" 60 deg bevel per web good for 29 k/in (refer to drawing 1155-1)

Where:

0.375 = weld size (conservative)

0.707 = effective throat at 45 deg angle

33.06 = allowable weld shear stress per AAR Section C table 4.3.4.1.3

2 = double sided fillet

Check whether throat or leg of weld is stronger

Throat strength = 17.5 k/in from above

Leg to base metal strength = 60 (0.58) (0.375) (2) = 26.1 k/in

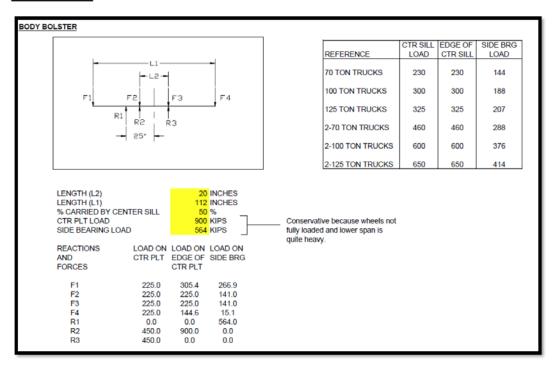
Where:

60 = base material yield stress

2 = double sided fillet

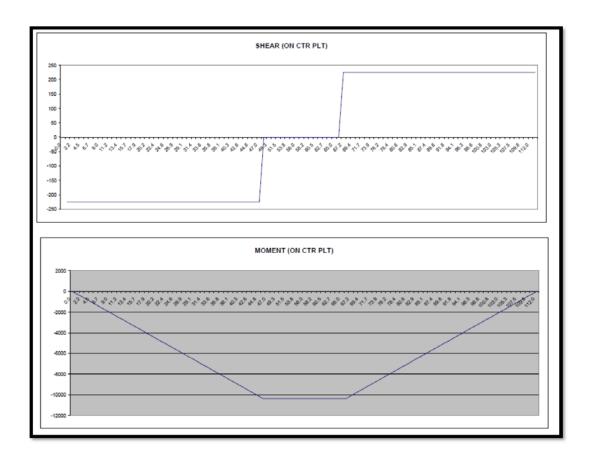
.58 = AAR conversion factor for shear stress

0.375 =weld throat size

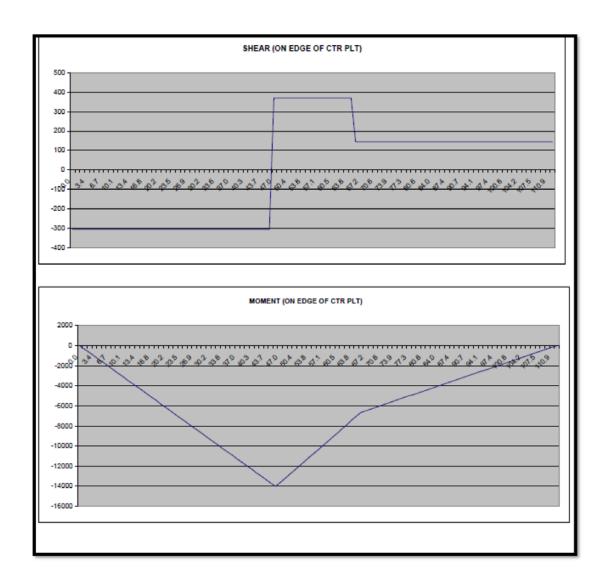

Therefore throat calculation governs for Grade 60 Steel

Kasgro Rail Corporation

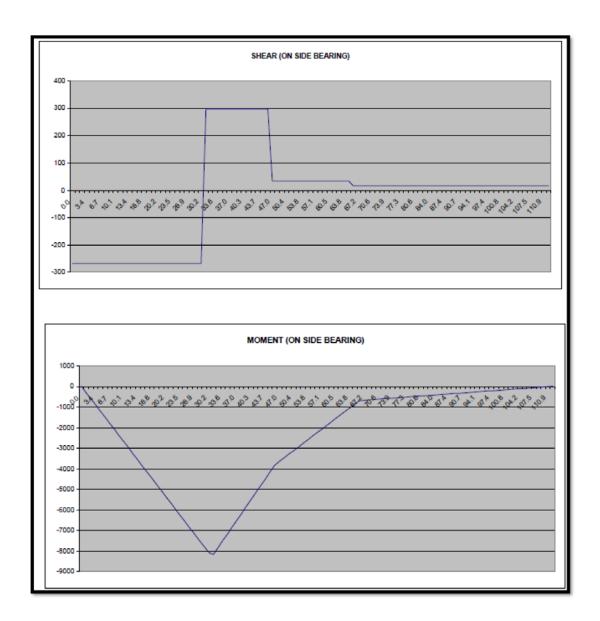
Page 12


Page G.1-57 February 2, 2018

Bolster Analysis:



Kasgro Rail Corporation Page 13


Page G.1-58 February 2, 2018

Page G.1-59 February 2, 2018

Page G.1-60 February 2, 2018

Page G.1-61 February 2, 2018

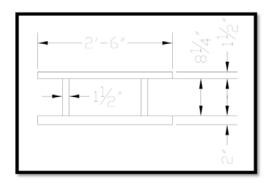
Bolster Analysis:

This section of the car will be analyzed to AAR M-1001 (4.4.8). Below is the base, height and centroid of each member in the cross section. A general image of the cross section is shown below. A general cross section of the bolster is shown below. All data was taken from the shear and moment diagrams shown above. Refer to drawing 1155-1 for further cross section details.

The bolsters were analyzed using the loading for 100 ton trucks.

Thus,

V= 375 kip Q-top = 249.75 in³ Q-bottom = 267.00 in³

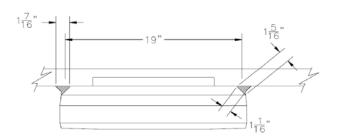

Shear flow top = $(375 \text{ kip } (249.75 \text{ in}^3))/2754.35 \text{ in}^4 = 34 \text{ k/in}$ Shear flow bottom = $(375 \text{ kip } (267.00 \text{in}^3))/2754.35 \text{ in}^4 = 36.35 \text{ k/in}$

(S-2043 4.1.10)

Shear (VQ/IT) = $(375 \text{ kip}) (284.31 \text{ in}^3) / ((2754.35 \text{ in}^4) (3 \text{ in})) = 12.9 \text{ ksi @ neutral axis}$

M/S top = -32.03 ksi M/S bottom= 27.66 ksi

N-A (from top)	6.30 (in)
Total Area	129.75(in ²)
Deck Height	11.75 (in)
Eccentric	0 (in)
Moment	1166 (ft-kip)
Section Modulus Top	-436.91(in ³)
Section Modulus Bottom	505.77(in ³)
Inertia	2754.35 (in ⁴)


Refer to drawings 1155-1 and 1155-8 for welding instructions

Kasgro Rail Corporation

Page 17

CENTER PLATE WELD

Weld shown in cross-hatched area

Check for weakest throat (based on base material or weld material)

1 7/16" q = 1.4375 x 29 = 41.7 k/in

1 1/16" q = 1.0625 x 33.06 = 35.1 k/in

Center plate connection good for (27.7) (pi) (19) = 1653 kips

(Does not include mechanical connection.)

Kasgro Rail Corporation Page 18

Page G.1-63 February 2, 2018

Cross Bearer Analysis:

This section of the car will be analyzed to AAR M-1001. Below is the base, height and centroid of each member in the cross section. A general image of the cross section is shown below. A general cross section of the bolster is shown below. All data was taken from the shear and moment diagrams shown above. Refer to drawing 1155-1 for further cross section details.

Cross bearer must carry 37.5% of the live load (450 kip), less that carried by the side sill, back to the center sill.

Estimate that 50% of the load is carried by the center sill and each side sill carries 25%.

Thus,

450 kip (.375) (0.5) = 84.36 kip Length of Cross Bearer= 40 in

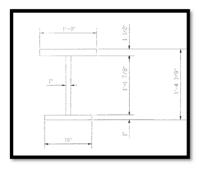
Moment = 40in (84.36 kip) = 3374 in-k = 281.17 ft-kip

V = 84.36 kip

Max Stress on top = $1.8 (3374 \text{ in-k}/ 252.70 \text{ in}^3) = 24.03 \text{ ksi tension on top flange}$

Max Stress bottom flange = 1.8 (3374 in-k / 184.44in³) = 32.9 ksi compression on bottom flange

Shear (VQ/IT) = $1.8 (84.36 \text{ kip}) (128.34 \text{ in}^3) / ((1745.91 \text{ in}^4) (1 \text{ in})) = 11.16 \text{ ksi @ neutral axis}$


Q top flange =110.90 in³

V= 84.36 kip

Shear Flow = q= $1.8\,84.36\,\mathrm{kip}\,(110.9\,\mathrm{in^3})\,/\,1745.91\,\mathrm{in^4} = 9.55\,\mathrm{k/in}\,(\mathrm{S}\text{-}2043\,4.1.10)$

Use 0.375 fillet weld both sides to both top and bottom flange (17.5 k/in)

N-A (from top)	6.91 (in)
Total Area	41.88 (in ²)
Deck Height	16.38 (in)
Eccentric	0 (in)
Moment	281.17 (ft-kip)
Section Modulus Top	-252.70(in ³)
Section Modulus Bottom	184.44(in ³)
Inertia	1745.91 (in ⁴)

Kasgro Rail Corporation

Page 19

Page G.1-64 February 2, 2018

COOPER RATING KASGRO RAIL CORP

Atlas Cask Car (S-2043 4.7.9.2)

LOAD	AXLE SPACING
65.75 65.75 65.75 65.75 65.75 65.75 65.75 65.75 65.75	6 4.5 6 4.5 6 11.5 6 4.5 6 4.5 6
65.75	0

ODAN	DEVIDINO		END OUE AD		FLOOR BEAM	
SPAN	BENDING		END SHEAR		REACTION	
FT	FT-KIPS	E	KIPS	E	KIPS	E
6	99	65.7	80	68.7	82	61.6
8	136	67.9	94	68.3	111	63.2
10	197	70.2	101	67.3	128	64.0
12	260	65.1	112	64.1	156	66.9
13	297	62.5	120	65.2	169	68.8
14	346	62.9	126	65.3	180	69.2
15	395	63.3	131	65.3	191	69.8
16	445	63.5	137	64.3	199	70.1
18	543	63.9	150	64.5	219	72.2
20	654	63.4	160	63.9	237	72.2
25	1019	66.8	192	67.5	276	72.9
30	1430	69.7	217	68.8	316	73.2
35	1899	72.6	241	69.6	361	74.1
40	2389	72.9	259	68.6	409	75.6
45	2880	72.0	283	69.4	451	75.8
50	3452	73.0	308	70.4	485	75.1
60	4751	73.4	364	73.8	536	69.7
70	6347	74.3	417	75.5	572	64.4
80	8267	76.4	459	73.9	599	60.0
90	10230	76.4	497	72.4	620	56.4
100	12195	75.5	525	70.0	637	53.4
110	14162	70.8	552	68.3	651	51.0
120	16130	69.9	571	65.7	662	48.4

Kasgro Rail Corporation Page 20

Page G.1-65 February 2, 2018

130	18099	66.4	584	63.1	672	46.4
140	20067	64.5	603	61.3	681	44.0
150	22036	63.0	616	59.9	688	42.3
160	24005	60.1	622	56.8	694	40.2
170	25975	58.0	635	55.7	700	38.6
180	27946	56.5	642	53.4	705	36.8
200	31888	53.5	656	50.1	713	33.9
225	36816	50.2	670	46.4	721	30.8
250	41744	47.2	683	43.5	728	28.2
275	46673	44.5	692	40.7	734	26.0
300	51601	42.1	702	38.4	738	24.1
350	61461	37.6	713	34.2	746	21.0
400	71322	33.9	720	30.8	751	18.5

Page G.1-66 February 2, 2018

FEA INTRODUCTION:

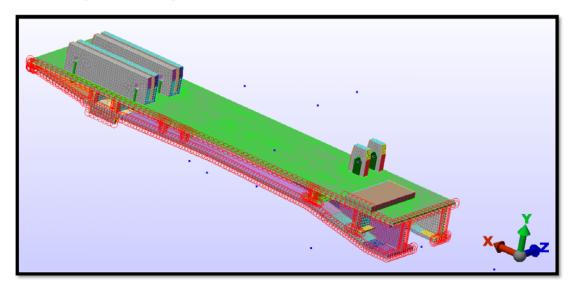
FEA was used to verify the classical analysis of the car body. Also, to get an accurate analysis of deflections, stresses and transition areas. The car body was modeled with quarter symmetry. The model was created in Autodesk inventor and analyzed in Algor FEA software. (S-2043 4.1.3)

Car Body Weight: 83,000 lbs. (EST. 112,000 lbs. with attachments) Material: A572 60

Element Type: Brick

Meshed Model of car body with quarter symmetry:

Translational (Z), Rotational (X) and Rotational (Y) on Longitudinal Centerline

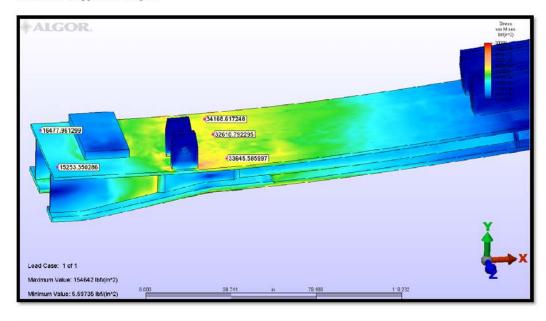

Translational (X), Rotational (Y) and Rotational (Z) on Lateral Centerline

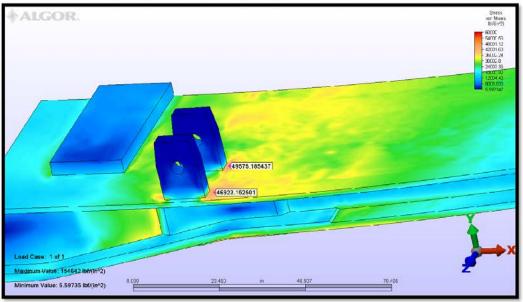
Loads applied at inboard and outboard attachments

Translational (Y) constraint on center plate

Jacking Load: Half symmetry, Translational (Z), Rotational (X) and Rotational (Y) with Translation (Y) constraints on all jacking pads.

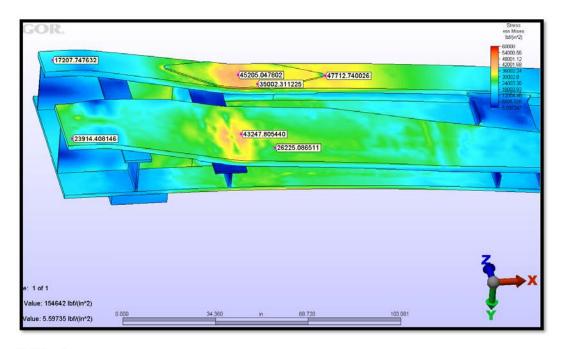
Refer to drawing 1155-1 for Jacking Pad locations.

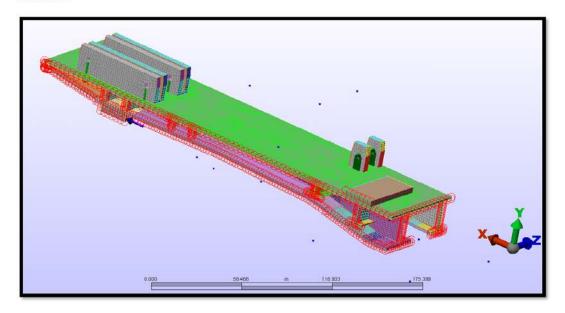



Kasgro Rail Corporation

Page 22

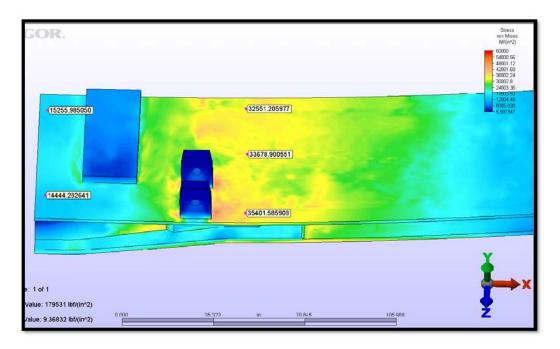
Page G.1-67 February 2, 2018

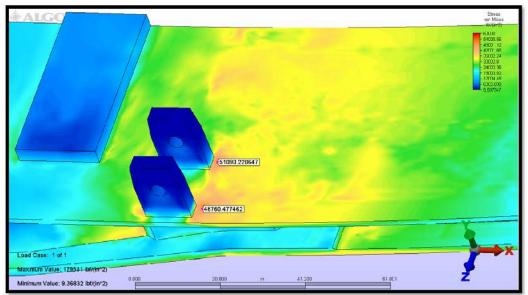

No axial load applied at coupler:

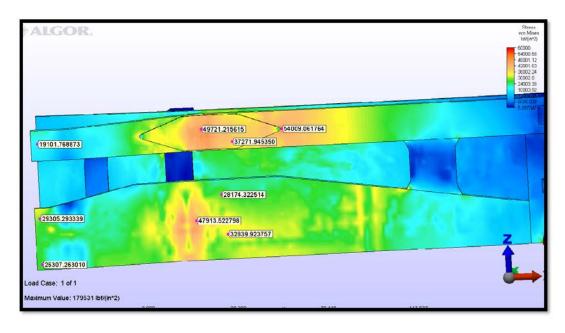


Kasgro Rail Corporation Page 23

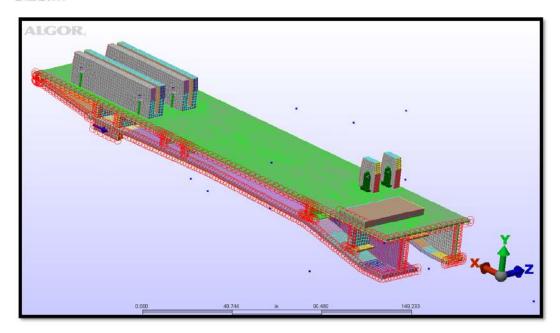
Page G.1-68 February 2, 2018



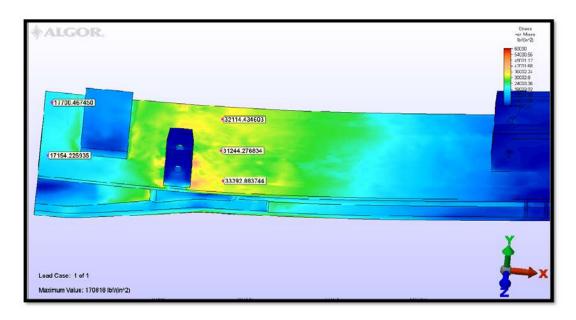

Draft Load:

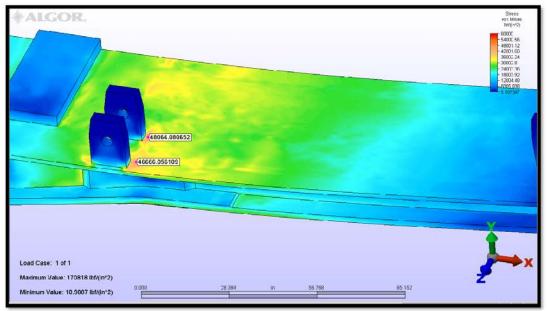

Kasgro Rail Corporation Page 24

Page G.1-69 February 2, 2018

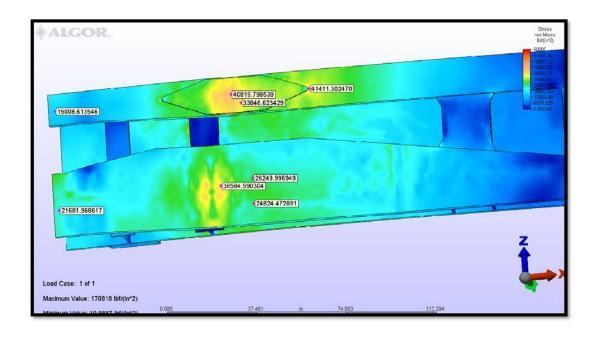


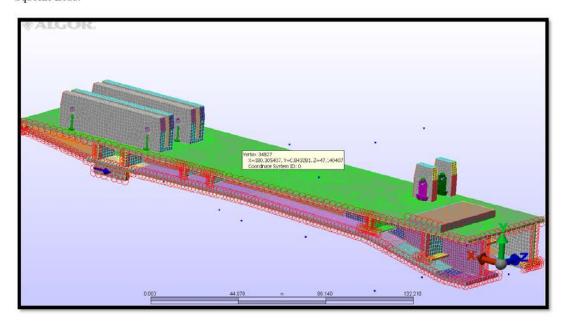
Page G.1-70 February 2, 2018




Buff Load:

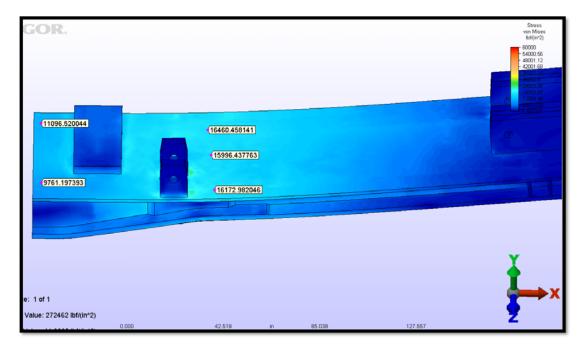
Kasgro Rail Corporation Page 26

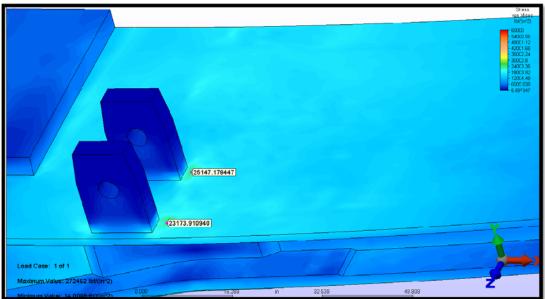

Page G.1-71 February 2, 2018



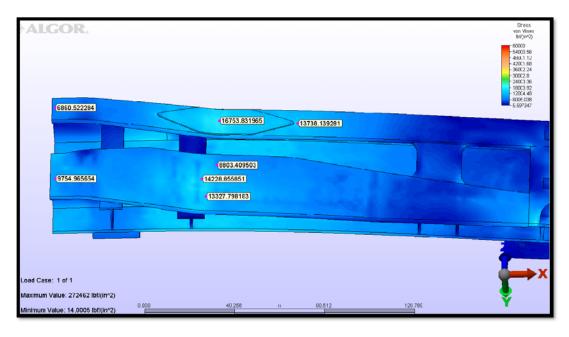
Kasgro Rail Corporation Page 27

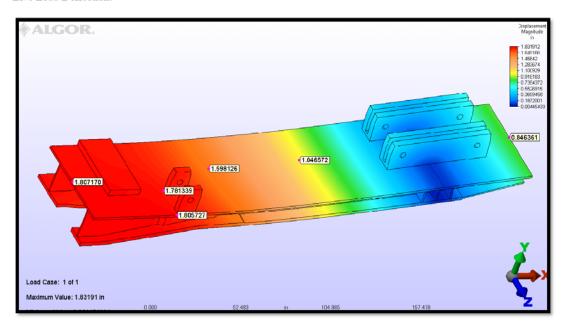
Page G.1-72 February 2, 2018




Squeeze Load:

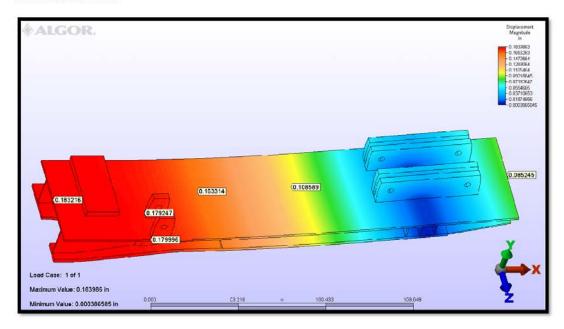
Kasgro Rail Corporation Page 28

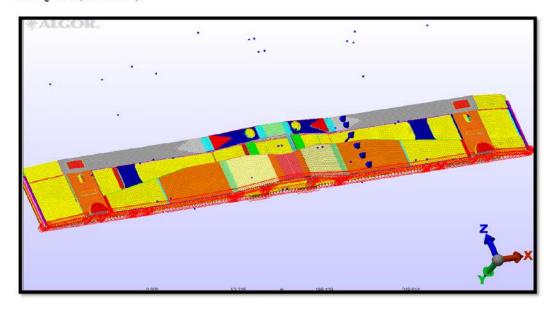

Page G.1-73 February 2, 2018



Kasgro Rail Corporation Page 29

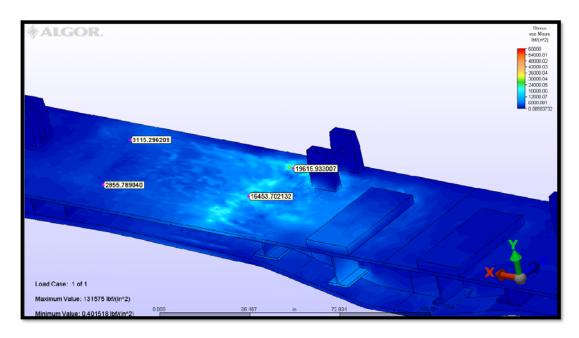
Page G.1-74 February 2, 2018

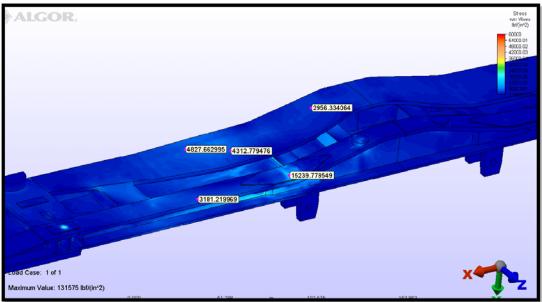

Live Load Deflection:


Kasgro Rail Corporation Page 30

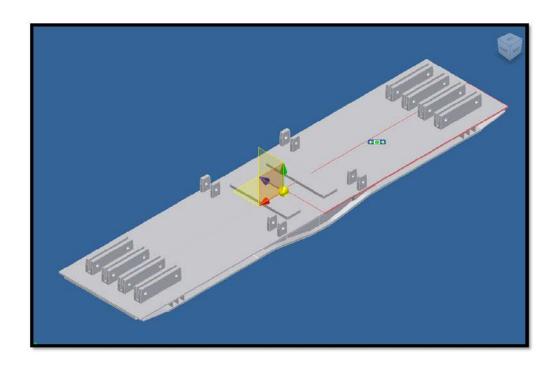
Page G.1-75 February 2, 2018

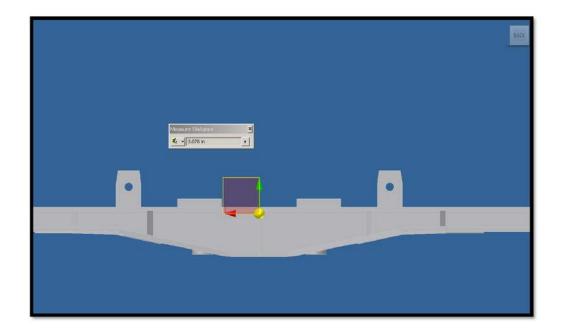
Dead Load Deflection:




Jacking Load (HI-Star 180):

Kasgro Rail Corporation Page 31

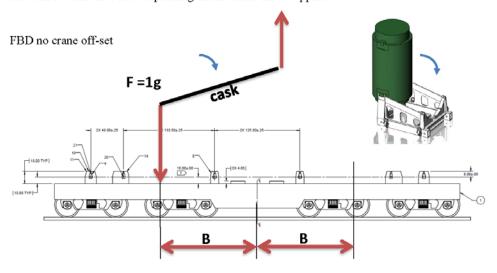

Page G.1-76 February 2, 2018



Kasgro Rail Corporation Page 32

Page G.1-77 February 2, 2018

Kasgro Rail Corporation Page 33

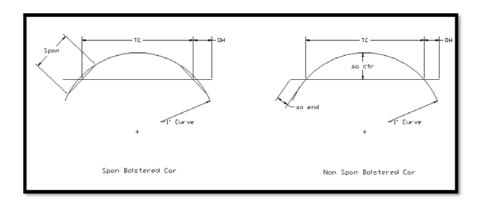

Page G.1-78 February 2, 2018

Maximum Vertical Load Location Slade Klein, Engineer, AFS

The maximum vertical loads and locations are shown in the table below:

Cask rotated on cradle	Load "F" on Railcar (lb.)	Horizontal distance "B" from load to center of railcar (in.)
TN-68	299,500	63.5
HI-STAR 60	234,400	67.56
NAC-STC	298,600	78.6
HI-STAR 180	371,347	81.75
NAC MAGNATRAN	356,000	89.3
NAC-UMS	299,000	89.3
TS-125	315,910	98

The dimensions are shown in the figure below for clarity. Note that the maximum vertical load could occur on either side of the railcar centerline at any location "B". The load "F" is applied in the vertical direction. There also can be some side load depending on the crane off-set applied.


The HI-Star 180 was analyzed in the unsymmetrical loading for worst case. Distances and weights are shown above. The model had all 4 jacking locations constrained in the vertical direction (8 in reality). A load factor of 1.8 was applied to the HI-Star 180 along with gravitational loads. Stress is all areas were rather low. Screen plots are shown on pages 31-32.

Kasgro Rail Corporation Page 34

Page G.1-79 February 2, 2018

Page 35

Swing Out:

Span = 21 ft

Kasgro Rail Corporation

Truck Center = 38 ft

Over Hang = 5 ft

Swing out at center = 0.493 inches per degree of curvature

Swing out at ends = 0.110 inches per degree of curvature

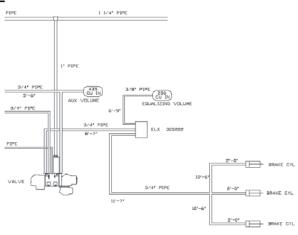
Page G.1-80 February 2, 2018

Weight and Center of Gravity AREVA 12 Axle Cask Car (Loaded at 55.375 deck Height)

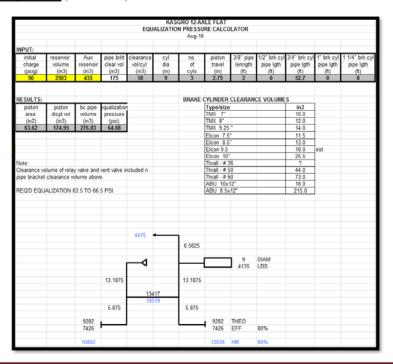
The CG of the Atlas Car body is separated into 5 sections listed below. Each section has its own CG and distance to the top of the rail. 34.6 inches is the CG while the car is fully loaded with the HI-Star 190. That is with spring and car body deflection.

Item of Rail Car	Weight (lbs.)	Distance of CG to Rail (in.)	Weight * CG Distance
Car Body	83k	48.63	4036.29
Trucks	66k	18	1188
Spans	33k	32.8	1082.4
End Platforms	12k	40	480
Misc.	5k	18	90
Totals:	199k		6876.69
·		CG Loaded:	34.6

Weight and Center of Gravity AREVA 12 Axle Cask Car (Unloaded with Car Body Fully Cambered 59.25 deck height)


Item of Rail Car	Weight (lbs.)	Distance of CG to Rail (in.)	Weight * CG Distance
Car Body	83k	51.0	4233
Trucks	66k	18	1188
Spans	33k	34.8	1148.4
End Platforms	12k	42	504
Misc.	5k	18	90
Totals:	199k		7225.65
	·	CG Unloaded:	35.9

These are the final estimated CG distances for the Atlas Cask Car loaded and unloaded. All distances are to the top of the rail. These final estimates will not impact the loaded, partially loaded and unloaded decks heights of the Atlas Cask Car.


Kasgro Rail Corporation Page 36

Page G.1-81 February 2, 2018

Brake Schematic: (S-2043 4.7.7)

Brake equalization pressure: (S-2043 4.7.7)

Kasgro Rail Corporation Page 37

Page G.1-82 February 2, 2018

			ELLCON N 340L MOD						
			HAND BRA						
GRL # OF AXLES	789,000 12		LT WT =	199000		LIGH	HT WT WITH	H CASK =	716000
HAND BRAK	E FORCE	137,024	17.4%		>10%				
AIR BRAKE	FORCE	89107	11.3%		11-13%				
EMPTY CAR AT 30 PSI RI			26.7%						
S-2043 REQ AT 30 PSI RI		*	12.4%		<28%	S-2043 RE	QUIREME	NT	

Kasgro Rail Corporation Page 38

Page G.1-83 February 2, 2018

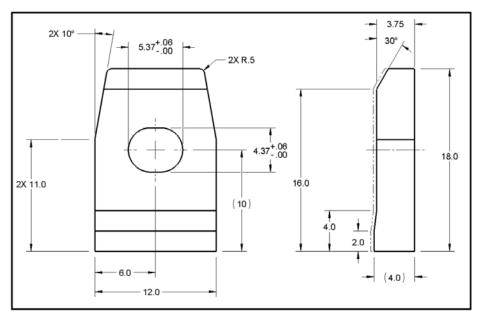


Figure 5-1: Center Pin Attachment Block

S-2043 (4.1.8.1) Loads provided from Areva.

Vertical Load Weld Calculations on Pin Attachments:

All attachments are to be welded to the deck plate.

Assuming 100 % Weld Lateral Load = 611kip Vertical Load = 312 kip Stress from Doc./Rev.: Calc-3015276-002 (Rule 88 A.15.c)

Tensile = 3.50 ksi

Shear = 13.2 ksi

Bending = 26.3 ksi

Combined = 37.6 ksi < 50 ksi

Stress from Doc./Rev.: Calc-3015276-002 (10 CFR 71.45)

Tensile = 3.50 ksi

Shear = 13.2(5/2) = 33 ksi

Bending = 26.3 (5/2) = 65.75 ksi

Combined = 89.8 ksi > 65 ksi

From the stress results listed above, 100% penetration weld will be required on all attachments to the railcar deck plate.

Kasgro Rail Corporation Page 39

Page G.1-84 February 2, 2018

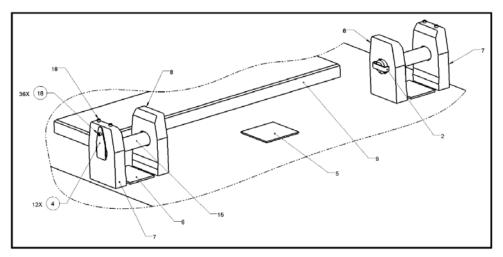


Figure 5-2: Shear Blocks

Shear Block Weld Calculations:

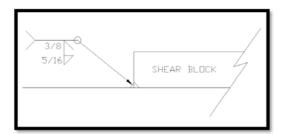
All attachments are to be welded to the deck plate.

Longitudinal Load 2,921 kips

Length of shear block = (21in + 90 in) 2 = 222 inches

q = P/L = 2921 kip / 222 inches = 13.2 k/in (Rule 88 A.15.c)

q = P (10/7.5)/L = 2921 kip (10/7.5) / 222 inches = 17.5 k/in (10 CFR 71.45)


Throat size for bevel and fillet weld shown below:

Throat =
$$((5/16)^2 + (3/8)^2)^{1/2} = 0.49$$

(0.49)(33.06) = 16.2 k/in

16.2 k/in > 13.2 k/in (Rule 88 A.15.c)

16.2 k/in < 17.5 k/in (10 CFR 71.45)

Kasgro Rail Corporation Page 40

Page G.1-85 February 2, 2018

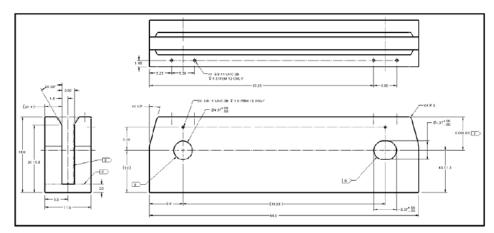


Figure 5-9: Outer Pin Attachment Block

Outer Pin Block Attachment Weld Calculations: (10 CFR 71.45)

All attachments are to be welded to the deck plate.

Longitudinal Load 944 (10/7.5) =1258.7 kip

Vertical Loads 1077 kip

The moment was taken about the CG of the weld.

t = thickness of weld

Moment = 1258.7 kip (10 in) + 2 1077 kip (24 in) = 64,283 in-k

A=(128+22) t = 150 t

 $I_{yy} = 1/12 (2) (64in)^3 t + 2 (11 in) t (32 in)^2$

I = 43690t + 22528t = 66218t

S = (t)66218/32 = 2069.3t

F' = 1258.7/150t = 8.4/t

 $F^{"} = M/S = 64,283/2069.3=31.07/t$

 $F = ((8.4/t)^2 + (31.07/t)^2)^{1/2} = 32.2/t$

32.2/33.06 = t = 0.97 which is required

7/8" bevel with 3/8" fillet = $t = ((7/8)^2 + (3/8)^2)^{1/2} = 0.95$ in < 0.97 required to fail. (10 CFR 71.45)

Kasgro Rail Corporation Page 41

Page G.1-86 February 2, 2018

Outer Pin Block Attachment Weld Calculations: (Rule 88 A.15.c)

All attachments are to be welded to the deck plate.

Longitudinal Load 944 kip

Vertical Loads 1077 kip

The moment was taken about the CG of the weld.

t = thickness of weld

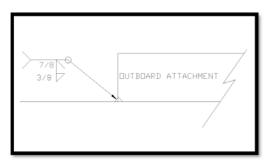
Moment = 944 kip (10 in) + 2 (1077 kip) (24 in) = 61,136 in-k

A=(128+22) t = 150 t

 $I_{yy} = 1/12 (2) (64in)^3 t + 2 (11 in) t (32 in)^2$

I = 43690t + 22528t = 66218t

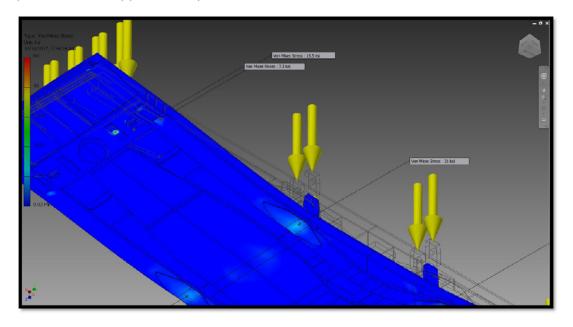
S = (t)66218/32 = 2069.3t


F' = 944/150t = 6.3/t

F'' = M/S = 61,136/2069.3t = 29.54/t

 $F = ((6.3/t)^2 + (29.54/t)^2)^{1/2} = 30.2/t$

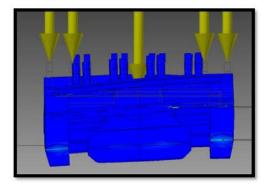
30.2/33.06 = t = 0.91 which is required


7/8" bevel with 3/8" fillet = $t = ((7/8)^2 + (3/8)^2)^{1/2} = 0.95$ in > 0.91 which is required (Rule 88 A.15.c)

Kasgro Rail Corporation

Page 42

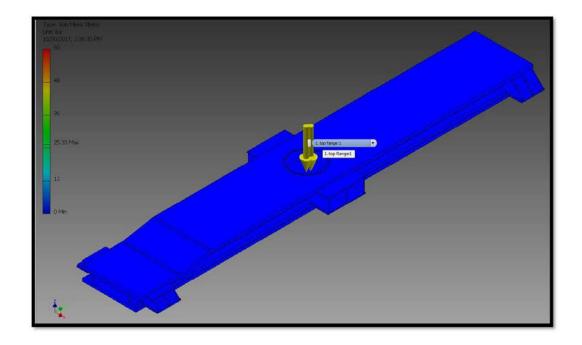
Twist Load: (AAR M-1001 11.3.3.5) (S-2043 4.1.5.5)


The twist load was analyzed by applying a fixed vertical constraint on one side bearing pad of the car body A-End while constraining the B-End of the car body's center plate. This is to simulate a vertical jacking load applied to a truck at one end of the car. The force flow will go through the Tri-Span body side bearing to the car body side bearing causing the car structure to twist. The HI-Star 190 load was applied to the inboard load attachments considering that it is the max vertical load on the car. The end stop load was applied to the outboard attachments just like the other FEA models.

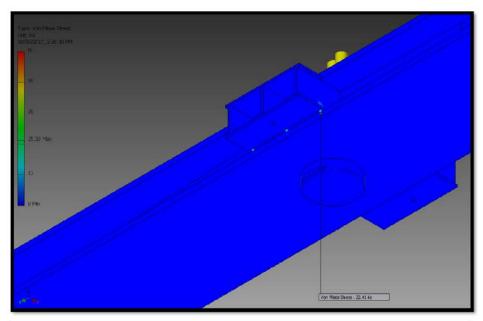
The twist load FEA was performed in Autodesk Inventor Professional 2014.

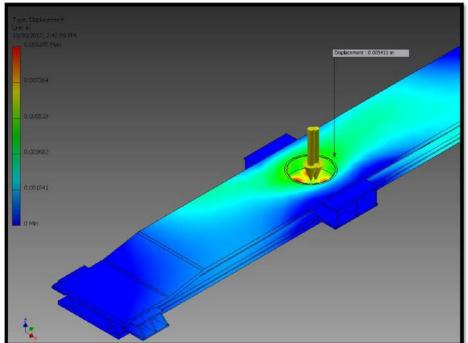
Car Body Twist View:

Kasgro Rail Corporation Page 43


Page G.1-88 February 2, 2018

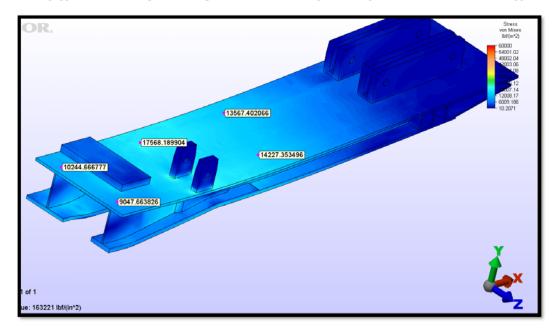
Twist Load: Tri-Span

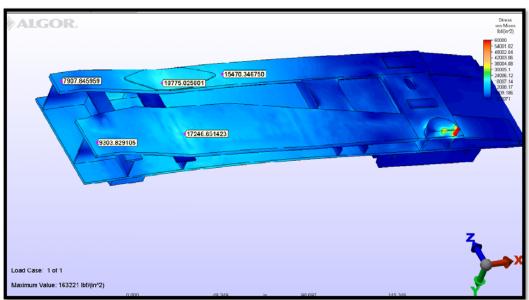

(AAR M-1001 11.3.3.5) (S-2043 4.1.5.5)


The Tri-Span twist load was analyzed by applying a vertical constraint on one side bearing pad on the left side of the span. The right side of the span had all three side bearing plates constrained vertically. A Live Load of 300,000 lbs. was applied at the center plate bowl. The Tri-Span is made of A-572 Grade 60 material. The max stress was roughly 25 ksi.

Kasgro Rail Corporation Page 44

Page G.1-89 February 2, 2018

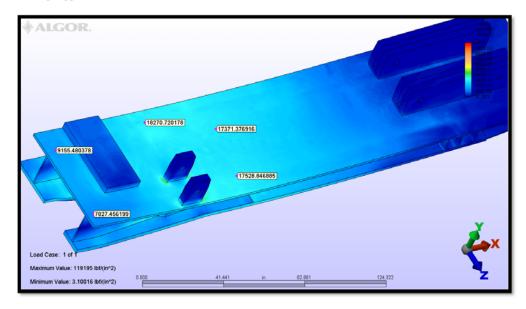


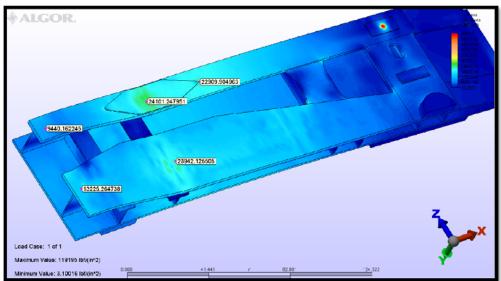

Kasgro Rail Corporation Page 45

Page G.1-90 February 2, 2018

Impact Load: (M-1001 4.1.10) (S-2043 4.1.5.8)

The Atlas railcar is equipped with an EOC cushioning unit with 15 inches of travel. Table 4.3 structural requirements for EOC-equipped cars states length of travel greater than 14 inches requires a coupler force of 600,000 lbs. to be applied.


Kasgro Rail Corporation Page 46


Page G.1-91 February 2, 2018

Jacking Load:

(M-1001 4.1.6) (S-2043 4.1.5.4)

A vertical constraint was applied at the car body jacking pad. This is to simulate jacks placed under the portion of the car extending outside of the rails. The car was fully loaded with the HI Star 190 applied to the inboard attachments with the end stops applied at the outboard attachments.

Kasgro Rail Corporation Page 47

Page G.1-92 February 2, 2018

Vertical Loads on Coupler:

(M-1001 4.1.5) (S-2043 4.1.5.3)

The Vertical loads on coupler have been tested and proven on the M-290 by TTCI. No further analysis has been done.

S-234 Lifting Freight Cars

M-1001 4.1.6 & Office Manual Rule 88.C.3.c (10) (B)

Lifting loading analysis is the same as Jacking. Provisions are detailed into the car body to allow the AAR standard hook to be attached to the underside of the car body bolster. Local deformation will occur if the car is lifted no gross yielding of the overall structure will happen.

Fatigue Introduction:

Fatigue Analysis is based on the AAR METHOD AS DOCUMENTED IN THE MSRP Section C, Part II.

The spreadsheet is based on the AAR method as shown in Table 7.1 and Table 7.2 of the above referenced specification. No data is published for a general service flat car with a steel deck. In lieu of this the data for a high-sided gondola is used.

The only area examined was the center sill bottom flange splice. This will give a more conservative result than the side sill spice because of the nominal stress. The bolster has relatively low nominal stresses and is similar in design as other general service flat cars in use.

Stresses used are from the FEA. The car is fully loaded with the HI-Star 190 and end stops.

Kasgro Rail Corporation Page 48

Page G.1-93 February 2, 2018

FATIGUE DATA FOR CENTER SILL AT SPLICE

(Coupler Li	oad 110 To	n High-sided Gon)	_										
						amic				Cycles to			
Max	Min	No.	α Pct	Static Stress	Str Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress Y-int (b)	153.8 60 ksi 17.1
430 410	-250 390	1	0.00007 0.00007	18.3 18.3	23.1 22.9	15.5 22.6	23.1 22.9	0.672 0.990	52.1 1754.7	NO DAMAGE NO DAMAGE		slope k	1 0.29
410	310	1	0.00007	18.3	22.9	21.8	22.9	0.951	350.9	NO DAMAGE		r.	0.20
395	365	2	0.00015	18.3	22.7	22.4	22.7	0.985	1161.3	NO DAMAGE			
385 380	365 250	1	0.00007 0.00007	18.3 18.3	22.6 22.5	22.4 21.1	22.6 22.5	0.990	1733.3 266.0	NO DAMAGE NO DAMAGE			
360	300	i	0.00007	18.3	22.3	21.6	22.3	0.970	570.7	NO DAMAGE			
360	290	1	0.00007	18.3	22.3	21.5	22.3	0.965	489.1	NO DAMAGE			
360 360	-130 -230	1	0.00007 0.00007	18.3 18.3	22.3 22.3	16.9 15.7	22.3 22.3	0.755 0.705	69.9 58.0	NO DAMAGE NO DAMAGE			
350	220	i	0.00007	18.3	22.2	20.8	22.2	0.935	262.1	NO DAMAGE			
350 340	-230 320	1 3	0.00007 0.00022	18.3 18.3	22.2 22.1	15.7 21.9	22.2 22.1	0.709 0.990	58.7 1694.9	NO DAMAGE NO DAMAGE			
340	-120	1	0.00007	18.3	22.1	17.0	22.1	0.768	73.7	NO DAMAGE			
340 330	-150 -120	1	0.00007 0.00007	18.3 18.3	22.1 22.0	16.6 17.0	22.1 22.0	0.753 0.772	69.2 74.9	NO DAMAGE NO DAMAGE			
320	310	2	0.00007	18.3	21.9	21.8	21.9	0.772	3355.5	NO DAMAGE			
320	250	1	0.00007	18.3	21.9	21.1	21.9	0.964	479.4	NO DAMAGE			
310 310	290 -210	2	0.00015 0.00007	18.3 18.3	21.8 21.8	21.5 16.0	21.8 21.8	0.990 0.734	1669.2 64.2	NO DAMAGE NO DAMAGE			
310	-290	i	0.00007	18.3	21.8	15.1	21.8	0.693	55.6	NO DAMAGE			
280 270	-210 200	1	0.00007	18.3 18.3	21.4 21.3	16.0 20.5	21.4 21.3	0.745 0.963	67.1 467.1	NO DAMAGE NO DAMAGE			
270	110	i	0.00007	18.3	21.3	19.5	21.3	0.916	204.4	NO DAMAGE			
270	100	1	0.00007	18.3	21.3	19.4	21.3	0.911	192.4	NO DAMAGE			
270 270	-10 -80	1	0.00007	18.3 18.3	21.3 21.3	18.2 17.4	21.3	0.854 0.817	116.8 93.4	NO DAMAGE NO DAMAGE			
265	-255	i	0.00007	18.3	21.3	15.5	21.3	0.727	62.7	NO DAMAGE			
260 260	220 20	2	0.00015 0.00007	18.3 18.3	21.2 21.2	20.8 18.5	21.2 21.2	0.979 0.874	813.2 135.5	NO DAMAGE NO DAMAGE			
260	-150	i	0.00007	18.3	21.2	16.6	21.2	0.784	79.3	NO DAMAGE			
260	-220	1	0.00007	18.3	21.2	15.8	21.2	0.748	67.8	NO DAMAGE			
260 260	-240 -260	1	0.00007 0.00007	18.3 18.3	21.2 21.2	15.6 15.4	21.2 21.2	0.737 0.727	65.1 62.6	NO DAMAGE NO DAMAGE			
250	240	1	0.00007	18.3	21.1	21.0	21.1	0.995	3235.8	NO DAMAGE			
250 250	230 220	9	0.00067 0.00015	18.3 18.3	21.1	20.9 20.8	21.1	0.989 0.984	1617.9 1078.6	NO DAMAGE NO DAMAGE			
250	190	1	0.00007	18.3	21.1	20.4	21.1	0.968	539.3	NO DAMAGE			
250 250	90 -50	1	0.00007 0.00007	18.3 18.3	21.1 21.1	19.3 17.7	21.1 21.1	0.915 0.841	202.2 107.9	NO DAMAGE NO DAMAGE			
250	-100	i	0.00007	18.3	21.1	17.2	21.1	0.815	92.5	NO DAMAGE			
250 250	-160 -180	1	0.00007	18.3	21.1	16.5	21.1	0.783	78.9	NO DAMAGE			
250 250	-180 -220	1	0.00007 0.00007	18.3 18.3	21.1	16.3 15.8	21.1 21.1	0.773 0.752	75.3 68.8	NO DAMAGE NO DAMAGE			
250	-410	1	0.00007	18.3	21.1	13.7	21.1	0.651	49.0	36700336	2.72E-10		
245 245	225 155	1	0.00007 0.00007	18.3 18.3	21.0 21.0	20.8 20.0	21.0 21.0	0.989	1613.6 358.6	NO DAMAGE NO DAMAGE			
245	-315	i	0.00007	18.3	21.0	14.8	21.0	0.703	57.6	NO DAMAGE			
240 240	230 220	5 2	0.00037 0.00015	18.3 18.3	21.0 21.0	20.9 20.8	21.0 21.0	0.995 0.989	3218.7 1609.4	NO DAMAGE NO DAMAGE			
240	210	2	0.00015	18.3	21.0	20.6	21.0	0.984	1072.9	NO DAMAGE			
240 240	180 140	1	0.00007	18.3 18.3	21.0 21.0	20.3 19.9	21.0 21.0	0.968	536.5 321.9	NO DAMAGE NO DAMAGE			
240	110	i	0.00007	18.3	21.0	19.5	21.0	0.931	247.6	NO DAMAGE			
240	70	1	0.00007	18.3	21.0	19.1	21.0	0.910	189.3	NO DAMAGE			
240 240	-70 -110	1	0.00007 0.00007	18.3 18.3	21.0 21.0	17.5 17.1	21.0 21.0	0.835 0.814	103.8 92.0	NO DAMAGE NO DAMAGE			
240	-120	1	0.00007	18.3	21.0	17.0	21.0	0.809	89.4	NO DAMAGE			
240 240	-160 -170	1	0.00007 0.00007	18.3 18.3	21.0 21.0	16.5 16.4	21.0 21.0	0.787 0.782	80.5 78.5	NO DAMAGE NO DAMAGE			
240	-210	1	0.00007	18.3	21.0	16.0	21.0	0.761	71.5	NO DAMAGE			
240 235	-240 225	1 13	0.00007 0.00097	18.3 18.3	21.0 20.9	15.6 20.8	21.0 20.9	0.745 0.995	67.1 3210.2	NO DAMAGE NO DAMAGE			
235	215	9	0.00067	18.3	20.9	20.7	20.9	0.989	1605.1	NO DAMAGE			
230	220	2 2	0.00015	18.3	20.9	20.8	20.9	0.995	3201.6	NO DAMAGE			
230 230	200 190	2 2	0.00015 0.00015	18.3 18.3	20.9 20.9	20.5 20.4	20.9 20.9	0.984 0.979	1067.2 800.4	NO DAMAGE NO DAMAGE			
230	170	1	0.00007	18.3	20.9	20.2	20.9	0.968	533.6	NO DAMAGE			
230 230	-10 -90	1	0.00007 0.00007	18.3 18.3	20.9 20.9	18.2 17.3	20.9 20.9	0.872 0.829	133.4 100.1	NO DAMAGE NO DAMAGE			
230	-110	i	0.00007	18.3	20.9	17.1	20.9	0.818	94.2	NO DAMAGE			
230 230	-160 -180	1	0.00007 0.00007	18.3 18.3	20.9 20.9	16.5 16.3	20.9 20.9	0.792 0.781	82.1 78.1	NO DAMAGE NO DAMAGE			
230	-200	1	0.00007	18.3	20.9	16.1	20.9	0.770	74.5	NO DAMAGE			
230 230	-205 -260	1	0.00007 0.00007	18.3 18.3	20.9 20.9	16.0 15.4	20.9 20.9	0.768 0.738	73.6 65.3	NO DAMAGE NO DAMAGE			
230	-270	i	0.00007	18.3	20.9	15.3	20.9	0.733	64.0	NO DAMAGE			
225	215	22	0.00164	18.3	20.8	20.7	20.8	0.995	3193.1	NO DAMAGE			
225 225	205 -385	8 1	0.00060 0.00007	18.3 18.3	20.8 20.8	20.6 14.0	20.8 20.8	0.989 0.673	1596.5 52.3	NO DAMAGE NO DAMAGE			
220	210	10	0.00075	18.3	20.8	20.6	20.8	0.995	3184.5	NO DAMAGE			
220 220	200 190	6 4	0.00045 0.00030	18.3 18.3	20.8 20.8	20.5 20.4	20.8 20.8	0.989 0.984	1592.3 1061.5	NO DAMAGE NO DAMAGE			
220	180	2	0.00015	18.3	20.8	20.3	20.8	0.979	796.1	NO DAMAGE			
220 220	170 150	3 1	0.00022 0.00007	18.3 18.3	20.8 20.8	20.2 20.0	20.8 20.8	0.973 0.962	636.9 454.9	NO DAMAGE NO DAMAGE			
220	100	'	0.00007	10.0	20.0	20.0	20.0	0.002	707.0	. TO DAMAGE			

Page G.1-94 February 2, 2018

					Dyna	amic				to			
Max	Min	No.	α Pct	Static Stress	Stn Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
220	140	1	0.00007	18.3	20.8	19.9	20.8	0.957	398.1	NO DAMAGE	GD14	rield stress	ou ksi
220 220	130 70	1	0.00007 0.00007	18.3 18.3	20.8 20.8	19.7 19.1	20.8 20.8	0.952 0.919	353.8 212.3	NO DAMAGE NO DAMAGE			
220	30	1	0.00007	18.3	20.8	18.6	20.8	0.898	167.6	NO DAMAGE			
220	-70	1	0.00007	18.3	20.8	17.5	20.8	0.844	109.8	NO DAMAGE			
220 220	-90 -110	1	0.00007 0.00007	18.3 18.3	20.8 20.8	17.3 17.1	20.8 20.8	0.834 0.823	102.7 96.5	NO DAMAGE NO DAMAGE			
220	-130	i	0.00007	18.3	20.8	16.9	20.8	0.812	91.0	NO DAMAGE			
220 220	-135 -180	1 3	0.00007 0.00022	18.3 18.3	20.8 20.8	16.8 16.3	20.8 20.8	0.809 0.785	89.7 79.6	NO DAMAGE NO DAMAGE			
220	-190	1	0.00022	18.3	20.8	16.2	20.8	0.780	77.7	NO DAMAGE			
220	-220	2	0.00015	18.3	20.8	15.8 15.7	20.8	0.764	72.4	NO DAMAGE			
220 215	-230 205	14	0.00007 0.00104	18.3 18.3	20.8 20.7	20.6	20.8 20.7	0.758 0.995	70.8 3176.0	NO DAMAGE NO DAMAGE			
215	195	32	0.00239	18.3	20.7	20.5	20.7	0.989	1588.0	NO DAMAGE			
215 215	185 165	1 2	0.00007 0.00015	18.3 18.3	20.7 20.7	20.4	20.7 20.7	0.984	1058.7 635.2	NO DAMAGE NO DAMAGE			
215	-175	1	0.00007	18.3	20.7	16.4	20.7	0.790	81.4	NO DAMAGE			
215 215	-225 -325	2	0.00015 0.00007	18.3 18.3	20.7 20.7	15.8 14.7	20.7 20.7	0.763	72.2 58.8	NO DAMAGE NO DAMAGE			
210	200	12	0.00007	18.3	20.6	20.5	20.7	0.995	3167.4	NO DAMAGE			
210	190	17	0.00127	18.3	20.6	20.4	20.6	0.989	1583.7	NO DAMAGE			
210 210	180 170	13 2	0.00097 0.00015	18.3 18.3	20.6 20.6	20.3 20.2	20.6 20.6	0.984 0.978	1055.8 791.9	NO DAMAGE NO DAMAGE			
210	160	1	0.00007	18.3	20.6	20.1	20.6	0.973	633.5	NO DAMAGE			
210 210	130 70	1	0.00007 0.00007	18.3 18.3	20.6 20.6	19.7 19.1	20.6 20.6	0.957 0.924	395.9 226.2	NO DAMAGE NO DAMAGE			
210	60	i	0.00007	18.3	20.6	19.0	20.6	0.919	211.2	NO DAMAGE			
210	30 20	1	0.00007	18.3 18.3	20.6 20.6	18.6 18.5	20.6 20.6	0.903	176.0 166.7	NO DAMAGE NO DAMAGE			
210	10	i	0.00007	18.3	20.6	18.4	20.6	0.892	158.4	NO DAMAGE			
210	-10	2	0.00015	18.3	20.6	18.2	20.6	0.881	144.0	NO DAMAGE			
210 210	-30 -90	1	0.00007 0.00007	18.3 18.3	20.6 20.6	18.0 17.3	20.6 20.6	0.870	132.0 105.6	NO DAMAGE NO DAMAGE			
210	-130	2	0.00015	18.3	20.6	16.9	20.6	0.816	93.2	NO DAMAGE			
210 210	-150 -160	5 1	0.00037 0.00007	18.3 18.3	20.6 20.6	16.6 16.5	20.6 20.6	0.806	88.0 85.6	NO DAMAGE NO DAMAGE			
210	-190	i	0.00007	18.3	20.6	16.2	20.6	0.784	79.2	NO DAMAGE			
210 210	-200 -210	2	0.00015 0.00007	18.3 18.3	20.6 20.6	16.1 16.0	20.6 20.6	0.779 0.773	77.3 75.4	NO DAMAGE NO DAMAGE			
210	-210	2	0.00015	18.3	20.6	15.8	20.6	0.768	73.7	NO DAMAGE			
210 205	-230	1 56	0.00007	18.3	20.6	15.7 20.5	20.6	0.762	72.0	NO DAMAGE			
205	195 185	48	0.00417 0.00358	18.3 18.3	20.6 20.6	20.5	20.6 20.6	0.995	3158.9 1579.4	NO DAMAGE NO DAMAGE			
205	180	2	0.00015	18.3	20.6	20.3	20.6	0.986	1263.6	NO DAMAGE			
205 205	175 165	11	0.00082 0.00015	18.3 18.3	20.6 20.6	20.3	20.6 20.6	0.984 0.978	1053.0 789.7	NO DAMAGE NO DAMAGE			
205	155	ī	0.00007	18.3	20.6	20.0	20.6	0.973	631.8	NO DAMAGE			
205 205	150 140	1	0.00007 0.00007	18.3 18.3	20.6 20.6	20.0 19.9	20.6 20.6	0.970 0.965	574.3 486.0	NO DAMAGE NO DAMAGE			
205	135	i	0.00007	18.3	20.6	19.8	20.6	0.962	451.3	NO DAMAGE			
205 205	-85 -115	1	0.00007 0.00007	18.3 18.3	20.6 20.6	17.4 17.0	20.6 20.6	0.843	108.9 98.7	NO DAMAGE NO DAMAGE			
205	-165	i	0.00007	18.3	20.6	16.5	20.6	0.800	85.4	NO DAMAGE			
205	-180	1	0.00007	18.3	20.6	16.3	20.6	0.792	82.0	NO DAMAGE			
205 205	-195 -210	1	0.00007 0.00007	18.3 18.3	20.6 20.6	16.1 16.0	20.6 20.6	0.783 0.775	79.0 76.1	NO DAMAGE NO DAMAGE			
205	-220	1	0.00007	18.3	20.6	15.8	20.6	0.770	74.3	NO DAMAGE			
205 205	-235 -245	1	0.00007 0.00007	18.3 18.3	20.6 20.6	15.7 15.6	20.6 20.6	0.762 0.756	71.8 70.2	NO DAMAGE NO DAMAGE			
205	-285	2	0.00015	18.3	20.6	15.1	20.6	0.735	64.5	NO DAMAGE			
200 200	190 185	37 11	0.00276 0.00082	18.3 18.3	20.5 20.5	20.4 20.4	20.5 20.5	0.995 0.992	3150.3 2100.2	NO DAMAGE NO DAMAGE			
200	180	48	0.00358	18.3	20.5	20.3	20.5	0.989	1575.2	NO DAMAGE			
200 200	175 170	2 22	0.00015 0.00164	18.3 18.3	20.5 20.5	20.3 20.2	20.5 20.5	0.986 0.984	1260.1 1050.1	NO DAMAGE NO DAMAGE			
200	165	3	0.00022	18.3	20.5	20.1	20.5	0.981	900.1	NO DAMAGE			
200 200	160 155	10 2	0.00075 0.00015	18.3 18.3	20.5 20.5	20.1 20.0	20.5 20.5	0.978 0.976	787.6 700.1	NO DAMAGE NO DAMAGE			
200	150	3	0.00015	18.3	20.5	20.0	20.5	0.976	630.1	NO DAMAGE			
200	140	4	0.00030	18.3	20.5	19.9	20.5	0.967	525.1	NO DAMAGE			
200 200	135 110	2	0.00015 0.00007	18.3 18.3	20.5 20.5	19.8 19.5	20.5 20.5	0.965	484.7 350.0	NO DAMAGE NO DAMAGE			
200	100	2	0.00015	18.3	20.5	19.4	20.5	0.946	315.0	NO DAMAGE			
200 200	60 30	1	0.00007 0.00007	18.3 18.3	20.5 20.5	19.0 18.6	20.5 20.5	0.924	225.0 185.3	NO DAMAGE NO DAMAGE			
200	20	2	0.00015	18.3	20.5	18.5	20.5	0.902	175.0	NO DAMAGE			
200 200	0 -80	1 2	0.00007 0.00015	18.3 18.3	20.5 20.5	18.3 17.4	20.5 20.5	0.891 0.848	157.5 112.5	NO DAMAGE NO DAMAGE			
200	-100	1	0.00007	18.3	20.5	17.2	20.5	0.837	105.0	NO DAMAGE			
200 200	-110 -130	1 2	0.00007	18.3 18.3	20.5 20.5	17.1 16.9	20.5 20.5	0.832 0.821	101.6 95.5	NO DAMAGE			
200	-130	1	0.00015 0.00007	18.3	20.5	16.8	20.5	0.821	95.5	NO DAMAGE NO DAMAGE			
200	-150	1	0.00007	18.3	20.5	16.6	20.5	0.810	90.0	NO DAMAGE			
200 200	-170 -180	1	0.00007 0.00007	18.3 18.3	20.5 20.5	16.4 16.3	20.5 20.5	0.799 0.794	85.1 82.9	NO DAMAGE NO DAMAGE			
200	-220	2	0.00015	18.3	20.5	15.8	20.5	0.772	75.0	NO DAMAGE			
200	-240 -260	1 2	0.00007 0.00015	18.3 18.3	20.5 20.5	15.6 15.4	20.5 20.5	0.761	71.6 68.5	NO DAMAGE NO DAMAGE			
200	-265	1	0.00007	18.3	20.5	15.3	20.5	0.748	67.7	NO DAMAGE			
195	185	174	0.01297	18.3	20.5	20.4	20.5	0.995	3141.8	NO DAMAGE			

Page G.1-95 February 2, 2018

					Dyna	amic				to		
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	153.8 30 ksi
195	180	10	0.00075	18.3	20.5	20.3	20.5	0.992	2094.5	NO DAMAGE		
195 195	175 170	103 6	0.00768	18.3 18.3	20.5 20.5	20.3	20.5 20.5	0.989	1570.9 1256.7	NO DAMAGE NO DAMAGE		
195	165	30	0.00224	18.3	20.5	20.1	20.5	0.984	1047.3	NO DAMAGE		
195 195	160 155	5 21	0.00037 0.00157	18.3 18.3	20.5 20.5	20.1 20.0	20.5 20.5	0.981 0.978	897.7 785.4	NO DAMAGE NO DAMAGE		
195	150	2	0.00015	18.3	20.5	20.0	20.5	0.976	698.2	NO DAMAGE		
195 195	145 140	4	0.00030	18.3	20.5	19.9 19.9	20.5 20.5	0.973	628.4	NO DAMAGE		
195	135	3	0.00022 0.00022	18.3 18.3	20.5 20.5	19.9	20.5	0.970	571.2 523.6	NO DAMAGE NO DAMAGE		
195	125	1	0.00007	18.3	20.5	19.7	20.5	0.962	448.8	NO DAMAGE		
195 195	115 95	2	0.00015 0.00007	18.3 18.3	20.5 20.5	19.6 19.4	20.5 20.5	0.956	392.7 314.2	NO DAMAGE NO DAMAGE		
195	85	2	0.00015	18.3	20.5	19.2	20.5	0.940	285.6	NO DAMAGE		
195 195	75 55	1	0.00007 0.00007	18.3 18.3	20.5 20.5	19.1 18.9	20.5 20.5	0.935 0.924	261.8 224.4	NO DAMAGE NO DAMAGE		
195	45	2	0.00015	18.3	20.5	18.8	20.5	0.918	209.5	NO DAMAGE		
195 195	35 5	1	0.00007 0.00007	18.3 18.3	20.5 20.5	18.7 18.4	20.5 20.5	0.913	196.4 165.4	NO DAMAGE NO DAMAGE		
195	-75	i	0.00007	18.3	20.5	17.5	20.5	0.853	116.4	NO DAMAGE		
195 195	-105 -125	1	0.00007 0.00007	18.3 18.3	20.5 20.5	17.1 16.9	20.5 20.5	0.837 0.826	104.7 98.2	NO DAMAGE NO DAMAGE		
195	-135	i	0.00007	18.3	20.5	16.8	20.5	0.820	95.2	NO DAMAGE		
195 195	-145 -155	1 2	0.00007 0.00015	18.3 18.3	20.5 20.5	16.7 16.6	20.5 20.5	0.815 0.810	92.4 89.8	NO DAMAGE NO DAMAGE		
195	-165 -165	1	0.00007	18.3	20.5	16.5	20.5	0.810	87.3	NO DAMAGE		
195	-195	1	0.00007	18.3	20.5	16.1	20.5	0.788	80.6	NO DAMAGE		
195 195	-235 -245	1 2	0.00007	18.3 18.3	20.5 20.5	15.7 15.6	20.5 20.5	0.766	73.1 71.4	NO DAMAGE NO DAMAGE		
195	-255	2	0.00015	18.3	20.5	15.5	20.5	0.755	69.8	NO DAMAGE		
195 195	-265 -275	1	0.00007 0.00007	18.3 18.3	20.5 20.5	15.3 15.2	20.5 20.5	0.750 0.744	68.3 66.8	NO DAMAGE NO DAMAGE		
195	-595	1	0.00007	18.3	20.5	11.7	20.5	0.570	39.8	19743211	5.07E-10	
190 190	180 175	141 31	0.01051 0.00231	18.3 18.3	20.4 20.4	20.3 20.3	20.4 20.4	0.995 0.992	3133.2 2088.8	NO DAMAGE NO DAMAGE		
190	170	117	0.00872	18.3	20.4	20.2	20.4	0.989	1566.6	NO DAMAGE		
190 190	165 160	17 45	0.00127	18.3	20.4	20.1	20.4	0.986 0.984	1253.3 1044.4	NO DAMAGE		
190	155	4	0.00030	18.3	20.4	20.0	20.4	0.981	895.2	NO DAMAGE		
190 190	150 145	8 1	0.00060 0.00007	18.3 18.3	20.4 20.4	20.0 19.9	20.4 20.4	0.978 0.975	783.3 696.3	NO DAMAGE NO DAMAGE		
190	140	5	0.00037	18.3	20.4	19.9	20.4	0.975	626.6	NO DAMAGE		
190	120	2	0.00015	18.3	20.4	19.6	20.4	0.962	447.6	NO DAMAGE		
190 190	115 110	1 3	0.00007 0.00022	18.3 18.3	20.4 20.4	19.6 19.5	20.4 20.4	0.959 0.956	417.8 391.7	NO DAMAGE NO DAMAGE		
190	100	2	0.00015	18.3	20.4	19.4	20.4	0.951	348.1	NO DAMAGE		
190 190	80 75	1 1	0.00007 0.00007	18.3 18.3	20.4 20.4	19.2 19.1	20.4 20.4	0.940 0.937	284.8 272.5	NO DAMAGE NO DAMAGE		
190	70	1	0.00007	18.3	20.4	19.1	20.4	0.935	261.1	NO DAMAGE		
190 190	50 40	2	0.00015 0.00007	18.3 18.3	20.4 20.4	18.9 18.7	20.4 20.4	0.924	223.8 208.9	NO DAMAGE NO DAMAGE		
190	30	2	0.00015	18.3	20.4	18.6	20.4	0.913	195.8	NO DAMAGE		
190 190	25 10	1	0.00007	18.3 18.3	20.4 20.4	18.6 18.4	20.4 20.4	0.910	189.9 174.1	NO DAMAGE NO DAMAGE		
190	-10	i	0.00007	18.3	20.4	18.2	20.4	0.891	156.7	NO DAMAGE		
190 190	-20 -45	1	0.00007 0.00007	18.3 18.3	20.4 20.4	18.1 17.8	20.4 20.4	0.885 0.872	149.2 133.3	NO DAMAGE NO DAMAGE		
190	-50	i	0.00007	18.3	20.4	17.7	20.4	0.869	130.6	NO DAMAGE		
190 190	-90 -100	1 3	0.00007 0.00022	18.3 18.3	20.4 20.4	17.3 17.2	20.4 20.4	0.847 0.842	111.9 108.0	NO DAMAGE NO DAMAGE		
190	-130	2	0.00015	18.3	20.4	16.9	20.4	0.825	97.9	NO DAMAGE		
190 190	-165 -190	1 3	0.00007 0.00022	18.3 18.3	20.4 20.4	16.5 16.2	20.4 20.4	0.806 0.793	88.3 82.5	NO DAMAGE NO DAMAGE		
190	-195	1	0.00007	18.3	20.4	16.1	20.4	0.790	81.4	NO DAMAGE		
185	175	578	0.04309	18.3	20.4	20.3	20.4	0.995	3124.7	NO DAMAGE		
185 185	170 165	102 566	0.00760 0.04220	18.3 18.3	20.4 20.4	20.2 20.1	20.4 20.4	0.992 0.989	2083.1 1562.3	NO DAMAGE NO DAMAGE		
185	160	5	0.00037	18.3	20.4	20.1	20.4	0.986	1249.9	NO DAMAGE		
185 185	155 150	142 4	0.01059 0.00030	18.3 18.3	20.4 20.4	20.0 20.0	20.4 20.4	0.984 0.981	1041.6 892.8	NO DAMAGE NO DAMAGE		
185	145	38	0.00283	18.3	20.4	19.9	20.4	0.978	781.2	NO DAMAGE		
185 185	140 135	1 9	0.00007 0.00067	18.3 18.3	20.4 20.4	19.9 19.8	20.4 20.4	0.975 0.973	694.4 624.9	NO DAMAGE NO DAMAGE		
185	130	1	0.00007	18.3	20.4	19.7	20.4	0.970	568.1	NO DAMAGE		
185 185	125 120	1	0.00007	18.3	20.4 20.4	19.7 19.6	20.4 20.4	0.967	520.8 480.7	NO DAMAGE NO DAMAGE		
185	115	4	0.00030	18.3	20.4	19.6	20.4	0.962	446.4	NO DAMAGE		
185 185	105 95	5 1	0.00037	18.3 18.3	20.4 20.4	19.5 19.4	20.4 20.4	0.956 0.951	390.6 347.2	NO DAMAGE NO DAMAGE		
185	85	1	0.00007	18.3	20.4	19.2	20.4	0.945	312.5	NO DAMAGE		
185 185	80 75	1	0.00007 0.00007	18.3 18.3	20.4 20.4	19.2 19.1	20.4 20.4	0.943 0.940	297.6 284.1	NO DAMAGE NO DAMAGE		
185	65	i	0.00007	18.3	20.4	19.0	20.4	0.934	260.4	NO DAMAGE		
185 185	60 55	1 2	0.00007 0.00015	18.3 18.3	20.4 20.4	19.0 18.9	20.4 20.4	0.932	250.0 240.4	NO DAMAGE NO DAMAGE		
185	35	2	0.00015	18.3	20.4	18.7	20.4	0.918	208.3	NO DAMAGE		
185 185	25 20	3 1	0.00022	18.3 18.3	20.4	18.6 18.5	20.4 20.4	0.912	195.3 189.4	NO DAMAGE NO DAMAGE		
185	15	2	0.00015	18.3	20.4	18.5	20.4	0.907	183.8	NO DAMAGE		
185 185	5 -5	3	0.00022 0.00007	18.3 18.3	20.4 20.4	18.4 18.2	20.4 20.4	0.901	173.6 164.5	NO DAMAGE NO DAMAGE		
100	-0	'	0.00007	10.3	20.4	10.2	20.4	0.000	104.0	NO DAMAGE		

Page G.1-96 February 2, 2018

					Dyna			_		to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
185	-15	1	0.00007	18.3	20.4	18.1	20.4	0.891	156.2	NO DAMAGE NO DAMAGE			
185 185	-65 -95	1	0.00007	18.3 18.3	20.4 20.4	17.6 17.2	20.4 20.4	0.863 0.847	125.0 111.6	NO DAMAGE			
185	-100	1	0.00007	18.3	20.4	17.2	20.4	0.844	109.6	NO DAMAGE			
185 185	-105 -115	1	0.00007 0.00007	18.3 18.3	20.4 20.4	17.1 17.0	20.4 20.4	0.841	107.7 104.2	NO DAMAGE NO DAMAGE			
185	-120	i	0.00007	18.3	20.4	17.0	20.4	0.833	102.4	NO DAMAGE			
185 185	-125 -145	3 1	0.00022 0.00007	18.3 18.3	20.4 20.4	16.9 16.7	20.4 20.4	0.830	100.8 94.7	NO DAMAGE NO DAMAGE			
185	-155	2	0.00015	18.3	20.4	16.6	20.4	0.814	91.9	NO DAMAGE			
185 185	-160 -165	1 5	0.00007 0.00037	18.3 18.3	20.4 20.4	16.5 16.5	20.4 20.4	0.811	90.6 89.3	NO DAMAGE NO DAMAGE			
185	-170	1	0.00007	18.3	20.4	16.4	20.4	0.806	88.0	NO DAMAGE			
185 185	-175 -180	2	0.00015 0.00007	18.3 18.3	20.4 20.4	16.4 16.3	20.4 20.4	0.803	86.8 85.6	NO DAMAGE NO DAMAGE			
185	-190	1	0.00007	18.3	20.4	16.2	20.4	0.795	83.3	NO DAMAGE			
185 185	-195 -200	2	0.00015	18.3	20.4	16.1 16.1	20.4	0.792	82.2 81.2	NO DAMAGE			
185	-200	1	0.00007	18.3	20.4	16.0	20.4	0.789	80.1	NO DAMAGE			
185	-215	2 2	0.00015	18.3	20.4	15.9	20.4	0.781	78.1	NO DAMAGE			
185 185	-235 -245	3	0.00015 0.00022	18.3 18.3	20.4 20.4	15.7 15.6	20.4 20.4	0.770 0.765	74.4 72.7	NO DAMAGE NO DAMAGE			
185	-275	1	0.00007	18.3	20.4	15.2	20.4	0.748	67.9	NO DAMAGE			
185 180	-355 170	1 389	0.00007 0.02900	18.3 18.3	20.4 20.3	14.3 20.2	20.4 20.3	0.704	57.9 3116.1	NO DAMAGE NO DAMAGE			
180	165	84	0.00626	18.3	20.3	20.1	20.3	0.992	2077.4	NO DAMAGE			
180 180	160 155	216 23	0.01610 0.00171	18.3 18.3	20.3 20.3	20.1 20.0	20.3 20.3	0.989 0.986	1558.1 1246.5	NO DAMAGE NO DAMAGE			
180	150	53	0.00395	18.3	20.3	20.0	20.3	0.984	1038.7	NO DAMAGE			
180 180	145 140	4 42	0.00030 0.00313	18.3 18.3	20.3 20.3	19.9 19.9	20.3 20.3	0.981 0.978	890.3 779.0	NO DAMAGE NO DAMAGE			
180	135	7	0.00052	18.3	20.3	19.8	20.3	0.975	692.5	NO DAMAGE			
180 180	130 125	8 2	0.00060 0.00015	18.3	20.3	19.7 19.7	20.3	0.973	623.2 566.6	NO DAMAGE NO DAMAGE			
180	120	1	0.00007	18.3	20.3	19.6	20.3	0.967	519.4	NO DAMAGE			
180	110	3	0.00022	18.3	20.3	19.5	20.3	0.962	445.2	NO DAMAGE			
180 180	105 95	2	0.00015 0.00007	18.3 18.3	20.3 20.3	19.5 19.4	20.3 20.3	0.959	415.5 366.6	NO DAMAGE NO DAMAGE			
180	90	2	0.00015	18.3	20.3	19.3	20.3	0.951	346.2	NO DAMAGE			
180 180	80 75	5 1	0.00037 0.00007	18.3 18.3	20.3 20.3	19.2 19.1	20.3 20.3	0.945	311.6 296.8	NO DAMAGE NO DAMAGE			
180	60	2	0.00015	18.3	20.3	19.0	20.3	0.934	259.7	NO DAMAGE			
180 180	45 40	1	0.00007 0.00007	18.3 18.3	20.3 20.3	18.8 18.7	20.3 20.3	0.926 0.923	230.8 222.6	NO DAMAGE NO DAMAGE			
180	30	2	0.00015	18.3	20.3	18.6	20.3	0.918	207.7	NO DAMAGE			
180 180	20 0	1 2	0.00007 0.00015	18.3 18.3	20.3 20.3	18.5 18.3	20.3 20.3	0.912	194.8 173.1	NO DAMAGE NO DAMAGE			
180	-5	1	0.00007	18.3	20.3	18.2	20.3	0.898	168.4	NO DAMAGE			
180 180	-10 -45	3	0.00022 0.00007	18.3 18.3	20.3 20.3	18.2 17.8	20.3 20.3	0.896 0.877	164.0 138.5	NO DAMAGE NO DAMAGE			
180	-60	3	0.00022	18.3	20.3	17.6	20.3	0.868	129.8	NO DAMAGE			
180 180	-70 -80	2 2	0.00015 0.00015	18.3 18.3	20.3 20.3	17.5 17.4	20.3 20.3	0.863 0.857	124.6 119.9	NO DAMAGE NO DAMAGE			
180	-90	2	0.00015	18.3	20.3	17.3	20.3	0.852	115.4	NO DAMAGE			
180 180	-100 -110	2 4	0.00015 0.00030	18.3 18.3	20.3 20.3	17.2 17.1	20.3 20.3	0.846	111.3 107.5	NO DAMAGE NO DAMAGE			
180	-120	1	0.00007	18.3	20.3	17.0	20.3	0.835	103.9	NO DAMAGE			
180 180	-130 -140	2	0.00015 0.00007	18.3 18.3	20.3 20.3	16.9 16.7	20.3 20.3	0.830	100.5 97.4	NO DAMAGE NO DAMAGE			
180	-145	i	0.00007	18.3	20.3	16.7	20.3	0.822	95.9	NO DAMAGE			
180 180	-150 -160	3 1	0.00022 0.00007	18.3 18.3	20.3 20.3	16.6 16.5	20.3 20.3	0.819	94.4 91.7	NO DAMAGE NO DAMAGE			
180	-170	2	0.00015	18.3	20.3	16.4	20.3	0.808	89.0	NO DAMAGE			
180 180	-185 -190	1	0.00007 0.00007	18.3 18.3	20.3	16.2 16.2	20.3	0.800 0.797	85.4 84.2	NO DAMAGE NO DAMAGE			
180	-200	2	0.00007	18.3	20.3	16.1	20.3	0.791	82.0	NO DAMAGE			
180 180	-210 -215	1	0.00007 0.00007	18.3 18.3	20.3 20.3	16.0 15.9	20.3 20.3	0.786 0.783	79.9 78.9	NO DAMAGE NO DAMAGE			
180	-230	1	0.00007	18.3	20.3	15.7	20.3	0.775	76.0	NO DAMAGE			
180 175	-240 165	1 835	0.00007 0.06225	18.3 18.3	20.3 20.3	15.6 20.1	20.3 20.3	0.770 0.994	74.2 3107.6	NO DAMAGE NO DAMAGE			
175	160	835 85	0.06225	18.3	20.3	20.1	20.3	0.994	2071.7	NO DAMAGE			
175 175	155 150	529 20	0.03944 0.00149	18.3 18.3	20.3	20.0 20.0	20.3	0.989	1553.8 1243.0	NO DAMAGE NO DAMAGE			
175	145	231	0.00149	18.3	20.3	19.9	20.3	0.983	1035.9	NO DAMAGE			
175 175	140 135	21	0.00157	18.3 18.3	20.3 20.3	19.9 19.8	20.3	0.981	887.9	NO DAMAGE			
175 175	135	40 6	0.00298 0.00045	18.3	20.3	19.8	20.3 20.3	0.978	776.9 690.6	NO DAMAGE NO DAMAGE			
175	125	8	0.00060	18.3	20.3	19.7	20.3	0.972	621.5	NO DAMAGE			
175 175	120 115	2 6	0.00015 0.00045	18.3 18.3	20.3 20.3	19.6 19.6	20.3 20.3	0.970 0.967	565.0 517.9	NO DAMAGE NO DAMAGE			
175	105	3	0.00022	18.3	20.3	19.5	20.3	0.961	443.9	NO DAMAGE			
175 175	65 45	1	0.00007 0.00007	18.3 18.3	20.3 20.3	19.0 18.8	20.3 20.3	0.939 0.928	282.5 239.0	NO DAMAGE NO DAMAGE			
175	35	1	0.00007	18.3	20.3	18.7	20.3	0.923	222.0	NO DAMAGE			
175 175	25 20	1	0.00007 0.00007	18.3 18.3	20.3 20.3	18.6 18.5	20.3 20.3	0.917 0.915	207.2 200.5	NO DAMAGE NO DAMAGE			
175	15	2	0.00015	18.3	20.3	18.5	20.3	0.912	194.2	NO DAMAGE			
175 175	5 0	2 2	0.00015 0.00015	18.3 18.3	20.3 20.3	18.4 18.3	20.3 20.3	0.906 0.904	182.8 177.6	NO DAMAGE NO DAMAGE			
175	-15	ĩ	0.00007	18.3	20.3	18.1	20.3	0.895	163.6	NO DAMAGE			

Page G.1-97 February 2, 2018

					Dyna	amic				to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mi Yield stres	le 153.8 s 60 ksi
175	-35	1	0.00007	18.3	20.3	17.9	20.3	0.884	148.0	NO DAMAGE	COTTA	rieid stres	55 00 K31
175	-55 -65	1	0.00007 0.00007	18.3 18.3	20.3 20.3	17.7	20.3 20.3	0.873	135.1 129.5	NO DAMAGE NO DAMAGE			
175 175	-05 -75	1	0.00007	18.3	20.3	17.6 17.5	20.3	0.862	124.3	NO DAMAGE			
175	-80	1	0.00007	18.3	20.3	17.4	20.3	0.860	121.9	NO DAMAGE			
175 175	-85 -95	1 3	0.00007 0.00022	18.3 18.3	20.3 20.3	17.4 17.2	20.3 20.3	0.857 0.851	119.5 115.1	NO DAMAGE NO DAMAGE			
175	-105	1	0.00007	18.3	20.3	17.1	20.3	0.846	111.0	NO DAMAGE			
175 175	-115 -125	1	0.00007 0.00007	18.3 18.3	20.3 20.3	17.0 16.9	20.3 20.3	0.840 0.835	107.2 103.6	NO DAMAGE NO DAMAGE			
175	-135	i	0.00007	18.3	20.3	16.8	20.3	0.829	100.0	NO DAMAGE			
175 175	-145	3	0.00022	18.3	20.3	16.7	20.3	0.824	97.1 94.2	NO DAMAGE			
175	-155 -165	3	0.00007 0.00022	18.3 18.3	20.3 20.3	16.6 16.5	20.3 20.3	0.818	94.2	NO DAMAGE NO DAMAGE			
175	-185	1	0.00007	18.3	20.3	16.2	20.3	0.802	86.3	NO DAMAGE			
175 175	-195 -215	3 2	0.00022 0.00015	18.3 18.3	20.3 20.3	16.1 15.9	20.3 20.3	0.796	84.0 79.7	NO DAMAGE NO DAMAGE			
175	-225	ī	0.00007	18.3	20.3	15.8	20.3	0.780	77.7	NO DAMAGE			
175 175	-235 -245	1	0.00007 0.00007	18.3 18.3	20.3 20.3	15.7 15.6	20.3 20.3	0.774	75.8 74.0	NO DAMAGE NO DAMAGE			
175	-255	i	0.00007	18.3	20.3	15.5	20.3	0.763	72.3	NO DAMAGE			
170	160	397	0.02960	18.3	20.2	20.1	20.2	0.994	3099.0	NO DAMAGE			
170 170	155 150	85 301	0.00634 0.02244	18.3 18.3	20.2 20.2	20.0 20.0	20.2 20.2	0.992 0.989	2066.0 1549.5	NO DAMAGE NO DAMAGE			
170	145	34	0.00253	18.3	20.2	19.9	20.2	0.986	1239.6	NO DAMAGE			
170 170	140 135	140 10	0.01044 0.00075	18.3 18.3	20.2 20.2	19.9 19.8	20.2 20.2	0.983	1033.0 885.4	NO DAMAGE NO DAMAGE			
170	130	30	0.00224	18.3	20.2	19.7	20.2	0.978	774.8	NO DAMAGE			
170 170	125 120	4	0.00030 0.00082	18.3 18.3	20.2	19.7 19.6	20.2	0.975	688.7 619.8	NO DAMAGE NO DAMAGE			
170	115	2	0.00082	18.3	20.2	19.6	20.2	0.970	563.5	NO DAMAGE			
170	110	8	0.00060	18.3	20.2	19.5	20.2	0.967	516.5	NO DAMAGE			
170 170	100 90	7 9	0.00052 0.00067	18.3 18.3	20.2	19.4 19.3	20.2 20.2	0.961	442.7 387.4	NO DAMAGE NO DAMAGE			
170	80	7	0.00052	18.3	20.2	19.2	20.2	0.950	344.3	NO DAMAGE			
170 170	70 65	3 1	0.00022	18.3 18.3	20.2 20.2	19.1 19.0	20.2 20.2	0.945	309.9 295.1	NO DAMAGE NO DAMAGE			
170	40	1	0.00007	18.3	20.2	18.7	20.2	0.928	238.4	NO DAMAGE			
170 170	30 25	3	0.00022 0.00007	18.3 18.3	20.2 20.2	18.6 18.6	20.2 20.2	0.923	221.4 213.7	NO DAMAGE NO DAMAGE			
170	20	3	0.00022	18.3	20.2	18.5	20.2	0.917	206.6	NO DAMAGE			
170 170	0	2	0.00015	18.3	20.2 20.2	18.3	20.2	0.906	182.3 172.2	NO DAMAGE			
170	-10 -40	1	0.00007 0.00007	18.3 18.3	20.2	18.2 17.9	20.2 20.2	0.901 0.884	147.6	NO DAMAGE NO DAMAGE			
170	-50	1	0.00007	18.3	20.2	17.7	20.2	0.879	140.9	NO DAMAGE			
170 170	-70 -90	1	0.00007 0.00007	18.3 18.3	20.2 20.2	17.5 17.3	20.2 20.2	0.868 0.857	129.1 119.2	NO DAMAGE NO DAMAGE			
170	-100	2	0.00015	18.3	20.2	17.2	20.2	0.851	114.8	NO DAMAGE			
170 170	-105 -110	1 3	0.00007 0.00022	18.3 18.3	20.2 20.2	17.1 17.1	20.2 20.2	0.848	112.7 110.7	NO DAMAGE NO DAMAGE			
170	-115	1	0.00007	18.3	20.2	17.0	20.2	0.843	108.7	NO DAMAGE			
170 170	-120 -130	1 2	0.00007 0.00015	18.3 18.3	20.2	17.0 16.9	20.2 20.2	0.840 0.834	106.9 103.3	NO DAMAGE NO DAMAGE			
170	-140	2	0.00015	18.3	20.2	16.7	20.2	0.829	100.0	NO DAMAGE			
170 170	-150 -160	1 2	0.00007	18.3	20.2 20.2	16.6	20.2 20.2	0.823	96.8	NO DAMAGE			
170	-180	1	0.00015 0.00007	18.3 18.3	20.2	16.5 16.3	20.2	0.818 0.807	93.9 88.5	NO DAMAGE NO DAMAGE			
170	-210	3	0.00022	18.3	20.2	16.0	20.2	0.790	81.6	NO DAMAGE			
170 165	-230 155	1 845	0.00007 0.06300	18.3 18.3	20.2 20.1	15.7 20.0	20.2 20.1	0.779 0.994	77.5 3090.5	NO DAMAGE NO DAMAGE			
165	150	95	0.00708	18.3	20.1	20.0	20.1	0.992	2060.3	NO DAMAGE			
165 165	145 140	957 52	0.07135 0.00388	18.3	20.1 20.1	19.9 19.9	20.1 20.1	0.989 889.0	1545.2 1236.2	NO DAMAGE NO DAMAGE			
165	135	293	0.02184	18.3	20.1	19.8	20.1	0.983	1030.2	NO DAMAGE			
165 165	130 125	13 39	0.00097 0.00291	18.3 18.3	20.1 20.1	19.7 19.7	20.1 20.1	0.981 0.978	883.0 772.6	NO DAMAGE NO DAMAGE			
165	120	6	0.00045	18.3	20.1	19.6	20.1	0.975	686.8	NO DAMAGE			
165 165	115 105	12 4	0.00089 0.00030	18.3 18.3	20.1 20.1	19.6 19.5	20.1 20.1	0.972 0.967	618.1 515.1	NO DAMAGE NO DAMAGE			
165	95	1	0.00007	18.3	20.1	19.4	20.1	0.961	441.5	NO DAMAGE			
165 165	85 70	3 1	0.00022 0.00007	18.3 18.3	20.1	19.2 19.1	20.1	0.956 0.947	386.3 325.3	NO DAMAGE NO DAMAGE			
165	60	i	0.00007	18.3	20.1	19.0	20.1	0.947	294.3	NO DAMAGE			
165	55	1	0.00007	18.3	20.1	18.9	20.1	0.939	281.0	NO DAMAGE			
165 165	40 35	1 2	0.00007 0.00015	18.3 18.3	20.1 20.1	18.7 18.7	20.1 20.1	0.931	247.2 237.7	NO DAMAGE NO DAMAGE			
165	25	3	0.00022	18.3	20.1	18.6	20.1	0.923	220.7	NO DAMAGE			
165 165	15 -5	2 2	0.00015 0.00015	18.3 18.3	20.1 20.1	18.5 18.2	20.1 20.1	0.917	206.0 181.8	NO DAMAGE NO DAMAGE			
165	-30	1	0.00007	18.3	20.1	18.0	20.1	0.892	158.5	NO DAMAGE			
165 165	-55 -105	1	0.00007 0.00007	18.3 18.3	20.1 20.1	17.7 17.1	20.1 20.1	0.878 0.851	140.5 114.5	NO DAMAGE NO DAMAGE			
165	-125	i	0.00007	18.3	20.1	16.9	20.1	0.840	106.6	NO DAMAGE			
165 165	-135 -140	1	0.00007 0.00007	18.3 18.3	20.1 20.1	16.8 16.7	20.1 20.1	0.834 0.831	103.0 101.3	NO DAMAGE NO DAMAGE			
165	-145	i	0.00007	18.3	20.1	16.7	20.1	0.828	99.7	NO DAMAGE			
165 165	-165 -185	2	0.00015	18.3 18.3	20.1	16.5 16.2	20.1 20.1	0.817	93.7 88.3	NO DAMAGE NO DAMAGE			
165	-185 -190	1	0.00007	18.3	20.1	16.2	20.1	0.806	88.3 87.1	NO DAMAGE			
165 165	-205 -215	1	0.00007	18.3 18.3	20.1	16.0	20.1 20.1	0.795 0.790	83.5 81.3	NO DAMAGE			
100	-210	1	0.00007	18.3	20.1	15.9	20.1	0.780	81.3	NO DAMAGE			

Page G.1-98 February 2, 2018

					Dyna			_		to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
165	-225	2	0.00015	18.3	20.1	15.8	20.1	0.784	79.2	NO DAMAGE			
165 165	-255 -275	1	0.00007 0.00007	18.3 18.3	20.1	15.5 15.2	20.1	0.768 0.757	73.6 70.2	NO DAMAGE NO DAMAGE			
160	150	611	0.04555	18.3	20.1	20.0	20.1	0.994	3081.9	NO DAMAGE			
160	145	158	0.01178	18.3	20.1	19.9	20.1	0.992	2054.6	NO DAMAGE			
160 160	140 135	378 41	0.02818 0.00306	18.3 18.3	20.1 20.1	19.9 19.8	20.1 20.1	0.989	1541.0 1232.8	NO DAMAGE NO DAMAGE			
160	130	113	0.00842	18.3	20.1	19.7	20.1	0.983	1027.3	NO DAMAGE			
160	125	20	0.00149	18.3	20.1	19.7	20.1	0.981	880.6	NO DAMAGE			
160 160	120 115	53 2	0.00395 0.00015	18.3 18.3	20.1 20.1	19.6 19.6	20.1 20.1	0.978	770.5 684.9	NO DAMAGE NO DAMAGE			
160	110	24	0.00179	18.3	20.1	19.5	20.1	0.972	616.4	NO DAMAGE			
160	105	4	0.00030	18.3	20.1	19.5	20.1	0.969	560.4	NO DAMAGE			
160 160	100 95	12 3	0.00089 0.00022	18.3 18.3	20.1 20.1	19.4 19.4	20.1 20.1	0.967 0.964	513.7 474.1	NO DAMAGE NO DAMAGE			
160	90	10	0.00022	18.3	20.1	19.4	20.1	0.961	440.3	NO DAMAGE			
160	80	4	0.00030	18.3	20.1	19.2	20.1	0.956	385.2	NO DAMAGE			
160 160	75 70	1 3	0.00007 0.00022	18.3	20.1	19.1	20.1	0.953	362.6 342.4	NO DAMAGE			
160	60	4	0.00022	18.3	20.1	19.1	20.1	0.950	308.2	NO DAMAGE			
160	50	2	0.00015	18.3	20.1	18.9	20.1	0.939	280.2	NO DAMAGE			
160 160	45 40	1 3	0.00007 0.00022	18.3 18.3	20.1 20.1	18.8 18.7	20.1 20.1	0.936	268.0 256.8	NO DAMAGE NO DAMAGE			
160	30	5	0.00022	18.3	20.1	18.7	20.1	0.933	256.8	NO DAMAGE			
160	20	2	0.00015	18.3	20.1	18.5	20.1	0.922	220.1	NO DAMAGE			
160	10	2	0.00015	18.3	20.1	18.4	20.1	0.917	205.5	NO DAMAGE			
160 160	0 -10	5	0.00037 0.00015	18.3 18.3	20.1 20.1	18.3 18.2	20.1	0.911 0.906	192.6 181.3	NO DAMAGE NO DAMAGE			
160	-15	1	0.00007	18.3	20.1	18.1	20.1	0.903	176.1	NO DAMAGE			
160	-30	1	0.00007	18.3	20.1	18.0	20.1	0.895	162.2	NO DAMAGE			
160 160	-40 -70	1 3	0.00007 0.00022	18.3 18.3	20.1 20.1	17.9 17.5	20.1 20.1	0.889 0.872	154.1 134.0	NO DAMAGE NO DAMAGE			
160	-80	2	0.00022	18.3	20.1	17.4	20.1	0.867	128.4	NO DAMAGE			
160	-90	5	0.00037	18.3	20.1	17.3	20.1	0.861	123.3	NO DAMAGE			
160 160	-100 -110	4 6	0.00030	18.3 18.3	20.1 20.1	17.2	20.1 20.1	0.856	118.5 114.1	NO DAMAGE NO DAMAGE			
160	-115	1	0.00007	18.3	20.1	17.0	20.1	0.847	112.1	NO DAMAGE			
160	-120	1	0.00007	18.3	20.1	17.0	20.1	0.845	110.1	NO DAMAGE			
160 160	-130 -135	3 1	0.00022 0.00007	18.3 18.3	20.1 20.1	16.9 16.8	20.1 20.1	0.839	106.3 104.5	NO DAMAGE NO DAMAGE			
160	-140	4	0.00030	18.3	20.1	16.7	20.1	0.834	104.5	NO DAMAGE			
160	-150	1	0.00007	18.3	20.1	16.6	20.1	0.828	99.4	NO DAMAGE			
160 160	-160 -170	3 2	0.00022 0.00015	18.3 18.3	20.1 20.1	16.5 16.4	20.1 20.1	0.822 0.817	96.3 93.4	NO DAMAGE NO DAMAGE			
160	-175	1	0.00007	18.3	20.1	16.4	20.1	0.817	92.0	NO DAMAGE			
160	-180	2	0.00015	18.3	20.1	16.3	20.1	0.811	90.6	NO DAMAGE			
160 160	-185	1	0.00007	18.3	20.1 20.1	16.2	20.1 20.1	0.809	89.3 88.1	NO DAMAGE NO DAMAGE			
155	-190 145	1673	0.00007 0.12473	18.3 18.3	20.1	16.2 19.9	20.1	0.806	3073.4	NO DAMAGE			
155	140	205	0.01528	18.3	20.0	19.9	20.0	0.992	2048.9	NO DAMAGE			
155 155	135	1264 69	0.09423	18.3	20.0	19.8	20.0	0.989	1536.7	NO DAMAGE			
155	130 125	323	0.00514 0.02408	18.3 18.3	20.0 20.0	19.7 19.7	20.0 20.0	0.983	1229.4 1024.5	NO DAMAGE NO DAMAGE			
155	120	17	0.00127	18.3	20.0	19.6	20.0	0.981	878.1	NO DAMAGE			
155 155	115 110	108	0.00805 0.00037	18.3 18.3	20.0 20.0	19.6 19.5	20.0 20.0	0.978	768.3 683.0	NO DAMAGE NO DAMAGE			
155	105	5 15	0.00037	18.3	20.0	19.5	20.0	0.975	614.7	NO DAMAGE			
155	100	1	0.00007	18.3	20.0	19.4	20.0	0.969	558.8	NO DAMAGE			
155 155	95 85	15 2	0.00112 0.00015	18.3	20.0 20.0	19.4 19.2	20.0 20.0	0.967	512.2 439.1	NO DAMAGE NO DAMAGE			
155	80	1	0.00015	18.3	20.0	19.2	20.0	0.958	409.8	NO DAMAGE			
155	75	6	0.00045	18.3	20.0	19.1	20.0	0.955	384.2	NO DAMAGE			
155 155	65 55	3 1	0.00022 0.00007	18.3 18.3	20.0 20.0	19.0 18.9	20.0 20.0	0.950 0.944	341.5 307.3	NO DAMAGE NO DAMAGE			
155	50	2	0.00007	18.3	20.0	18.9	20.0	0.944	292.7	NO DAMAGE			
155	45	2	0.00015	18.3	20.0	18.8	20.0	0.939	279.4	NO DAMAGE			
155 155	35 25	2	0.00015 0.00022	18.3 18.3	20.0 20.0	18.7 18.6	20.0 20.0	0.933	256.1 236.4	NO DAMAGE NO DAMAGE			
155	15	2	0.00022	18.3	20.0	18.5	20.0	0.922	219.5	NO DAMAGE			
155	5	3	0.00022	18.3	20.0	18.4	20.0	0.917	204.9	NO DAMAGE			
155 155	0 -5	3 1	0.00022 0.00007	18.3 18.3	20.0 20.0	18.3 18.2	20.0 20.0	0.914 0.911	198.3 192.1	NO DAMAGE NO DAMAGE			
155	-5 -15	i	0.00007	18.3	20.0	18.1	20.0	0.905	180.8	NO DAMAGE			
155	-25	2	0.00015	18.3	20.0	18.0	20.0	0.900	170.7	NO DAMAGE			
155	-55	1	0.00007	18.3	20.0 20.0	17.7 17.4	20.0	0.883	146.4 130.8	NO DAMAGE			
155 155	-80 -95	1	0.00007	18.3	20.0	17.4	20.0 20.0	0.869	130.8	NO DAMAGE			
155	-105	1	0.00007	18.3	20.0	17.1	20.0	0.855	118.2	NO DAMAGE			
155	-115	1	0.00007	18.3	20.0	17.0	20.0	0.850	113.8	NO DAMAGE			
155 155	-120 -125	1 2	0.00007 0.00015	18.3 18.3	20.0 20.0	17.0 16.9	20.0 20.0	0.847	111.8 109.8	NO DAMAGE NO DAMAGE			
155	-130	1	0.00007	18.3	20.0	16.9	20.0	0.841	107.8	NO DAMAGE			
155	-135	5	0.00037	18.3	20.0	16.8	20.0	0.839	106.0	NO DAMAGE			
155 155	-145 -150	4	0.00030 0.00015	18.3 18.3	20.0 20.0	16.7 16.6	20.0 20.0	0.833	102.4 100.8	NO DAMAGE NO DAMAGE			
155	-165	ī	0.00007	18.3	20.0	16.5	20.0	0.822	96.0	NO DAMAGE			
155	-175	1	0.00007	18.3	20.0	16.4	20.0	0.816	93.1	NO DAMAGE			
155 155	-185 -195	2	0.00015 0.00007	18.3 18.3	20.0 20.0	16.2 16.1	20.0 20.0	0.811 0.805	90.4 87.8	NO DAMAGE NO DAMAGE			
155	-220	1	0.00007	18.3	20.0	15.8	20.0	0.791	82.0	NO DAMAGE			
155	-235	1	0.00007	18.3	20.0	15.7	20.0	0.783	78.8	NO DAMAGE			

Page G.1-99 February 2, 2018

					Dyna					to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	a/N	cycles per mile Yield stress	153.8 60 ksi
150	140	773	0.05763	18.3	20.0	19.9	20.0	0.994	3064.8	NO DAMAGE			
150 150	135 130	220 550	0.01640 0.04100	18.3 18.3	20.0 20.0	19.8 19.7	20.0 20.0	0.992	2043.2 1532.4	NO DAMAGE NO DAMAGE			
150	125	117	0.00872	18.3	20.0	19.7	20.0	0.986	1225.9	NO DAMAGE			
150 150	120 115	210 22	0.01566 0.00164	18.3 18.3	20.0 20.0	19.6 19.6	20.0 20.0	0.983	1021.6 875.7	NO DAMAGE NO DAMAGE			
150	110	108	0.00805	18.3	20.0	19.5	20.0	0.978	766.2	NO DAMAGE			
150 150	105	4 48	0.00030	18.3	20.0 20.0	19.5 19.4	20.0	0.975	681.1	NO DAMAGE			
150	100 95	48 3	0.00358 0.00022	18.3 18.3	20.0	19.4	20.0 20.0	0.972	613.0 557.2	NO DAMAGE NO DAMAGE			
150	90	21	0.00157	18.3	20.0	19.3	20.0	0.967	510.8	NO DAMAGE			
150 150	85 80	2 7	0.00015 0.00052	18.3 18.3	20.0 20.0	19.2 19.2	20.0 20.0	0.964 0.961	471.5 437.8	NO DAMAGE NO DAMAGE			
150	70	12	0.00089	18.3	20.0	19.1	20.0	0.955	383.1	NO DAMAGE			
150 150	65 60	1 6	0.00007 0.00045	18.3 18.3	20.0 20.0	19.0 19.0	20.0 20.0	0.953 0.950	360.6 340.5	NO DAMAGE NO DAMAGE			
150	50	6	0.00045	18.3	20.0	18.9	20.0	0.944	306.5	NO DAMAGE			
150 150	45 40	1 2	0.00007 0.00015	18.3 18.3	20.0 20.0	18.8	20.0 20.0	0.941	291.9 278.6	NO DAMAGE NO DAMAGE			
150	30	3	0.00015	18.3	20.0	18.6	20.0	0.933	255.4	NO DAMAGE			
150	20	6	0.00045	18.3	20.0	18.5	20.0	0.927	235.8	NO DAMAGE			
150 150	10 5	7 1	0.00052 0.00007	18.3 18.3	20.0 20.0	18.4 18.4	20.0 20.0	0.922 0.919	218.9 211.4	NO DAMAGE NO DAMAGE			
150	0	6	0.00045	18.3	20.0	18.3	20.0	0.916	204.3	NO DAMAGE			
150 150	-10 -20	8 1	0.00060 0.00007	18.3 18.3	20.0 20.0	18.2 18.1	20.0 20.0	0.911	191.6 180.3	NO DAMAGE NO DAMAGE			
150	-25	i	0.00007	18.3	20.0	18.0	20.0	0.902	175.1	NO DAMAGE			
150 150	-30 -40	1 2	0.00007 0.00015	18.3 18.3	20.0 20.0	18.0 17.9	20.0 20.0	0.900	170.3 161.3	NO DAMAGE NO DAMAGE			
150	-50	1	0.00015	18.3	20.0	17.7	20.0	0.888	153.2	NO DAMAGE			
150	-60	3 2	0.00022	18.3	20.0	17.6	20.0	0.883	145.9	NO DAMAGE			
150 150	-70 -80	4	0.00015 0.00030	18.3 18.3	20.0 20.0	17.5 17.4	20.0 20.0	0.877 0.872	139.3 133.3	NO DAMAGE NO DAMAGE			
150	-100	3	0.00022	18.3	20.0	17.2	20.0	0.861	122.6	NO DAMAGE			
150 150	-105 -110	1 5	0.00007 0.00037	18.3 18.3	20.0 20.0	17.1 17.1	20.0 20.0	0.858	120.2 117.9	NO DAMAGE NO DAMAGE			
150	-115	1	0.00007	18.3	20.0	17.0	20.0	0.852	115.7	NO DAMAGE			
150 150	-120 -125	4 2	0.00030	18.3 18.3	20.0 20.0	17.0 16.9	20.0 20.0	0.849 0.847	113.5 111.4	NO DAMAGE NO DAMAGE			
150	-130	3	0.00015 0.00022	18.3	20.0	16.9	20.0	0.844	109.5	NO DAMAGE			
150 150	-135 -140	1 3	0.00007 0.00022	18.3 18.3	20.0 20.0	16.8 16.7	20.0 20.0	0.841	107.5 105.7	NO DAMAGE NO DAMAGE			
150	-140	2	0.00022	18.3	20.0	16.6	20.0	0.838	105.7	NO DAMAGE			
150	-160	1	0.00007	18.3	20.0	16.5	20.0	0.827	98.9	NO DAMAGE			
150 150	-165 -170	1	0.00007 0.00007	18.3 18.3	20.0 20.0	16.5 16.4	20.0 20.0	0.824 0.821	97.3 95.8	NO DAMAGE NO DAMAGE			
150	-180	1	0.00007	18.3	20.0	16.3	20.0	0.816	92.9	NO DAMAGE			
150 150	-220 -230	1	0.00007 0.00007	18.3 18.3	20.0 20.0	15.8 15.7	20.0 20.0	0.794 0.788	82.8 80.7	NO DAMAGE NO DAMAGE			
145	135	2125	0.15842	18.3	19.9	19.8	19.9	0.994	3056.3	NO DAMAGE			
145 145	130 125	317 1702	0.02363 0.12689	18.3 18.3	19.9 19.9	19.7 19.7	19.9 19.9	0.992 0.989	2037.5 1528.1	NO DAMAGE NO DAMAGE			
145	120	76	0.00567	18.3	19.9	19.6	19.9	0.986	1222.5	NO DAMAGE			
145 145	115 110	343 20	0.02557 0.00149	18.3	19.9 19.9	19.6	19.9 19.9	0.983	1018.8 873.2	NO DAMAGE NO DAMAGE			
145	105	62	0.00462	18.3	19.9	19.5	19.9	0.978	764.1	NO DAMAGE			
145	100	9	0.00067	18.3	19.9	19.4	19.9	0.975	679.2	NO DAMAGE			
145 145	95 90	17 2	0.00127 0.00015	18.3 18.3	19.9 19.9	19.4 19.3	19.9 19.9	0.972	611.3 555.7	NO DAMAGE NO DAMAGE			
145	85	10	0.00075	18.3	19.9	19.2	19.9	0.966	509.4	NO DAMAGE			
145 145	75 70	4 1	0.00030 0.00007	18.3 18.3	19.9 19.9	19.1 19.1	19.9 19.9	0.961	436.6 407.5	NO DAMAGE NO DAMAGE			
145	65	2	0.00015	18.3	19.9	19.0	19.9	0.955	382.0	NO DAMAGE			
145 145	55 45	6 6	0.00045 0.00045	18.3 18.3	19.9 19.9	18.9 18.8	19.9 19.9	0.950 0.944	339.6 305.6	NO DAMAGE NO DAMAGE			
145	35	3	0.00022	18.3	19.9	18.7	19.9	0.938	277.8	NO DAMAGE			
145 145	30 25	1 3	0.00007 0.00022	18.3 18.3	19.9 19.9	18.6 18.6	19.9 19.9	0.936	265.8 254.7	NO DAMAGE NO DAMAGE			
145	20	2	0.00015	18.3	19.9	18.5	19.9	0.930	244.5	NO DAMAGE			
145 145	15 10	4	0.00030	18.3 18.3	19.9 19.9	18.5 18.4	19.9 19.9	0.927	235.1 226.4	NO DAMAGE NO DAMAGE			
145	5	4	0.00030	18.3	19.9	18.4	19.9	0.922	218.3	NO DAMAGE			
145 145	0 -5	1 3	0.00007 0.00022	18.3 18.3	19.9 19.9	18.3 18.2	19.9 19.9	0.919 0.916	210.8 203.8	NO DAMAGE NO DAMAGE			
145	-35	2	0.00015	18.3	19.9	17.9	19.9	0.899	169.8	NO DAMAGE			
145 145	-75 -85	1	0.00007 0.00007	18.3 18.3	19.9 19.9	17.5 17.4	19.9 19.9	0.877	138.9 132.9	NO DAMAGE NO DAMAGE			
145	-85 -95	3	0.00022	18.3	19.9	17.4	19.9	0.866	127.3	NO DAMAGE			
145	-100	1	0.00007	18.3	19.9	17.2	19.9	0.863	124.7	NO DAMAGE			
145 145	-105 -115	1 3	0.00007 0.00022	18.3 18.3	19.9 19.9	17.1 17.0	19.9 19.9	0.860 0.855	122.3 117.5	NO DAMAGE NO DAMAGE			
145	-135	3	0.00022	18.3	19.9	16.8	19.9	0.843	109.2	NO DAMAGE			
145 145	-145 -155	3 1	0.00022 0.00007	18.3 18.3	19.9 19.9	16.7 16.6	19.9 19.9	0.838	105.4 101.9	NO DAMAGE NO DAMAGE			
145	-165	3	0.00022	18.3	19.9	16.5	19.9	0.827	98.6	NO DAMAGE			
145 145	-185 -195	1 2	0.00007 0.00015	18.3 18.3	19.9 19.9	16.2 16.1	19.9 19.9	0.815 0.810	92.6 89.9	NO DAMAGE NO DAMAGE			
145	-195	2	0.00015	18.3	19.9	15.9	19.9	0.799	84.9	NO DAMAGE			
145 140	-265 130	1 1518	0.00007 0.11317	18.3 18.3	19.9 19.9	15.3 19.7	19.9 19.9	0.771 0.994	74.5 3047.7	NO DAMAGE NO DAMAGE			
140	125	1518 298	0.11317	18.3	19.9	19.7	19.9	0.994	2031.8	NO DAMAGE			
										_			

Page G.1-100 February 2, 2018

					Dyna	ımic				to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile 153 Yield stress 60	
140	120	667	0.04973	18.3	19.9	19.6	19.9	0.989	1523.9	NO DAMAGE	Q/N	rield stress ou	KSI
140	115	88	0.00656	18.3	19.9	19.6	19.9	0.986	1219.1	NO DAMAGE			
140 140	110 105	316 35	0.02356 0.00261	18.3	19.9 19.9	19.5 19.5	19.9 19.9	0.983 0.980	1015.9 870.8	NO DAMAGE NO DAMAGE			
140	100	185	0.01379	18.3	19.9	19.4	19.9	0.978	761.9	NO DAMAGE			
140 140	95 90	18 67	0.00134 0.00500	18.3 18.3	19.9 19.9	19.4 19.3	19.9 19.9	0.975 0.972	677.3 609.5	NO DAMAGE NO DAMAGE			
140	85	3	0.00022	18.3	19.9	19.3	19.9	0.969	554.1	NO DAMAGE			
140	80	41	0.00306	18.3	19.9	19.2	19.9	0.966	508.0	NO DAMAGE			
140 140	75 70	5 30	0.00037	18.3 18.3	19.9 19.9	19.1	19.9 19.9	0.964	468.9 435.4	NO DAMAGE NO DAMAGE			
140	65	2	0.00015	18.3	19.9	19.0	19.9	0.958	406.4	NO DAMAGE			
140 140	60 55	13 1	0.00097 0.00007	18.3 18.3	19.9 19.9	19.0 18.9	19.9 19.9	0.955 0.952	381.0 358.6	NO DAMAGE NO DAMAGE			
140	50	5	0.00037	18.3	19.9	18.9	19.9	0.950	338.6	NO DAMAGE			
140	45	3	0.00022	18.3	19.9	18.8	19.9	0.947	320.8	NO DAMAGE			
140 140	40 35	12 1	0.00089 0.00007	18.3 18.3	19.9 19.9	18.7 18.7	19.9 19.9	0.944 0.941	304.8 290.3	NO DAMAGE NO DAMAGE			
140	30	7	0.00052	18.3	19.9	18.6	19.9	0.938	277.1	NO DAMAGE			
140 140	20 10	8 7	0.00060 0.00052	18.3	19.9 19.9	18.5 18.4	19.9 19.9	0.933 0.927	254.0 234.4	NO DAMAGE NO DAMAGE			
140	5	i	0.00007	18.3	19.9	18.4	19.9	0.924	225.8	NO DAMAGE			
140 140	0 -5	10 1	0.00075 0.00007	18.3 18.3	19.9 19.9	18.3 18.2	19.9 19.9	0.921 0.919	217.7 210.2	NO DAMAGE NO DAMAGE			
140	-0 -10	9	0.00067	18.3	19.9	18.2	19.9	0.916	203.2	NO DAMAGE			
140	-20	3	0.00022	18.3	19.9	18.1	19.9	0.910	190.5	NO DAMAGE			
140 140	-25 -30	1 2	0.00007 0.00015	18.3 18.3	19.9 19.9	18.0 18.0	19.9 19.9	0.907 0.905	184.7 179.3	NO DAMAGE NO DAMAGE			
140	-40	3	0.00022	18.3	19.9	17.9	19.9	0.899	169.3	NO DAMAGE			
140 140	-50 -60	3 2	0.00022 0.00015	18.3 18.3	19.9 19.9	17.7 17.6	19.9 19.9	0.893	160.4 152.4	NO DAMAGE NO DAMAGE			
140	-70	3	0.00022	18.3	19.9	17.5	19.9	0.882	145.1	NO DAMAGE			
140 140	-80 -90	5	0.00037	18.3 18.3	19.9 19.9	17.4	19.9 19.9	0.877	138.5 132.5	NO DAMAGE			
140	-90 -95	5 1	0.00037 0.00007	18.3	19.9	17.3 17.2	19.9	0.868	132.5	NO DAMAGE NO DAMAGE			
140	-100	9	0.00067	18.3	19.9	17.2	19.9	0.865	127.0	NO DAMAGE			
140 140	-110 -115	4	0.00030 0.00007	18.3	19.9 19.9	17.1 17.0	19.9 19.9	0.860	121.9 119.5	NO DAMAGE			
140	-120	7	0.00052	18.3	19.9	17.0	19.9	0.854	117.2	NO DAMAGE			
140 140	-130 -140	2 5	0.00015 0.00037	18.3 18.3	19.9 19.9	16.9 16.7	19.9 19.9	0.849 0.843	112.9 108.8	NO DAMAGE NO DAMAGE			
140	-140	2	0.00037	18.3	19.9	16.7	19.9	0.843	106.9	NO DAMAGE			
140	-150	2	0.00015	18.3	19.9	16.6	19.9	0.837	105.1	NO DAMAGE			
140 140	-155 -160	1	0.00007	18.3 18.3	19.9 19.9	16.6 16.5	19.9 19.9	0.834 0.832	103.3 101.6	NO DAMAGE NO DAMAGE			
140	-170	2	0.00015	18.3	19.9	16.4	19.9	0.826	98.3	NO DAMAGE			
140 140	-190 -200	1	0.00007 0.00007	18.3 18.3	19.9 19.9	16.2 16.1	19.9 19.9	0.815 0.809	92.4 89.6	NO DAMAGE NO DAMAGE			
140	-210	i	0.00007	18.3	19.9	16.0	19.9	0.804	87.1	NO DAMAGE			
140 135	-260 125	1 2305	0.00007 0.17184	18.3 18.3	19.9 19.8	15.4 19.7	19.9 19.8	0.776	76.2 3039.2	NO DAMAGE			
135	120	2305	0.01759	18.3	19.8	19.7	19.8	0.994	2026.1	NO DAMAGE NO DAMAGE			
135	115	1901	0.14172	18.3	19.8	19.6	19.8	0.989	1519.6	NO DAMAGE			
135 135	110 105	117 472	0.00872 0.03519	18.3 18.3	19.8 19.8	19.5 19.5	19.8 19.8	0.986	1215.7 1013.1	NO DAMAGE NO DAMAGE			
135	100	55	0.00410	18.3	19.8	19.4	19.8	0.980	868.3	NO DAMAGE			
135 135	95 90	122 11	0.00910 0.00082	18.3 18.3	19.8 19.8	19.4 19.3	19.8 19.8	0.977 0.975	759.8 675.4	NO DAMAGE NO DAMAGE			
135	85	59	0.00440	18.3	19.8	19.2	19.8	0.972	607.8	NO DAMAGE			
135 135	80 75	6 28	0.00045 0.00209	18.3 18.3	19.8 19.8	19.2 19.1	19.8 19.8	0.969 0.966	552.6 506.5	NO DAMAGE NO DAMAGE			
135	70	2	0.00205	18.3	19.8	19.1	19.8	0.963	467.6	NO DAMAGE			
135 135	65 60	11	0.00082	18.3	19.8	19.0	19.8	0.961	434.2	NO DAMAGE			
135	55	11	0.00007 0.00082	18.3 18.3	19.8	19.0 18.9	19.8 19.8	0.958 0.955	405.2 379.9	NO DAMAGE NO DAMAGE			
135	50	2	0.00015	18.3	19.8	18.9	19.8	0.952	357.6	NO DAMAGE			
135 135	45 35	6 3	0.00045 0.00022	18.3 18.3	19.8 19.8	18.8 18.7	19.8 19.8	0.949 0.944	337.7 303.9	NO DAMAGE NO DAMAGE			
135	30	1	0.00007	18.3	19.8	18.6	19.8	0.941	289.4	NO DAMAGE			
135 135	25 20	6 1	0.00045	18.3 18.3	19.8 19.8	18.6 18.5	19.8 19.8	0.938	276.3 264.3	NO DAMAGE NO DAMAGE			
135	15	5	0.00037	18.3	19.8	18.5	19.8	0.932	253.3	NO DAMAGE			
135 135	5 0	11 4	0.00082 0.00030	18.3 18.3	19.8 19.8	18.4 18.3	19.8 19.8	0.927 0.924	233.8 225.1	NO DAMAGE NO DAMAGE			
135	-5	1	0.00007	18.3	19.8	18.2	19.8	0.921	217.1	NO DAMAGE			
135	-15	1	0.00007	18.3	19.8	18.1	19.8	0.916	202.6	NO DAMAGE			
135 135	-35 -40	1	0.00007 0.00007	18.3 18.3	19.8 19.8	17.9 17.9	19.8 19.8	0.904	178.8 173.7	NO DAMAGE NO DAMAGE			
135	-45	3	0.00022	18.3	19.8	17.8	19.8	0.899	168.8	NO DAMAGE			
135 135	-65 -85	1 2	0.00007 0.00015	18.3 18.3	19.8 19.8	17.6 17.4	19.8 19.8	0.887	152.0 138.1	NO DAMAGE NO DAMAGE			
135	-95	1	0.00007	18.3	19.8	17.2	19.8	0.871	132.1	NO DAMAGE			
135 135	-100 -105	1 4	0.00007 0.00030	18.3 18.3	19.8 19.8	17.2 17.1	19.8 19.8	0.868 0.865	129.3 126.6	NO DAMAGE NO DAMAGE			
135	-115	3	0.00022	18.3	19.8	17.0	19.8	0.859	121.6	NO DAMAGE			
135	-125	6	0.00045	18.3	19.8	16.9	19.8	0.854	116.9	NO DAMAGE			
135 135	-135 -145	4	0.00030 0.00022	18.3 18.3	19.8 19.8	16.8 16.7	19.8 19.8	0.848 0.842	112.6 108.5	NO DAMAGE NO DAMAGE			
135	-155	3	0.00022	18.3	19.8	16.6	19.8	0.837	104.8	NO DAMAGE			
135 135	-160 -165	2 2	0.00015 0.00015	18.3 18.3	19.8 19.8	16.5 16.5	19.8 19.8	0.834 0.831	103.0 101.3	NO DAMAGE NO DAMAGE			
		~	0.000.0					0.001					

Page G.1-101 February 2, 2018

					Dyna	mic				to			
			α	Static	Śtre	:SS	M ax	R	Endurance	Failure		cycles per mile	153.8
Max 135	Min -175	No. 2	Pct 0.00015	Stress 18.3	Max 19.8	Min 16.4	Adjusted 19.8	Min/Max 0.826	Limit 98.0	N NO DAMAGE	α/N	Yield stress	60 ksi
135	-175	2	0.00015	18.3	19.8	16.2	19.8	0.820	95.0	NO DAMAGE			
135	-195	2	0.00015	18.3	19.8	16.1	19.8	0.814	92.1	NO DAMAGE			
135 135	-205 -235	1	0.00007 0.00007	18.3 18.3	19.8 19.8	16.0 15.7	19.8 19.8	0.809 0.792	89.4 82.1	NO DAMAGE NO DAMAGE			
130	120	1350	0.10065	18.3	19.7	19.6	19.7	0.792	3030.6	NO DAMAGE			
130	115	357	0.02662	18.3	19.7	19.6	19.7	0.992	2020.4	NO DAMAGE			
130 130	110	1062 197	0.07918	18.3	19.7 19.7	19.5 19.5	19.7	0.989	1515.3	NO DAMAGE			
130	105 100	540	0.01469 0.04026	18.3 18.3	19.7	19.5	19.7 19.7	0.986	1212.3 1010.2	NO DAMAGE NO DAMAGE			
130	95	69	0.00514	18.3	19.7	19.4	19.7	0.980	865.9	NO DAMAGE			
130 130	90 85	301 20	0.02244 0.00149	18.3 18.3	19.7 19.7	19.3 19.2	19.7 19.7	0.977	757.7 673.5	NO DAMAGE NO DAMAGE			
130	80	20 166	0.00148	18.3	19.7	19.2	19.7	0.975	606.1	NO DAMAGE			
130	75	15	0.00112	18.3	19.7	19.1	19.7	0.969	551.0	NO DAMAGE			
130	70	66	0.00492	18.3	19.7	19.1	19.7	0.966	505.1	NO DAMAGE			
130 130	65 60	7 35	0.00052 0.00261	18.3 18.3	19.7 19.7	19.0 19.0	19.7 19.7	0.963	466.3 432.9	NO DAMAGE NO DAMAGE			
130	55	6	0.00045	18.3	19.7	18.9	19.7	0.958	404.1	NO DAMAGE			
130	50	34 2	0.00253	18.3	19.7	18.9	19.7	0.955 0.952	378.8 356.5	NO DAMAGE			
130 130	45 40	12	0.00015 0.00089	18.3 18.3	19.7 19.7	18.8	19.7 19.7	0.952	336.7	NO DAMAGE NO DAMAGE			
130	35	1	0.00007	18.3	19.7	18.7	19.7	0.946	319.0	NO DAMAGE			
130	30	6	0.00045	18.3	19.7	18.6	19.7	0.944	303.1	NO DAMAGE			
130 130	25 20	1 10	0.00007 0.00075	18.3 18.3	19.7 19.7	18.6 18.5	19.7 19.7	0.941	288.6 275.5	NO DAMAGE NO DAMAGE			
130	10	11	0.00082	18.3	19.7	18.4	19.7	0.932	252.6	NO DAMAGE			
130	0	11	0.00082	18.3	19.7	18.3	19.7	0.927	233.1	NO DAMAGE			
130 130	-5 -10	2 8	0.00015 0.00060	18.3 18.3	19.7 19.7	18.2 18.2	19.7 19.7	0.924	224.5 216.5	NO DAMAGE NO DAMAGE			
130	-20	1	0.00007	18.3	19.7	18.1	19.7	0.915	202.0	NO DAMAGE			
130	-30	5	0.00037	18.3	19.7	18.0	19.7	0.910	189.4	NO DAMAGE			
130 130	-35 -40	1 2	0.00007 0.00015	18.3 18.3	19.7 19.7	17.9 17.9	19.7 19.7	0.907	183.7 178.3	NO DAMAGE NO DAMAGE			
130	-50	2	0.00015	18.3	19.7	17.7	19.7	0.898	168.4	NO DAMAGE			
130	-60	8	0.00060	18.3	19.7	17.6	19.7	0.893	159.5	NO DAMAGE			
130	-70 -80	5 4	0.00037	18.3 18.3	19.7 19.7	17.5 17.4	19.7 19.7	0.887 0.882	151.5 144.3	NO DAMAGE NO DAMAGE			
130	-80	6	0.00030	18.3	19.7	17.4	19.7	0.882	137.8	NO DAMAGE			
130	-100	4	0.00030	18.3	19.7	17.2	19.7	0.870	131.8	NO DAMAGE			
130 130	-110 -120	5	0.00037 0.00015	18.3 18.3	19.7 19.7	17.1 17.0	19.7 19.7	0.865	126.3 121.2	NO DAMAGE NO DAMAGE			
130	-120	2 2	0.00015	18.3	19.7	16.9	19.7	0.853	116.6	NO DAMAGE			
130	-140	ī	0.00007	18.3	19.7	16.7	19.7	0.848	112.2	NO DAMAGE			
130	-150	1	0.00007	18.3	19.7	16.6	19.7	0.842	108.2	NO DAMAGE			
130 130	-160 -170	3	0.00022 0.00007	18.3 18.3	19.7 19.7	16.5 16.4	19.7 19.7	0.836	104.5 101.0	NO DAMAGE NO DAMAGE			
130	-205	i	0.00007	18.3	19.7	16.0	19.7	0.811	90.5	NO DAMAGE			
130	-215	1	0.00007	18.3	19.7	15.9	19.7	0.805	87.8	NO DAMAGE			
130 125	-220 115	1 3294	0.00007 0.24558	18.3 18.3	19.7 19.7	15.8 19.6	19.7 19.7	0.803	86.6 3022.1	NO DAMAGE NO DAMAGE			
125	110	660	0.04920	18.3	19.7	19.5	19.7	0.992	2014.7	NO DAMAGE			
125	105	2822	0.21039	18.3	19.7	19.5	19.7	0.989	1511.0	NO DAMAGE			
125 125	100 95	259 752	0.01931 0.05606	18.3 18.3	19.7 19.7	19.4 19.4	19.7 19.7	0.986	1208.8 1007.4	NO DAMAGE NO DAMAGE			
125	90	87	0.00649	18.3	19.7	19.3	19.7	0.980	863.5	NO DAMAGE			
125	85	266	0.01983	18.3	19.7	19.2	19.7	0.977	755.5	NO DAMAGE			
125 125	80 75	34 137	0.00253 0.01021	18.3 18.3	19.7 19.7	19.2 19.1	19.7 19.7	0.975	671.6 604.4	NO DAMAGE NO DAMAGE			
125	70	14	0.00104	18.3	19.7	19.1	19.7	0.969	549.5	NO DAMAGE			
125	65	87	0.00649	18.3	19.7	19.0	19.7	0.966	503.7	NO DAMAGE			
125 125	60 55	9 39	0.00067 0.00291	18.3 18.3	19.7 19.7	19.0 18.9	19.7 19.7	0.963	464.9 431.7	NO DAMAGE NO DAMAGE			
125	50	2	0.00015	18.3	19.7	18.9	19.7	0.958	402.9	NO DAMAGE			
125	45	22	0.00164	18.3	19.7	18.8	19.7	0.955	377.8	NO DAMAGE			
125 125	40 35	4 8	0.00030 0.00060	18.3 18.3	19.7 19.7	18.7 18.7	19.7 19.7	0.952 0.949	355.5 335.8	NO DAMAGE NO DAMAGE			
125	25	6	0.00045	18.3	19.7	18.6	19.7	0.943	302.2	NO DAMAGE			
125	15	8	0.00060	18.3	19.7	18.5	19.7	0.938	274.7	NO DAMAGE			
125 125	5 0	14 4	0.00104	18.3 18.3	19.7 19.7	18.4 18.3	19.7 19.7	0.932	251.8 241.8	NO DAMAGE NO DAMAGE			
125	-5	5	0.00037	18.3	19.7	18.2	19.7	0.926	232.5	NO DAMAGE			
125	-15	1	0.00007	18.3	19.7	18.1	19.7	0.921	215.9	NO DAMAGE			
125 125	-20 -25	1	0.00007 0.00007	18.3 18.3	19.7 19.7	18.1 18.0	19.7 19.7	0.918 0.915	208.4 201.5	NO DAMAGE NO DAMAGE			
125	-35	i	0.00007	18.3	19.7	17.9	19.7	0.909	188.9	NO DAMAGE			
125	-55	3	0.00022	18.3	19.7	17.7	19.7	0.898	167.9	NO DAMAGE			
125 125	-65 -75	1 2	0.00007 0.00015	18.3 18.3	19.7 19.7	17.6 17.5	19.7 19.7	0.892	159.1 151.1	NO DAMAGE NO DAMAGE			
125	-85	3	0.00013	18.3	19.7	17.4	19.7	0.881	143.9	NO DAMAGE			
125	-95	7	0.00052	18.3	19.7	17.2	19.7	0.876	137.4	NO DAMAGE			
125 125	-100 -105	3	0.00022 0.00022	18.3 18.3	19.7 19.7	17.2 17.1	19.7 19.7	0.873 0.870	134.3 131.4	NO DAMAGE NO DAMAGE			
125	-115	3	0.00022	18.3	19.7	17.0	19.7	0.864	125.9	NO DAMAGE			
125	-120	2	0.00015	18.3	19.7	17.0	19.7	0.861	123.4	NO DAMAGE			
125 125	-125 -135	3 1	0.00022 0.00007	18.3 18.3	19.7 19.7	16.9 16.8	19.7 19.7	0.859	120.9 116.2	NO DAMAGE NO DAMAGE			
125	-135 -145	1	0.00007	18.3	19.7	16.7	19.7	0.853	111.9	NO DAMAGE			
125	-155	1	0.00007	18.3	19.7	16.6	19.7	0.842	107.9	NO DAMAGE			
125 125	-165 -190	2	0.00015 0.00007	18.3 18.3	19.7 19.7	16.5 16.2	19.7 19.7	0.836 0.822	104.2 95.9	NO DAMAGE NO DAMAGE			
120	-190	1	0.00007	16.3	18.7	10.2	18.7	0.622	80.8	NO DAMAGE			

Page G.1-102 February 2, 2018

					Dyna	mic		_		to			450.0
Max	Min	No.	α Pct	Static Stress	Stre Max	Min	Max Adjusted	Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
125 125	-205 -225	3 2	0.00022 0.00015	18.3	19.7 19.7	16.0 15.8	19.7 19.7	0.813	91.6 86.3	NO DAMAGE NO DAMAGE			
120	110	2455	0.18303	18.3	19.6	19.5	19.6	0.994	3013.5	NO DAMAGE			
120	105	678	0.05055	18.3	19.6	19.5	19.6	0.991	2009.0	NO DAMAGE			
120 120	100 95	1649 334	0.12294 0.02490	18.3 18.3	19.6 19.6	19.4 19.4	19.6 19.6	0.989	1506.8 1205.4	NO DAMAGE NO DAMAGE			
120	90	851	0.06344	18.3	19.6	19.3	19.6	0.983	1004.5	NO DAMAGE			
120 120	85 80	101 398	0.00753 0.02967	18.3 18.3	19.6 19.6	19.2 19.2	19.6 19.6	0.980 0.977	861.0 753.4	NO DAMAGE NO DAMAGE			
120	75	38	0.00283	18.3	19.6	19.1	19.6	0.974	669.7	NO DAMAGE			
120 120	70	202 15	0.01506 0.00112	18.3 18.3	19.6 19.6	19.1 19.0	19.6	0.972 0.969	602.7 547.9	NO DAMAGE			
120	65 60	115	0.00112	18.3	19.6	19.0	19.6 19.6	0.966	502.3	NO DAMAGE NO DAMAGE			
120	55	12	0.00089	18.3	19.6	18.9	19.6	0.963	463.6	NO DAMAGE			
120 120	50 45	63 2	0.00470 0.00015	18.3 18.3	19.6 19.6	18.9 18.8	19.6 19.6	0.960 0.957	430.5 401.8	NO DAMAGE NO DAMAGE			
120	40	37	0.00276	18.3	19.6	18.7	19.6	0.955	376.7	NO DAMAGE			
120 120	35 30	3 27	0.00022 0.00201	18.3 18.3	19.6 19.6	18.7 18.6	19.6 19.6	0.952	354.5 334.8	NO DAMAGE NO DAMAGE			
120	25	3	0.00022	18.3	19.6	18.6	19.6	0.946	317.2	NO DAMAGE			
120	20	15	0.00112	18.3	19.6	18.5	19.6	0.943	301.4	NO DAMAGE			
120 120	15 10	1 13	0.00007 0.00097	18.3 18.3	19.6 19.6	18.5 18.4	19.6 19.6	0.940	287.0 274.0	NO DAMAGE NO DAMAGE			
120	5	5	0.00037	18.3	19.6	18.4	19.6	0.935	262.0	NO DAMAGE			
120 120	0 -5	23 4	0.00171 0.00030	18.3 18.3	19.6 19.6	18.3 18.2	19.6 19.6	0.932	251.1 241.1	NO DAMAGE NO DAMAGE			
120	-10	19	0.00142	18.3	19.6	18.2	19.6	0.926	231.8	NO DAMAGE			
120	-20	3	0.00022	18.3	19.6	18.1	19.6	0.921	215.3	NO DAMAGE			
120 120	-30 -40	7 1	0.00052 0.00007	18.3 18.3	19.6 19.6	18.0 17.9	19.6 19.6	0.915 0.909	200.9 188.3	NO DAMAGE NO DAMAGE			
120	-45	1	0.00007	18.3	19.6	17.8	19.6	0.906	182.6	NO DAMAGE			
120 120	-50 -55	6 1	0.00045	18.3 18.3	19.6 19.6	17.7 17.7	19.6 19.6	0.904	177.3 172.2	NO DAMAGE NO DAMAGE			
120	-60	3	0.00022	18.3	19.6	17.6	19.6	0.898	167.4	NO DAMAGE			
120	-70	9	0.00067	18.3	19.6	17.5	19.6	0.892	158.6	NO DAMAGE			
120 120	-80 -85	5 1	0.00037 0.00007	18.3 18.3	19.6 19.6	17.4 17.4	19.6 19.6	0.887 0.884	150.7 147.0	NO DAMAGE NO DAMAGE			
120	-90	8	0.00060	18.3	19.6	17.3	19.6	0.881	143.5	NO DAMAGE			
120 120	-100 -110	6 7	0.00045 0.00052	18.3 18.3	19.6 19.6	17.2 17.1	19.6 19.6	0.875	137.0 131.0	NO DAMAGE NO DAMAGE			
120	-115	i	0.00007	18.3	19.6	17.0	19.6	0.867	128.2	NO DAMAGE			
120 120	-120 -130	3 2	0.00022	18.3	19.6	17.0	19.6	0.864	125.6	NO DAMAGE			
120	-135	1	0.00015 0.00007	18.3 18.3	19.6 19.6	16.9 16.8	19.6 19.6	0.858 0.855	120.5 118.2	NO DAMAGE NO DAMAGE			
120	-140	5	0.00037	18.3	19.6	16.7	19.6	0.852	115.9	NO DAMAGE			
120 120	-145 -150	1 2	0.00007 0.00015	18.3 18.3	19.6 19.6	16.7 16.6	19.6 19.6	0.850 0.847	113.7 111.6	NO DAMAGE NO DAMAGE			
120	-155	1	0.00007	18.3	19.6	16.6	19.6	0.844	109.6	NO DAMAGE			
120 120	-160 -180	2	0.00015 0.00015	18.3 18.3	19.6 19.6	16.5 16.3	19.6 19.6	0.841	107.6 100.5	NO DAMAGE NO DAMAGE			
120	-235	1	0.00007	18.3	19.6	15.7	19.6	0.799	84.9	NO DAMAGE			
115	105	4703	0.35062	18.3	19.6	19.5	19.6	0.994	3005.0	NO DAMAGE			
115 115	100 95	908 3914	0.06769 0.29180	18.3 18.3	19.6 19.6	19.4 19.4	19.6 19.6	0.991	2003.3 1502.5	NO DAMAGE NO DAMAGE			
115	90	307	0.02289	18.3	19.6	19.3	19.6	0.986	1202.0	NO DAMAGE			
115 115	85 80	2643 181	0.19704 0.01349	18.3 18.3	19.6 19.6	19.2 19.2	19.6 19.6	0.983	1001.7 858.6	NO DAMAGE NO DAMAGE			
115	75	676	0.05040	18.3	19.6	19.1	19.6	0.977	751.2	NO DAMAGE			
115 115	70 65	90 334	0.00671 0.02490	18.3 18.3	19.6 19.6	19.1 19.0	19.6 19.6	0.974 0.972	667.8 601.0	NO DAMAGE NO DAMAGE			
115	60	32	0.02490	18.3	19.6	19.0	19.6	0.969	546.4	NO DAMAGE			
115	55	129	0.00962	18.3	19.6	18.9	19.6	0.966	500.8	NO DAMAGE			
115 115	50 45	13 39	0.00097 0.00291	18.3 18.3	19.6 19.6	18.9 18.8	19.6 19.6	0.963	462.3 429.3	NO DAMAGE NO DAMAGE			
115	40	5	0.00037	18.3	19.6	18.7	19.6	0.957	400.7	NO DAMAGE			
115 115	35 30	21 1	0.00157 0.00007	18.3 18.3	19.6 19.6	18.7 18.6	19.6 19.6	0.954 0.952	375.6 353.5	NO DAMAGE NO DAMAGE			
115	25	10	0.00075	18.3	19.6	18.6	19.6	0.949	333.9	NO DAMAGE			
115 115	20 15	2 11	0.00015 0.00082	18.3 18.3	19.6 19.6	18.5 18.5	19.6 19.6	0.946 0.943	316.3 300.5	NO DAMAGE NO DAMAGE			
115	5	18	0.00134	18.3	19.6	18.4	19.6	0.937	273.2	NO DAMAGE			
115	0	4 5	0.00030	18.3	19.6	18.3	19.6	0.935	261.3	NO DAMAGE			
115 115	-5 -15	5 2	0.00037 0.00015	18.3 18.3	19.6 19.6	18.2 18.1	19.6 19.6	0.932	250.4 231.2	NO DAMAGE NO DAMAGE			
115	-20	3	0.00022	18.3	19.6	18.1	19.6	0.923	222.6	NO DAMAGE			
115 115	-25 -35	2 2	0.00015 0.00015	18.3 18.3	19.6 19.6	18.0 17.9	19.6 19.6	0.920 0.915	214.6 200.3	NO DAMAGE NO DAMAGE			
115	-40	2	0.00015	18.3	19.6	17.9	19.6	0.912	193.9	NO DAMAGE			
115	-45 -50	2	0.00015 0.00007	18.3 18.3	19.6 19.6	17.8 17.7	19.6 19.6	0.909	187.8 182.1	NO DAMAGE NO DAMAGE			
115 115	-5U -55	1	0.00007	18.3	19.6	17.7	19.6 19.6	0.906	182.1 176.8	NO DAMAGE			
115	-65	2	0.00015	18.3	19.6	17.6	19.6	0.898	166.9	NO DAMAGE			
115 115	-75 -85	2 2	0.00015 0.00015	18.3 18.3	19.6 19.6	17.5 17.4	19.6 19.6	0.892 0.886	158.2 150.2	NO DAMAGE NO DAMAGE			
115	-95	3	0.00022	18.3	19.6	17.2	19.6	0.880	143.1	NO DAMAGE			
115 115	-105 -115	4 2	0.00030 0.00015	18.3 18.3	19.6 19.6	17.1 17.0	19.6 19.6	0.875 0.869	136.6 130.7	NO DAMAGE NO DAMAGE			
115	-115	3	0.00013	18.3	19.6	16.9	19.6	0.863	125.2	NO DAMAGE			
115 115	-135 -155	1	0.00007 0.00007	18.3 18.3	19.6 19.6	16.8 16.6	19.6 19.6	0.858 0.846	120.2 111.3	NO DAMAGE NO DAMAGE			
115	-155 -170	1	0.00007	18.3	19.6	16.4	19.6	0.838	111.3	NO DAMAGE			
	-												

Page G.1-103 February 2, 2018

					Dyna	ımic				to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
115	-190	1	0.00007	18.3	19.6	16.2	19.6	0.826	98.5	NO DAMAGE	UN	rielu stiess	DU KSI
115	-195	1	0.00007	18.3	19.6	16.1	19.6	0.824	96.9	NO DAMAGE			
115 110	-215 100	3541	0.00007 0.26399	18.3 18.3	19.6 19.5	15.9 19.4	19.6 19.5	0.812 0.994	91.1 2996.4	NO DAMAGE NO DAMAGE			
110	95	922	0.06874	18.3	19.5	19.4	19.5	0.991	1997.6	NO DAMAGE			
110 110	90 85	2060 527	0.15358 0.03929	18.3 18.3	19.5 19.5	19.3 19.2	19.5 19.5	0.989	1498.2 1198.6	NO DAMAGE NO DAMAGE			
110	80	1233	0.09192	18.3	19.5	19.2	19.5	0.983	998.8	NO DAMAGE			
110 110	75 70	313 677	0.02334 0.05047	18.3 18.3	19.5 19.5	19.1 19.1	19.5 19.5	0.980 0.977	856.1 749.1	NO DAMAGE NO DAMAGE			
110	65	107	0.00798	18.3	19.5	19.0	19.5	0.974	665.9	NO DAMAGE			
110 110	60 55	289 26	0.02155	18.3 18.3	19.5 19.5	19.0 18.9	19.5 19.5	0.971	599.3 544.8	NO DAMAGE NO DAMAGE			
110	50 50	26 126	0.00194	18.3	19.5	18.9	19.5	0.966	499.4	NO DAMAGE			
110	45	5	0.00037	18.3	19.5	18.8	19.5	0.963	461.0	NO DAMAGE			
110 110	40 35	74 6	0.00552 0.00045	18.3 18.3	19.5 19.5	18.7 18.7	19.5 19.5	0.960	428.1 399.5	NO DAMAGE NO DAMAGE			
110	30	32	0.00239	18.3	19.5	18.6	19.5	0.954	374.6	NO DAMAGE			
110 110	25 20	2 28	0.00015 0.00209	18.3 18.3	19.5 19.5	18.6 18.5	19.5 19.5	0.951 0.949	352.5 332.9	NO DAMAGE NO DAMAGE			
110	15	1	0.00007	18.3	19.5	18.5	19.5	0.946	315.4	NO DAMAGE			
110 110	10 5	26 1	0.00194 0.00007	18.3 18.3	19.5 19.5	18.4 18.4	19.5 19.5	0.943 0.940	299.6 285.4	NO DAMAGE NO DAMAGE			
110	0	47	0.00350	18.3	19.5	18.3	19.5	0.937	272.4	NO DAMAGE			
110 110	-5	2	0.00015	18.3	19.5	18.2	19.5	0.934	260.6	NO DAMAGE			
110	-10 -20	22 4	0.00164 0.00030	18.3 18.3	19.5 19.5	18.2 18.1	19.5 19.5	0.932	249.7 230.5	NO DAMAGE NO DAMAGE			
110	-30	5	0.00037	18.3	19.5	18.0	19.5	0.920	214.0	NO DAMAGE			
110	-35 -40	1 2	0.00007	18.3 18.3	19.5 19.5	17.9 17.9	19.5 19.5	0.917	206.7 199.8	NO DAMAGE NO DAMAGE			
110	-50	5	0.00037	18.3	19.5	17.7	19.5	0.909	187.3	NO DAMAGE			
110 110	-60 -70	6 6	0.00045 0.00045	18.3 18.3	19.5 19.5	17.6 17.5	19.5 19.5	0.903 0.897	176.3 166.5	NO DAMAGE NO DAMAGE			
110	-80	6	0.00045	18.3	19.5	17.4	19.5	0.892	157.7	NO DAMAGE			
110 110	-90 -100	8	0.00060 0.00067	18.3 18.3	19.5 19.5	17.3 17.2	19.5 19.5	0.886	149.8 142.7	NO DAMAGE NO DAMAGE			
110	-110	6	0.00045	18.3	19.5	17.1	19.5	0.880	136.2	NO DAMAGE			
110	-120	5	0.00037	18.3	19.5	17.0	19.5	0.869	130.3	NO DAMAGE			
110 110	-130 -135	1	0.00007 0.00007	18.3 18.3	19.5 19.5	16.9 16.8	19.5 19.5	0.863	124.9 122.3	NO DAMAGE NO DAMAGE			
110	-140	2	0.00015	18.3	19.5	16.7	19.5	0.857	119.9	NO DAMAGE			
110 110	-150 -160	2 1	0.00015 0.00007	18.3 18.3	19.5 19.5	16.6 16.5	19.5 19.5	0.852 0.846	115.2 111.0	NO DAMAGE NO DAMAGE			
110	-170	i	0.00007	18.3	19.5	16.4	19.5	0.840	107.0	NO DAMAGE			
110 110	-180 -210	1	0.00007 0.00007	18.3 18.3	19.5 19.5	16.3 16.0	19.5 19.5	0.835 0.817	103.3 93.6	NO DAMAGE NO DAMAGE			
105	95	10845	0.80852	18.3	19.5	19.4	19.5	0.994	2987.9	NO DAMAGE			
105 105	90 85	1293 5514	0.09640 0.41108	18.3 18.3	19.5 19.5	19.3 19.2	19.5 19.5	0.991 0.989	1991.9 1493.9	NO DAMAGE NO DAMAGE			
105	80	765	0.05703	18.3	19.5	19.2	19.5	0.986	1195.2	NO DAMAGE			
105	75	2419 358	0.18034	18.3	19.5	19.1	19.5	0.983	996.0	NO DAMAGE			
105 105	70 65	920	0.02669 0.06859	18.3 18.3	19.5 19.5	19.1 19.0	19.5 19.5	0.980 0.977	853.7 747.0	NO DAMAGE NO DAMAGE			
105	60	78	0.00582	18.3	19.5	19.0	19.5	0.974	664.0	NO DAMAGE			
105 105	55 50	262 22	0.01953 0.00164	18.3 18.3	19.5 19.5	18.9 18.9	19.5 19.5	0.971	597.6 543.3	NO DAMAGE NO DAMAGE			
105	45	100	0.00746	18.3	19.5	18.8	19.5	0.966	498.0	NO DAMAGE			
105 105	40 35	4 54	0.00030 0.00403	18.3 18.3	19.5 19.5	18.7 18.7	19.5 19.5	0.963	459.7 426.8	NO DAMAGE NO DAMAGE			
105	30	1	0.00007	18.3	19.5	18.6	19.5	0.957	398.4	NO DAMAGE			
105 105	25 20	20 4	0.00149 0.00030	18.3 18.3	19.5 19.5	18.6 18.5	19.5 19.5	0.954 0.951	373.5 351.5	NO DAMAGE NO DAMAGE			
105	15	18	0.00134	18.3	19.5	18.5	19.5	0.948	332.0	NO DAMAGE			
105 105	10 5	1 22	0.00007 0.00164	18.3 18.3	19.5 19.5	18.4 18.4	19.5 19.5	0.946 0.943	314.5 298.8	NO DAMAGE NO DAMAGE			
105	ő	2	0.00015	18.3	19.5	18.3	19.5	0.940	284.6	NO DAMAGE			
105 105	-5 -10	4	0.00030	18.3 18.3	19.5 19.5	18.2 18.2	19.5 19.5	0.937	271.6 259.8	NO DAMAGE NO DAMAGE			
105	-15	3	0.00007 0.00022	18.3	19.5	18.1	19.5	0.931	249.0	NO DAMAGE			
105	-20	1 2	0.00007	18.3	19.5	18.1	19.5	0.928	239.0 229.8	NO DAMAGE			
105 105	-25 -35	4	0.00015	18.3 18.3	19.5 19.5	18.0 17.9	19.5 19.5	0.926	213.4	NO DAMAGE NO DAMAGE			
105	-45	3	0.00022	18.3	19.5	17.8	19.5	0.914	199.2	NO DAMAGE			
105 105	-55 -65	1	0.00007 0.00007	18.3 18.3	19.5 19.5	17.7 17.6	19.5 19.5	0.908	186.7 175.8	NO DAMAGE NO DAMAGE			
105	-75	2	0.00015	18.3	19.5	17.5	19.5	0.897	166.0	NO DAMAGE			
105 105	-85 -95	6	0.00045 0.00045	18.3 18.3	19.5 19.5	17.4 17.2	19.5 19.5	0.891	157.3 149.4	NO DAMAGE NO DAMAGE			
105	-105	3	0.00022	18.3	19.5	17.1	19.5	0.880	142.3	NO DAMAGE			
105 105	-110 -120	2 2	0.00015 0.00015	18.3 18.3	19.5 19.5	17.1 17.0	19.5 19.5	0.877	139.0 132.8	NO DAMAGE NO DAMAGE			
105	-125	1	0.00007	18.3	19.5	16.9	19.5	0.868	129.9	NO DAMAGE			
105 105	-145 -165	3 1	0.00022 0.00007	18.3 18.3	19.5 19.5	16.7 16.5	19.5 19.5	0.857 0.845	119.5 110.7	NO DAMAGE NO DAMAGE			
105	-165 -185	1	0.00007	18.3	19.5 19.5	16.5	19.5	0.834	103.0	NO DAMAGE			
105	-195	1	0.00007	18.3	19.5	16.1	19.5	0.828	99.6	NO DAMAGE			
105 105	-225 -255	1	0.00007 0.00007	18.3 18.3	19.5 19.5	15.8 15.5	19.5 19.5	0.811 0.794	90.5 83.0	NO DAMAGE NO DAMAGE			
100	90	4690	0.34965	18.3	19.4	19.3	19.4	0.994	2979.3	NO DAMAGE			
100 100	85 80	1557 3257	0.11608 0.24282	18.3 18.3	19.4 19.4	19.2 19.2	19.4 19.4	0.991	1986.2 1489.7	NO DAMAGE NO DAMAGE			
. 50		0201	0.27202	. 5.5	10.4	10.2	10.4	0.000	1-100.1	. TO DAMAGE			

Page G.1-104 February 2, 2018

					Dyna					to		
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	a/N	53.8 D ksi
100	75	901	0.06717	18.3	19.4	19.1	19.4	0.986	1191.7	NO DAMAGE		
100 100	70 65	1551 248	0.11563 0.01849	18.3 18.3	19.4 19.4	19.1 19.0	19.4 19.4	0.983	993.1 851.2	NO DAMAGE NO DAMAGE		
100	60	739	0.05509	18.3	19.4	19.0	19.4	0.977	744.8	NO DAMAGE		
100 100	55 50	63 318	0.00470 0.02371	18.3 18.3	19.4 19.4	18.9 18.9	19.4 19.4	0.974 0.971	662.1 595.9	NO DAMAGE NO DAMAGE		
100	45	22	0.00164	18.3	19.4	18.8	19.4	0.968	541.7	NO DAMAGE		
100 100	40	168 5	0.01252	18.3	19.4 19.4	18.7 18.7	19.4	0.966	496.6 458.4	NO DAMAGE		
100	35 30	90	0.00037 0.00671	18.3 18.3	19.4	18.7	19.4 19.4	0.963	458.4 425.6	NO DAMAGE NO DAMAGE		
100	25	11	0.00082	18.3	19.4	18.6	19.4	0.957	397.2	NO DAMAGE		
100 100	20 15	55 1	0.00410 0.00007	18.3 18.3	19.4 19.4	18.5 18.5	19.4 19.4	0.954 0.951	372.4 350.5	NO DAMAGE NO DAMAGE		
100	10	42	0.00313	18.3	19.4	18.4	19.4	0.948	331.0	NO DAMAGE		
100 100	5 0	2 58	0.00015 0.00432	18.3 18.3	19.4 19.4	18.4 18.3	19.4 19.4	0.945 0.943	313.6 297.9	NO DAMAGE NO DAMAGE		
100	-5	1	0.00007	18.3	19.4	18.3	19.4	0.943	283.7	NO DAMAGE		
100	-10	32	0.00239	18.3	19.4	18.2	19.4	0.937	270.8	NO DAMAGE		
100 100	-15 -20	1 5	0.00007 0.00037	18.3 18.3	19.4 19.4	18.1 18.1	19.4 19.4	0.934	259.1 248.3	NO DAMAGE NO DAMAGE		
100	-30	7	0.00052	18.3	19.4	18.0	19.4	0.925	229.2	NO DAMAGE		
100 100	-40 -45	2 1	0.00015 0.00007	18.3 18.3	19.4 19.4	17.9 17.8	19.4 19.4	0.920 0.917	212.8 205.5	NO DAMAGE NO DAMAGE		
100	-50	7	0.00052	18.3	19.4	17.7	19.4	0.914	198.6	NO DAMAGE		
100 100	-60	8	0.00060	18.3	19.4 19.4	17.6	19.4	0.908	186.2	NO DAMAGE		
100	-70 -80	3 2	0.00022 0.00015	18.3 18.3	19.4	17.5 17.4	19.4 19.4	0.802	175.3 165.5	NO DAMAGE NO DAMAGE		
100	-90	9	0.00067	18.3	19.4	17.3	19.4	0.891	156.8	NO DAMAGE		
100 100	-100 -110	4	0.00030 0.00022	18.3 18.3	19.4 19.4	17.2	19.4 19.4	0.885	149.0 141.9	NO DAMAGE NO DAMAGE		
100	-120	1	0.00007	18.3	19.4	17.0	19.4	0.874	135.4	NO DAMAGE		
100 100	-125 -130	1 3	0.00007 0.00022	18.3 18.3	19.4 19.4	16.9 16.9	19.4 19.4	0.871 0.868	132.4 129.5	NO DAMAGE NO DAMAGE		
100	-140	2	0.00022	18.3	19.4	16.7	19.4	0.862	129.5	NO DAMAGE		
100	-150	2	0.00015	18.3	19.4	16.6	19.4	0.857	119.2	NO DAMAGE		
100 100	-160 -180	1 2	0.00007 0.00015	18.3 18.3	19.4 19.4	16.5 16.3	19.4 19.4	0.851	114.6 106.4	NO DAMAGE NO DAMAGE		
100	-190	2	0.00015	18.3	19.4	16.2	19.4	0.834	102.7	NO DAMAGE		
100 100	-200 -205	3	0.00022 0.00007	18.3 18.3	19.4 19.4	16.1 16.0	19.4 19.4	0.828 0.825	99.3 97.7	NO DAMAGE NO DAMAGE		
100	-210	i	0.00007	18.3	19.4	16.0	19.4	0.822	96.1	NO DAMAGE		
95 95	85	7900 1725	0.58897	18.3	19.4 19.4	19.2 19.2	19.4	0.994	2970.8 1980.5	NO DAMAGE		
95 95	80 75	6072	0.12860 0.45268	18.3 18.3	19.4	19.2	19.4 19.4	0.988	1485.4	NO DAMAGE NO DAMAGE		
95	70	643	0.04794	18.3	19.4	19.1	19.4	0.986	1188.3	NO DAMAGE		
95 95	65 60	2494 216	0.18593 0.01610	18.3 18.3	19.4 19.4	19.0 19.0	19.4 19.4	0.983	990.3 848.8	NO DAMAGE NO DAMAGE		
95	55	984	0.07336	18.3	19.4	18.9	19.4	0.977	742.7	NO DAMAGE		
95 95	50 45	63 319	0.00470 0.02378	18.3 18.3	19.4 19.4	18.9 18.8	19.4 19.4	0.974	660.2 594.2	NO DAMAGE NO DAMAGE		
95	40	22	0.02378	18.3	19.4	18.7	19.4	0.968	540.1	NO DAMAGE		
95	35	103	0.00768	18.3	19.4	18.7	19.4	0.965	495.1	NO DAMAGE		
95 95	30 25	19 38	0.00142 0.00283	18.3 18.3	19.4 19.4	18.6 18.6	19.4 19.4	0.963	457.0 424.4	NO DAMAGE NO DAMAGE		
95	20	2	0.00015	18.3	19.4	18.5	19.4	0.957	396.1	NO DAMAGE		
95 95	15 5	11 28	0.00082 0.00209	18.3 18.3	19.4 19.4	18.5 18.4	19.4 19.4	0.954 0.948	371.3 330.1	NO DAMAGE NO DAMAGE		
95	0	7	0.00052	18.3	19.4	18.3	19.4	0.945	312.7	NO DAMAGE		
95 95	-5 -15	5 1	0.00037 0.00007	18.3 18.3	19.4 19.4	18.2 18.1	19.4 19.4	0.942	297.1 270.1	NO DAMAGE NO DAMAGE		
95	-25	2	0.00007	18.3	19.4	18.0	19.4	0.931	247.6	NO DAMAGE		
95 95	-35 -45	3 1	0.00022 0.00007	18.3	19.4 19.4	17.9 17.8	19.4 19.4	0.925 0.919	228.5 212.2	NO DAMAGE		
95	-45 -55	1	0.00007	18.3	19.4	17.7	19.4	0.914	198.1	NO DAMAGE		
95	-70	1	0.00007	18.3	19.4	17.5	19.4	0.905	180.0	NO DAMAGE		
95 95	-75 -85	6 5	0.00045 0.00037	18.3 18.3	19.4 19.4	17.5 17.4	19.4 19.4	0.902 0.896	174.8 165.0	NO DAMAGE NO DAMAGE		
95	-95	4	0.00030	18.3	19.4	17.2	19.4	0.891	156.4	NO DAMAGE		
95 95	-100 -105	1 5	0.00007	18.3 18.3	19.4 19.4	17.2 17.1	19.4 19.4	0.888	152.3 148.5	NO DAMAGE NO DAMAGE		
95	-110	3	0.00022	18.3	19.4	17.1	19.4	0.882	144.9	NO DAMAGE		
95 95	-115 -125	3 1	0.00022	18.3 18.3	19.4 19.4	17.0 16.9	19.4 19.4	0.879	141.5 135.0	NO DAMAGE NO DAMAGE		
95 95	-125	2	0.00007 0.00015	18.3	19.4	16.8	19.4	0.868	129.2	NO DAMAGE		
95	-140	1	0.00007	18.3	19.4	16.7	19.4	0.865	126.4	NO DAMAGE		
95 95	-145 -165	1 3	0.00007 0.00022	18.3 18.3	19.4 19.4	16.7 16.5	19.4 19.4	0.862	123.8 114.3	NO DAMAGE NO DAMAGE		
95	-225	1	0.00007	18.3	19.4	15.8	19.4	0.816	92.8	NO DAMAGE		
95 90	-280 80	1 6066	0.00007 0.45224	18.3	19.4 19.3	15.2 19.2	19.4 19.3	0.784 0.994	79.2 2962 2	NO DAMAGE		
90	75	1408	0.10497	18.3	19.3	19.1	19.3	0.991	1974.8	NO DAMAGE		
90	70	3591	0.26772	18.3	19.3	19.1	19.3	0.988	1481.1	NO DAMAGE		
90 90	65 60	591 1593	0.04406 0.11876	18.3 18.3	19.3 19.3	19.0 19.0	19.3 19.3	0.986	1184.9 987.4	NO DAMAGE NO DAMAGE		
90	55	275	0.02050	18.3	19.3	18.9	19.3	0.980	846.4	NO DAMAGE		
90 90	50 45	789 83	0.05882 0.00619	18.3 18.3	19.3 19.3	18.9 18.8	19.3 19.3	0.977 0.974	740.6 658.3	NO DAMAGE NO DAMAGE		
90	40	470	0.03504	18.3	19.3	18.7	19.3	0.971	592.4	NO DAMAGE		
90 90	35 30	20 188	0.00149 0.01402	18.3 18.3	19.3 19.3	18.7 18.6	19.3 19.3	0.968 0.965	538.6 493.7	NO DAMAGE NO DAMAGE		
90 90	30 25	188	0.01402	18.3	19.3	18.6	19.3	0.965	493.7 455.7	NO DAMAGE		

Page G.1-105 February 2, 2018

					Dyna	mic				to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ss Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
90	20	113	0.00842	18.3	19.3	18.5	19.3	0.960	423.2	NO DAMAGE	GNV	Tield stress	DU KSI
90	15	4	0.00030	18.3	19.3	18.5	19.3	0.957	395.0	NO DAMAGE			
90 90	10 5	68 2	0.00507 0.00015	18.3	19.3 19.3	18.4 18.4	19.3 19.3	0.954 0.951	370.3 348.5	NO DAMAGE NO DAMAGE			
90	0	78	0.00582	18.3	19.3	18.3	19.3	0.948	329.1	NO DAMAGE			
90	-5	2	0.00015	18.3	19.3	18.2	19.3	0.945	311.8	NO DAMAGE			
90 90	-10 -15	32 1	0.00239	18.3	19.3 19.3	18.2 18.1	19.3 19.3	0.942	296.2 282.1	NO DAMAGE NO DAMAGE			
90	-20	4	0.00007 0.00030	18.3 18.3	19.3	18.1	19.3	0.939	269.3	NO DAMAGE			
90	-30	4	0.00030	18.3	19.3	18.0	19.3	0.931	246.9	NO DAMAGE			
90 90	-40 -45	6 1	0.00045	18.3 18.3	19.3 19.3	17.9 17.8	19.3 19.3	0.925	227.9 219.4	NO DAMAGE NO DAMAGE			
90	-45 -50	7	0.00007	18.3	19.3	17.8	19.3	0.922	211.6	NO DAMAGE			
90	-60	14	0.00104	18.3	19.3	17.6	19.3	0.913	197.5	NO DAMAGE			
90	-70	8	0.00060	18.3	19.3	17.5	19.3	0.908	185.1	NO DAMAGE			
90 90	-80 -90	13 6	0.00097 0.00045	18.3 18.3	19.3 19.3	17.4 17.3	19.3 19.3	0.902	174.2 164.6	NO DAMAGE NO DAMAGE			
90	-95	1	0.00007	18.3	19.3	17.2	19.3	0.893	160.1	NO DAMAGE			
90 90	-100 -110	7 2	0.00052 0.00015	18.3 18.3	19.3 19.3	17.2 17.1	19.3 19.3	0.890	155.9 148.1	NO DAMAGE NO DAMAGE			
90	-115	2	0.00015	18.3	19.3	17.1	19.3	0.885	148.1	NO DAMAGE			
90	-120	3	0.00022	18.3	19.3	17.0	19.3	0.879	141.1	NO DAMAGE			
90	-140	2	0.00015	18.3	19.3	16.7	19.3	0.867	128.8	NO DAMAGE			
90 90	-145 -150	1 2	0.00007 0.00015	18.3 18.3	19.3 19.3	16.7 16.6	19.3 19.3	0.864	126.1 123.4	NO DAMAGE NO DAMAGE			
90	-160	3	0.00022	18.3	19.3	16.5	19.3	0.856	118.5	NO DAMAGE			
90	-170	1	0.00007	18.3	19.3	16.4	19.3	0.850	113.9	NO DAMAGE			
90 90	-180 -190	1	0.00007	18.3 18.3	19.3 19.3	16.3 16.2	19.3 19.3	0.844	109.7 105.8	NO DAMAGE NO DAMAGE			
85	75	8202	0.61148	18.3	19.2	19.1	19.2	0.994	2953.7	NO DAMAGE			
85	70	1902	0.14180	18.3	19.2	19.1	19.2	0.991	1969.1	NO DAMAGE			
85 85	65 60	6590 711	0.49130 0.05301	18.3 18.3	19.2 19.2	19.0 19.0	19.2 19.2	0.988	1476.8 1181.5	NO DAMAGE NO DAMAGE			
85	55	3052	0.22754	18.3	19.2	18.9	19.2	0.983	984.6	NO DAMAGE			
85	50	292	0.02177	18.3	19.2	18.9	19.2	0.980	843.9	NO DAMAGE			
85 85	45 40	792 65	0.05905 0.00485	18.3 18.3	19.2 19.2	18.8	19.2 19.2	0.977	738.4 656.4	NO DAMAGE NO DAMAGE			
85	35	260	0.01938	18.3	19.2	18.7	19.2	0.971	590.7	NO DAMAGE			
85	30	14	0.00104	18.3	19.2	18.6	19.2	0.968	537.0	NO DAMAGE			
85 85	25 20	11.1 1	0.00828 0.00007	18.3 18.3	19.2 19.2	18.6 18.5	19.2 19.2	0.965 0.962	492.3 454.4	NO DAMAGE NO DAMAGE			
85	15	71	0.00529	18.3	19.2	18.5	19.2	0.959	422.0	NO DAMAGE			
85	5	72	0.00537	18.3	19.2	18.4	19.2	0.954	369.2	NO DAMAGE			
85	0	6	0.00045 0.00045	18.3	19.2	18.3	19.2	0.951	347.5	NO DAMAGE			
85 85	-5 -15	6 5	0.00045	18.3 18.3	19.2 19.2	18.2 18.1	19.2 19.2	0.948 0.942	328.2 295.4	NO DAMAGE NO DAMAGE			
85	-20	1	0.00007	18.3	19.2	18.1	19.2	0.939	281.3	NO DAMAGE			
85	-25	2	0.00015	18.3	19.2	18.0	19.2	0.936	268.5	NO DAMAGE			
85 85	-35 -45	2 6	0.00015 0.00045	18.3 18.3	19.2 19.2	17.9 17.8	19.2 19.2	0.931 0.925	246.1 227.2	NO DAMAGE NO DAMAGE			
85	-50	2	0.00015	18.3	19.2	17.7	19.2	0.922	218.8	NO DAMAGE			
85 85	-55 -65	2	0.00015 0.00030	18.3	19.2 19.2	17.7 17.6	19.2 19.2	0.919	211.0 196.9	NO DAMAGE NO DAMAGE			
85 85	-65 -70	4	0.00030	18.3 18.3	19.2	17.6	19.2	0.913	196.9	NO DAMAGE			
85	-75	5	0.00037	18.3	19.2	17.5	19.2	0.907	184.6	NO DAMAGE			
85	-85	4	0.00030	18.3	19.2	17.4	19.2	0.902	173.7	NO DAMAGE			
85 85	-90 -95	1 5	0.00007 0.00037	18.3 18.3	19.2 19.2	17.3 17.2	19.2 19.2	0.899	168.8 164.1	NO DAMAGE NO DAMAGE			
85	-100	1	0.00007	18.3	19.2	17.2	19.2	0.893	159.7	NO DAMAGE			
85	-105	3	0.00022	18.3	19.2	17.1	19.2	0.890	155.5	NO DAMAGE			
85 85	-110 -115	3 1	0.00022 0.00007	18.3 18.3	19.2 19.2	17.1 17.0	19.2 19.2	0.887	151.5 147.7	NO DAMAGE NO DAMAGE			
85	-135	i	0.00007	18.3	19.2	16.8	19.2	0.873	134.3	NO DAMAGE			
85 85	-145 -165	1	0.00007 0.00007	18.3 18.3	19.2 19.2	16.7 16.5	19.2 19.2	0.867 0.855	128.4	NO DAMAGE NO DAMAGE			
85	-105	1	0.00007	18.3	19.2	15.9	19.2	0.855	118.1 98.5	NO DAMAGE			
80	70	7655	0.57070	18.3	19.2	19.1	19.2	0.994	2945.1	NO DAMAGE			
80	65	1558	0.11615	18.3	19.2	19.0	19.2	0.991	1963.4	NO DAMAGE			
80 80	60 55	4677 681	0.34868 0.05077	18.3 18.3	19.2 19.2	19.0 18.9	19.2 19.2	0.988	1472.6 1178.1	NO DAMAGE NO DAMAGE			
80	50	2097	0.15634	18.3	19.2	18.9	19.2	0.983	981.7	NO DAMAGE			
80	45	222	0.01655	18.3	19.2	18.8	19.2	0.980	841.5	NO DAMAGE			
80 80	40 35	927 49	0.06911 0.00365	18.3 18.3	19.2 19.2	18.7 18.7	19.2 19.2	0.977 0.974	736.3 654.5	NO DAMAGE NO DAMAGE			
80	30	460	0.03429	18.3	19.2	18.6	19.2	0.971	589.0	NO DAMAGE			
80	25	16	0.00119	18.3	19.2	18.6	19.2	0.968	535.5	NO DAMAGE			
80	20 15	239 7	0.01782 0.00052	18.3 18.3	19.2 19.2	18.5 18.5	19.2 19.2	0.965	490.9 453.1	NO DAMAGE NO DAMAGE			
80	10	110	0.00820	18.3	19.2	18.4	19.2	0.959	420.7	NO DAMAGE			
80	5	4	0.00030	18.3	19.2	18.4	19.2	0.956	392.7	NO DAMAGE			
80 80	0 -5	129 2	0.00962 0.00015	18.3 18.3	19.2 19.2	18.3 18.2	19.2 19.2	0.954 0.951	368.1 346.5	NO DAMAGE NO DAMAGE			
80	-10	63	0.00470	18.3	19.2	18.2	19.2	0.948	327.2	NO DAMAGE			
80	-15	1	0.00007	18.3	19.2	18.1	19.2	0.945	310.0	NO DAMAGE			
80 80	-20 -25	4	0.00030 0.00007	18.3 18.3	19.2 19.2	18.1 18.0	19.2 19.2	0.942	294.5 280.5	NO DAMAGE NO DAMAGE			
80	-25	5	0.00037	18.3	19.2	18.0	19.2	0.936	267.7	NO DAMAGE			
80	-35	1	0.00007	18.3	19.2	17.9	19.2	0.933	256.1	NO DAMAGE			
80	-40 -50	7 15	0.00052 0.00112	18.3 18.3	19.2 19.2	17.9 17.7	19.2 19.2	0.930 0.925	245.4 226.5	NO DAMAGE NO DAMAGE			
80	-50 -55	1	0.00007	18.3	19.2	17.7	19.2	0.925	218.2	NO DAMAGE			
	-												

Page G.1-106 February 2, 2018

					Dyna	amic				to		
Max	Min	No.	α Pct	Static Stress	Stn Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	a/N	cycles per mile 153.8 Yield stress 60 ksi
80	-60	12	0.00089	18.3	19.2	17.6	19.2	0.919	210.4	NO DAMAGE	U/IV	Tield stress - Du Ksi
80 80	-70	10	0.00075 0.00007	18.3	19.2 19.2	17.5 17.5	19.2 19.2	0.913 0.910	196.3 190.0	NO DAMAGE NO DAMAGE		
80	-75 -80	1 13	0.00097	18.3 18.3	19.2	17.5	19.2	0.907	184.1	NO DAMAGE		
80	-85	1	0.00007	18.3	19.2	17.4	19.2	0.904	178.5	NO DAMAGE		
80 80	-90 -95	8 1	0.00060 0.00007	18.3 18.3	19.2 19.2	17.3 17.2	19.2 19.2	0.901 0.898	173.2 168.3	NO DAMAGE NO DAMAGE		
80	-100	4	0.00030	18.3	19.2	17.2	19.2	0.895	163.6	NO DAMAGE		
80 80	-110 -120	2 4	0.00015 0.00030	18.3 18.3	19.2 19.2	17.1 17.0	19.2 19.2	0.890 0.884	155.0 147.3	NO DAMAGE NO DAMAGE		
80	-130	1	0.00007	18.3	19.2	16.9	19.2	0.878	140.2	NO DAMAGE		
80	-140	1	0.00007	18.3	19.2 19.2	16.7	19.2	0.872	133.9	NO DAMAGE		
80 80	-150 -170	3 1	0.00022 0.00007	18.3 18.3	19.2	16.6 16.4	19.2 19.2	0.866 0.855	128.0 117.8	NO DAMAGE NO DAMAGE		
80	-220	1	0.00007	18.3	19.2	15.8	19.2	0.826	98.2	NO DAMAGE		
75 75	65 60	8167 1797	0.60887 0.13397	18.3 18.3	19.1 19.1	19.0 19.0	19.1 19.1	0.994	2936.6 1957.7	NO DAMAGE NO DAMAGE		
75	55	5826	0.43434	18.3	19.1	18.9	19.1	0.988	1468.3	NO DAMAGE		
75 75	50 45	731 2118	0.05450 0.15790	18.3 18.3	19.1 19.1	18.9 18.8	19.1 19.1	0.985	1174.6 978.9	NO DAMAGE NO DAMAGE		
75	40	220	0.01640	18.3	19.1	18.7	19.1	0.980	839.0	NO DAMAGE		
75	35	882	0.06576	18.3	19.1	18.7	19.1	0.977	734.1	NO DAMAGE		
75 75	30 25	70 369	0.00522 0.02751	18.3 18.3	19.1 19.1	18.6 18.6	19.1 19.1	0.974 0.971	652.6 587.3	NO DAMAGE NO DAMAGE		
75	20	19	0.00142	18.3	19.1	18.5	19.1	0.968	533.9	NO DAMAGE		
75 75	15 10	149 6	0.01111 0.00045	18.3 18.3	19.1 19.1	18.5 18.4	19.1 19.1	0.965 0.962	489.4 451.8	NO DAMAGE NO DAMAGE		
75	5	111	0.00828	18.3	19.1	18.4	19.1	0.959	419.5	NO DAMAGE		
75	0 -5	15 10	0.00112	18.3 18.3	19.1 19.1	18.3 18.2	19.1 19.1	0.956	391.5 367.1	NO DAMAGE NO DAMAGE		
75 75	-15	4	0.00075	18.3	19.1	18.1	19.1	0.933	326.3	NO DAMAGE		
75	-25	4	0.00030	18.3	19.1	18.0	19.1	0.942	293.7	NO DAMAGE		
75 75	-35 -45	1	0.00007 0.00007	18.3 18.3	19.1 19.1	17.9 17.8	19.1 19.1	0.936	267.0 244.7	NO DAMAGE NO DAMAGE		
75	-55	3	0.00022	18.3	19.1	17.7	19.1	0.924	225.9	NO DAMAGE		
75 75	-65 -75	3	0.00022 0.00022	18.3 18.3	19.1 19.1	17.6 17.5	19.1 19.1	0.918	209.8 195.8	NO DAMAGE NO DAMAGE		
75	-85	2	0.00015	18.3	19.1	17.4	19.1	0.907	183.5	NO DAMAGE		
75 75	-90 -95	1 2	0.00007 0.00015	18.3 18.3	19.1 19.1	17.3 17.2	19.1 19.1	0.904	178.0 172.7	NO DAMAGE NO DAMAGE		
75	-95 -105	2	0.00015	18.3	19.1	17.1	19.1	0.895	163.1	NO DAMAGE		
75	-110	1	0.00007	18.3	19.1	17.1	19.1	0.892	158.7	NO DAMAGE		
75 75	-115 -135	3 1	0.00022 0.00007	18.3 18.3	19.1 19.1	17.0 16.8	19.1 19.1	0.889	154.6 139.8	NO DAMAGE NO DAMAGE		
75	-145	1	0.00007	18.3	19.1	16.7	19.1	0.872	133.5	NO DAMAGE		
75 75	-160 -215	1 2	0.00007 0.00015	18.3 18.3	19.1 19.1	16.5 15.9	19.1 19.1	0.863 0.831	125.0 101.3	NO DAMAGE NO DAMAGE		
75	-235	1	0.00007	18.3	19.1	15.7	19.1	0.819	94.7	NO DAMAGE		
70 70	60 55	8507 1533	0.63422 0.11429	18.3 18.3	19.1 19.1	19.0 18.9	19.1 19.1	0.994 0.991	2928.0 1952.0	NO DAMAGE NO DAMAGE		
70	50	5273	0.39312	18.3	19.1	18.9	19.1	0.988	1464.0	NO DAMAGE		
70 70	45 40	696	0.05189	18.3	19.1	18.8	19.1	0.985	1171.2	NO DAMAGE NO DAMAGE		
70 70	40 35	2334 258	0.17401	18.3 18.3	19.1 19.1	18.7 18.7	19.1 19.1	0.982	976.0 836.6	NO DAMAGE		
70	30	1115	0.08313	18.3	19.1	18.6	19.1	0.977	732.0	NO DAMAGE		
70 70	25 20	49 562	0.00365 0.04190	18.3 18.3	19.1 19.1	18.6 18.5	19.1 19.1	0.974 0.971	650.7 585.6	NO DAMAGE NO DAMAGE		
70	15	11	0.00082	18.3	19.1	18.5	19.1	0.968	532.4	NO DAMAGE		
70 70	10 5	276 7	0.02058 0.00052	18.3 18.3	19.1 19.1	18.4 18.4	19.1 19.1	0.965 0.962	488.0 450.5	NO DAMAGE NO DAMAGE		
70	Ö	205	0.01528	18.3	19.1	18.3	19.1	0.959	418.3	NO DAMAGE		
70 70	-5 -1∏	3 102	0.00022 0.00760	18.3	19.1 19.1	18.2 18.2	19.1 19.1	0.956 0.953	390.4 366.0	NO DAMAGE NO DAMAGE		
70	-20	8	0.00060	18.3	19.1	18.1	19.1	0.953	325.3	NO DAMAGE		
70	-30	7	0.00052	18.3	19.1	18.0	19.1	0.942	292.8	NO DAMAGE		
70 70	-40 -45	11 2	0.00082 0.00015	18.3 18.3	19.1 19.1	17.9 17.8	19.1 19.1	0.936 0.933	266.2 254.6	NO DAMAGE NO DAMAGE		
70	-50	13	0.00097	18.3	19.1	17.7	19.1	0.930	244.0	NO DAMAGE		
70 70	-55 -60	1 15	0.00007 0.00112	18.3 18.3	19.1 19.1	17.7 17.6	19.1 19.1	0.927	234.2 225.2	NO DAMAGE NO DAMAGE		
70	-70	13	0.00097	18.3	19.1	17.5	19.1	0.918	209.1	NO DAMAGE		
70 70	-75 -80	1 7	0.00007 0.00052	18.3 18.3	19.1 19.1	17.5 17.4	19.1 19.1	0.915 0.912	201.9 195.2	NO DAMAGE NO DAMAGE		
70	-90	7	0.00052	18.3	19.1	17.3	19.1	0.907	183.0	NO DAMAGE		
70	-95 -100	3 7	0.00022 0.00052	18.3 18.3	19.1 19.1	17.2 17.2	19.1 19.1	0.904	177.5 172.2	NO DAMAGE NO DAMAGE		
70 70	-105	í	0.00052	18.3	19.1	17.2	19.1	0.898	167.3	NO DAMAGE		
70	-110	3	0.00022	18.3	19.1	17.1	19.1	0.895	162.7	NO DAMAGE		
70 70	-120 -125	1	0.00007 0.00007	18.3 18.3	19.1 19.1	17.0 16.9	19.1 19.1	0.889	154.1 150.2	NO DAMAGE NO DAMAGE		
70	-130	2	0.00015	18.3	19.1	16.9	19.1	0.883	146.4	NO DAMAGE		
70 70	-135 -140	1 4	0.00007 0.00030	18.3 18.3	19.1 19.1	16.8 16.7	19.1 19.1	0.880 0.877	142.8 139.4	NO DAMAGE NO DAMAGE		
65	55	7279	0.54267	18.3	19.0	18.9	19.0	0.994	2919.5	NO DAMAGE		
65 65	50 45	1741 6262	0.12980 0.46685	18.3 18.3	19.0 19.0	18.9 18.8	19.0 19.0	0.991	1946.3 1459.7	NO DAMAGE NO DAMAGE		
65	40	731	0.05450	18.3	19.0	18.7	19.0	0.985	1167.8	NO DAMAGE		
65	35	2747	0.20480	18.3	19.0	18.7	19.0	0.982	973.2	NO DAMAGE		
65 65	30 25	194 998	0.01446 0.07440	18.3 18.3	19.0 19.0	18.6 18.6	19.0 19.0	0.979 0.977	834.1 729.9	NO DAMAGE NO DAMAGE		
65	20	64	0.00477	18.3	19.0	18.5	19.0	0.974	648.8	NO DAMAGE		

Page G.1-107 February 2, 2018

					Dyna	ımic				to		
Max	Min	No.	α Pct	Static Stress	Śtre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile 153.8 Yield stress 60 ks
65	15	357	0.02662	18.3	19.0	18.5	19.0	0.971	583.9	NO DAMAGE	WIN	Heid stress - OU KS
65	10	15	0.00112	18.3	19.0	18.4	19.0	0.968	530.8	NO DAMAGE		
65 65	5 0	243 10	0.01812 0.00075	18.3 18.3	19.0 19.0	18.4 18.3	19.0 19.0	0.965 0.962	486.6 449.2	NO DAMAGE NO DAMAGE		
65	-5	12	0.00089	18.3	19.0	18.2	19.0	0.959	417.1	NO DAMAGE		
65 65	-15 -25	5 2	0.00037 0.00015	18.3 18.3	19.0 19.0	18.1 18.0	19.0 19.0	0.953 0.947	364.9 324.4	NO DAMAGE NO DAMAGE		
65	-35	4	0.00030	18.3	19.0	17.9	19.0	0.941	291.9	NO DAMAGE		
65	-45	4	0.00030	18.3	19.0	17.8	19.0	0.936	265.4	NO DAMAGE		
65 65	-50 -55	1 1	0.00007 0.00007	18.3 18.3	19.0 19.0	17.7	19.0 19.0	0.933	253.9 243.3	NO DAMAGE NO DAMAGE		
65	-65	3	0.00022	18.3	19.0	17.6	19.0	0.924	224.6	NO DAMAGE		
65 65	-75 -80	2 3	0.00015 0.00022	18.3 18.3	19.0 19.0	17.5 17.4	19.0 19.0	0.918 0.915	208.5 201.3	NO DAMAGE NO DAMAGE		
65	-85	4	0.00030	18.3	19.0	17.4	19.0	0.912	194.6	NO DAMAGE		
65 65	-95 -125	3 2	0.00022 0.00015	18.3 18.3	19.0 19.0	17.2 16.9	19.0 19.0	0.906	182.5 153.7	NO DAMAGE NO DAMAGE		
65	-125	1	0.00015	18.3	19.0	16.8	19.0	0.883	146.0	NO DAMAGE		
65	-145	1	0.00007	18.3	19.0	16.7	19.0	0.877	139.0	NO DAMAGE		
65 65	-155 -195	2	0.00015 0.00007	18.3	19.0 19.0	16.6 16.1	19.0 19.0	0.871	132.7 112.3	NO DAMAGE NO DAMAGE		
65	-205	1	0.00007	18.3	19.0	16.0	19.0	0.842	108.1	NO DAMAGE		
60 60	50 45	9784 1627	0.72942 0.12130	18.3 18.3	19.0 19.0	18.9 18.8	19.0 19.0	0.994 0.991	2910.9 1940.6	NO DAMAGE NO DAMAGE		
60	40	7071	0.52716	18.3	19.0	18.7	19.0	0.988	1455.5	NO DAMAGE		
60	35	637	0.04749	18.3	19.0	18.7	19.0	0.985	1164.4	NO DAMAGE		
60 60	30 25	2949 225	0.21986 0.01677	18.3 18.3	19.0 19.0	18.6 18.6	19.0 19.0	0.982	970.3 831.7	NO DAMAGE NO DAMAGE		
60	20	1559	0.11623	18.3	19.0	18.5	19.0	0.977	727.7	NO DAMAGE		
60 60	15 10	59 740	0.00440 0.05517	18.3 18.3	19.0 19.0	18.5 18.4	19.0 19.0	0.974 0.971	646.9 582.2	NO DAMAGE NO DAMAGE		
60	5	16	0.00119	18.3	19.0	18.4	19.0	0.968	529.3	NO DAMAGE		
60	0	419 3	0.03124 0.00022	18.3 18.3	19.0 19.0	18.3 18.2	19.0 19.0	0.965	485.2 447.8	NO DAMAGE		
60 60	-5 -10	132	0.00022	18.3	19.0	18.2	19.0	0.962	447.8	NO DAMAGE NO DAMAGE		
60	-15	1	0.00007	18.3	19.0	18.1	19.0	0.956	388.1	NO DAMAGE		
60 60	-20 -25	7	0.00052	18.3	19.0 19.0	18.1 18.0	19.0 19.0	0.953	363.9 342.5	NO DAMAGE NO DAMAGE		
60	-30	11	0.00082	18.3	19.0	18.0	19.0	0.947	323.4	NO DAMAGE		
60	-40	7	0.00052	18.3	19.0	17.9	19.0	0.941	291.1	NO DAMAGE		
60 60	-50 -55	10 1	0.00075	18.3 18.3	19.0 19.0	17.7 17.7	19.0 19.0	0.935	264.6 253.1	NO DAMAGE NO DAMAGE		
60	-60	10	0.00075	18.3	19.0	17.6	19.0	0.930	242.6	NO DAMAGE		
60 60	-70 -80	14 9	0.00104 0.00067	18.3 18.3	19.0 19.0	17.5 17.4	19.0 19.0	0.924	223.9 207.9	NO DAMAGE NO DAMAGE		
60	-90	7	0.00052	18.3	19.0	17.3	19.0	0.912	194.1	NO DAMAGE		
60	-100	6	0.00045	18.3	19.0 19.0	17.2 17.1	19.0 19.0	0.906	181.9 171.2	NO DAMAGE		
60 60	-110 -120	3 4	0.00022 0.00030	18.3 18.3	19.0	17.0	19.0	0.894	161.7	NO DAMAGE NO DAMAGE		
60	-130	3	0.00022	18.3	19.0	16.9	19.0	0.888	153.2	NO DAMAGE		
60 60	-140 -220	2	0.00015 0.00007	18.3 18.3	19.0 19.0	16.7 15.8	19.0 19.0	0.883	145.5 104.0	NO DAMAGE NO DAMAGE		
55	45	8119	0.60529	18.3	18.9	18.8	18.9	0.994	2902.4	NO DAMAGE		
55 55	40 35	1589 8838	0.11846 0.50979	18.3 18.3	18.9 18.9	18.7	18.9 18.9	0.991 0.988	1934.9 1451.2	NO DAMAGE NO DAMAGE		
55	30	654	0.04876	18.3	18.9	18.6	18.9	0.985	1161.0	NO DAMAGE		
55	25	2920	0.21769	18.3	18.9	18.6	18.9	0.982	967.5	NO DAMAGE		
55 55	20 15	269 1189	0.02005 0.08864	18.3 18.3	18.9 18.9	18.5 18.5	18.9 18.9	0.979 0.976	829.3 725.6	NO DAMAGE NO DAMAGE		
55	10	61	0.00455	18.3	18.9	18.4	18.9	0.973	645.0	NO DAMAGE		
55 55	5 0	597 26	0.04451 0.00194	18.3 18.3	18.9 18.9	18.4 18.3	18.9 18.9	0.971	580.5 527.7	NO DAMAGE NO DAMAGE		
55	-5	38	0.00283	18.3	18.9	18.2	18.9	0.965	483.7	NO DAMAGE		
55 55	-10 -15	1 6	0.00007 0.00045	18.3 18.3	18.9 18.9	18.2 18.1	18.9 18.9	0.962 0.959	446.5 414.6	NO DAMAGE NO DAMAGE		
55	-25	7	0.00052	18.3	18.9	18.0	18.9	0.953	362.8	NO DAMAGE		
55	-35 -45	2 4	0.00015	18.3 18.3	18.9 18.9	17.9	18.9 18.9	0.947	322.5 290.2	NO DAMAGE		
55 55	-45 -55	4	0.00030 0.00007	18.3	18.9	17.8 17.7	18.9 18.9	0.941	280.2	NO DAMAGE NO DAMAGE		
55	-65	3	0.00022	18.3	18.9	17.6	18.9	0.929	241.9	NO DAMAGE		
55 55	-70 -75	1	0.00007	18.3 18.3	18.9 18.9	17.5 17.5	18.9 18.9	0.926	232.2 223.3	NO DAMAGE NO DAMAGE		
55	-85	i	0.00007	18.3	18.9	17.4	18.9	0.918	207.3	NO DAMAGE		
55	-95	3	0.00022	18.3	18.9	17.2	18.9	0.912	193.5	NO DAMAGE		
55 55	-105 -110	3 1	0.00022	18.3 18.3	18.9 18.9	17.1 17.1	18.9 18.9	0.906	181.4 175.9	NO DAMAGE NO DAMAGE		
55	-115	1	0.00007	18.3	18.9	17.0	18.9	0.900	170.7	NO DAMAGE		
55 55	-135 -150	2	0.00015 0.00007	18.3 18.3	18.9 18.9	16.8 16.6	18.9 18.9	0.888	152.8 141.6	NO DAMAGE NO DAMAGE		
55	-165	1	0.00007	18.3	18.9	16.5	18.9	0.870	131.9	NO DAMAGE		
50 50	40 35	12549 1846	0.93556	18.3 18.3	18.9 18.9	18.7	18.9 18.9	0.994	2893.8 1929.2	NO DAMAGE		
50 50	35 30	1846 10880	0.13762 0.81113	18.3	18.9	18.7	18.9 18.9	0.991	1929.2 1446.9	NO DAMAGE NO DAMAGE		
50	25	787	0.05867	18.3	18.9	18.6	18.9	0.985	1157.5	NO DAMAGE		
50 50	20 15	5251 264	0.39148 0.01968	18.3 18.3	18.9 18.9	18.5 18.5	18.9 18.9	0.982 0.979	964.6 826.8	NO DAMAGE NO DAMAGE		
50	10	2229	0.16618	18.3	18.9	18.4	18.9	0.976	723.5	NO DAMAGE		
50 50	5 0	56 885	0.00417 0.06598	18.3 18.3	18.9 18.9	18.4 18.3	18.9 18.9	0.973 0.970	643.1 578.8	NO DAMAGE NO DAMAGE		
50	-5	9	0.00067	18.3	18.9	18.2	18.9	0.968	526.2	NO DAMAGE		
50	-10	181	0.01349	18.3	18.9	18.2	18.9	0.965	482.3	NO DAMAGE		

Page G.1-108 February 2, 2018

					Dyna	amic				to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
50	-20	15	0.00112	18.3	18.9	18.1	18.9	0.959	413.4	NO DAMAGE	GI/14	Traid direct	, 00 1151
50 50	-25 -30	1 12	0.00007 0.00089	18.3 18.3	18.9 18.9	18.0 18.0	18.9 18.9	0.956	385.8 361.7	NO DAMAGE NO DAMAGE			
50	-40	1.7	0.00127	18.3	18.9	17.9	18.9	0.947	321.5	NO DAMAGE			
50 50	-45 -50	1 20	0.00007 0.00149	18.3 18.3	18.9 18.9	17.8 17.7	18.9 18.9	0.944 0.941	304.6 289.4	NO DAMAGE NO DAMAGE			
50	-60	19	0.00149	18.3	18.9	17.6	18.9	0.935	263.1	NO DAMAGE			
50	-65	1	0.00007	18.3	18.9	17.6	18.9	0.932	251.6	NO DAMAGE			
50 50	-70 -75	9 2	0.00067 0.00015	18.3 18.3	18.9 18.9	17.5 17.5	18.9 18.9	0.929 0.926	241.2 231.5	NO DAMAGE NO DAMAGE			
50	-80	8	0.00060	18.3	18.9	17.4	18.9	0.923	222.6	NO DAMAGE			
50 50	-90 -100	6 4	0.00045 0.00030	18.3 18.3	18.9 18.9	17.3 17.2	18.9 18.9	0.917	206.7 192.9	NO DAMAGE NO DAMAGE			
50	-105	1	0.00007	18.3	18.9	17.1	18.9	0.908	186.7	NO DAMAGE			
50 50	-110 -120	2 2	0.00015 0.00015	18.3 18.3	18.9 18.9	17.1 17.0	18.9 18.9	0.905	180.9 170.2	NO DAMAGE NO DAMAGE			
50	-130	2	0.00015	18.3	18.9	16.9	18.9	0.894	160.8	NO DAMAGE			
50 50	-140 -210	1	0.00007	18.3 18.3	18.9 18.9	16.7 16.0	18.9 18.9	0.888	152.3 111.3	NO DAMAGE NO DAMAGE			
45	35	8451	0.63005	18.3	18.8	18.7	18.8	0.994	2885.3	NO DAMAGE			
45	30	1938	0.14448	18.3	18.8	18.6	18.8	0.991	1923.5	NO DAMAGE			
45 45	25 20	7167 859	0.53432 0.06404	18.3 18.3	18.8 18.8	18.6 18.5	18.8 18.8	0.988	1442.6 1154.1	NO DAMAGE NO DAMAGE			
45	15	3380	0.25199	18.3	18.8	18.5	18.8	0.982	961.8	NO DAMAGE			
45 45	10 5	291 1312	0.02169 0.09781	18.3 18.3	18.8 18.8	18.4 18.4	18.8 18.8	0.979 0.976	824.4 721.3	NO DAMAGE NO DAMAGE			
45	0	52	0.00388	18.3	18.8	18.3	18.8	0.973	641.2	NO DAMAGE			
45 45	-5 -15	25 13	0.00186	18.3 18.3	18.8 18.8	18.2 18.1	18.8 18.8	0.970 0.964	577.1 480.9	NO DAMAGE NO DAMAGE			
45	-25	5	0.00037	18.3	18.8	18.0	18.8	0.959	412.2	NO DAMAGE			
45	-30	1	0.00007	18.3	18.8	18.0	18.8	0.956	384.7	NO DAMAGE			
45 45	-35 -45	2 5	0.00015 0.00037	18.3 18.3	18.8 18.8	17.9 17.8	18.8 18.8	0.953 0.947	360.7 320.6	NO DAMAGE NO DAMAGE			
45	-55	1	0.00007	18.3	18.8	17.7	18.8	0.941	288.5	NO DAMAGE			
45 45	-60 -65	1	0.00007 0.00007	18.3 18.3	18.8 18.8	17.6 17.6	18.8 18.8	0.938	274.8 262.3	NO DAMAGE NO DAMAGE			
45	-75	2	0.00015	18.3	18.8	17.5	18.8	0.929	240.4	NO DAMAGE			
45 45	-85 -90	2	0.00015 0.00007	18.3 18.3	18.8 18.8	17.4 17.3	18.8 18.8	0.923 0.920	221.9 213.7	NO DAMAGE NO DAMAGE			
45	-95	1	0.00007	18.3	18.8	17.2	18.8	0.917	206.1	NO DAMAGE			
45 45	-105 -115	1	0.00007 0.00007	18.3 18.3	18.8 18.8	17.1 17.0	18.8 18.8	0.911 0.905	192.4 180.3	NO DAMAGE NO DAMAGE			
45	-135	1	0.00007	18.3	18.8	16.8	18.8	0.893	160.3	NO DAMAGE			
45 45	-145 -165	2	0.00015 0.00007	18.3 18.3	18.8 18.8	16.7 16.5	18.8 18.8	0.887 0.876	151.9 137.4	NO DAMAGE NO DAMAGE			
40	30	17965	1.33934	18.3	18.7	18.6	18.7	0.994	2876.7	NO DAMAGE			
40 40	25	2047	0.15261	18.3	18.7 18.7	18.6	18.7	0.991 0.988	1917.8	NO DAMAGE			
40	20 15	18409 1038	1.37244 0.07739	18.3 18.3	18.7	18.5 18.5	18.7 18.7	0.985	1438.4 1150.7	NO DAMAGE NO DAMAGE			
40 40	10 5	6033	0.44978 0.01648	18.3	18.7 18.7	18.4 18.4	18.7 18.7	0.982	958.9	NO DAMAGE			
40	0	221 1758	0.13091	18.3 18.3	18.7	18.4	18.7	0.976	821.9 719.2	NO DAMAGE NO DAMAGE			
40	-5	10	0.00075	18.3	18.7	18.2	18.7	0.973	639.3	NO DAMAGE			
40 40	-10 -20	261 31	0.01946 0.00231	18.3 18.3	18.7 18.7	18.2	18.7 18.7	0.970 0.964	575.3 479.5	NO DAMAGE NO DAMAGE			
40	-25	2	0.00015	18.3	18.7	18.0	18.7	0.961	442.6	NO DAMAGE			
40 40	-30 -40	18 15	0.00134 0.00112	18.3 18.3	18.7 18.7	18.0 17.9	18.7 18.7	0.958 0.952	411.0 359.6	NO DAMAGE NO DAMAGE			
40	-50	21	0.00157	18.3	18.7	17.7	18.7	0.947	319.6	NO DAMAGE			
40 40	-60 -65	11	0.00082 0.00007	18.3 18.3	18.7 18.7	17.6 17.6	18.7 18.7	0.941	287.7 274.0	NO DAMAGE NO DAMAGE			
40	-70	10	0.00075	18.3	18.7	17.5	18.7	0.935	261.5	NO DAMAGE			
40 40	-80 -90	8 4	0.00060 0.00030	18.3 18.3	18.7 18.7	17.4 17.3	18.7 18.7	0.929	239.7 221.3	NO DAMAGE NO DAMAGE			
40	-100	3	0.00022	18.3	18.7	17.2	18.7	0.917	205.5	NO DAMAGE			
40 40	-110 -120	1 3	0.00007 0.00022	18.3 18.3	18.7 18.7	17.1 17.0	18.7 18.7	0.911 0.905	191.8 179.8	NO DAMAGE NO DAMAGE			
40	-130	3	0.00022	18.3	18.7	16.9	18.7	0.899	169.2	NO DAMAGE			
40 35	-140 25	1 8887	0.00007 0.66255	18.3 18.3	18.7 18.7	16.7 18.6	18.7 18.7	0.893	159.8 2868.2	NO DAMAGE NO DAMAGE			
35	20	2334	0.17401	18.3	18.7	18.5	18.7	0.991	1912.1	NO DAMAGE			
35	15 10	8440 748	0.62923 0.05577	18.3 18.3	18.7 18.7	18.5 18.4	18.7 18.7	0.988	1434.1 1147.3	NO DAMAGE NO DAMAGE			
35 35	5	2728	0.20323	18.3	18.7	18.4	18.7	0.982	956.1	NO DAMAGE			
35	0 -5	130	0.00969	18.3 18.3	18.7 18.7	18.3 18.2	18.7 18.7	0.979 0.976	819.5 717.0	NO DAMAGE NO DAMAGE			
35 35	-5 -10	46 1	0.00343	18.3	18.7	18.2	18.7	0.976	637.4	NO DAMAGE			
35	-15	10	0.00075	18.3	18.7	18.1	18.7	0.970	573.6	NO DAMAGE			
35 35	-20 -25	1 15	0.00007 0.00112	18.3 18.3	18.7 18.7	18.1 18.0	18.7 18.7	0.967 0.964	521.5 478.0	NO DAMAGE NO DAMAGE			
35	-35	25	0.00186	18.3	18.7	17.9	18.7	0.958	409.7	NO DAMAGE			
35 35	-40 -45	1 10	0.00007 0.00075	18.3 18.3	18.7 18.7	17.9 17.8	18.7 18.7	0.955 0.952	382.4 358.5	NO DAMAGE NO DAMAGE			
35	-55	2	0.00015	18.3	18.7	17.7	18.7	0.946	318.7	NO DAMAGE			
35 35	-65 -75	3 1	0.00022 0.00007	18.3 18.3	18.7 18.7	17.6 17.5	18.7 18.7	0.940 0.934	286.8 260.7	NO DAMAGE NO DAMAGE			
35	-85	2	0.00015	18.3	18.7	17.4	18.7	0.928	239.0	NO DAMAGE			
35 35	-95 -100	3	0.00022 0.00007	18.3 18.3	18.7	17.2 17.2	18.7 18.7	0.922 0.920	220.6 212.5	NO DAMAGE NO DAMAGE			
35	-105	4	0.00030	18.3	18.7	17.1	18.7	0.917	204.9	NO DAMAGE			
35	-115	1	0.00007	18.3	18.7	17.0	18.7	0.911	191.2	NO DAMAGE			

Page G.1-109 February 2, 2018

					Dyna					to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	a/N	cycles per mile Yield stress	153.8 60 ksi
35	-120	1	0.00007	18.3	18.7	17.0	18.7	0.908	185.0	NO DAMAGE			
35 30	-170 20	1 22074	0.00007 1.64568	18.3 18.3	18.7 18.6	16.4 18.5	18.7 18.6	0.878	139.9 2859.6	NO DAMAGE NO DAMAGE			
30	15	2052	0.15298	18.3	18.6	18.5	18.6	0.991	1906.4	NO DAMAGE			
30 30	10 5	16038 628	1.19568 0.04682	18.3 18.3	18.6 18.6	18.4 18.4	18.6 18.6	0.988 0.985	1429.8 1143.9	NO DAMAGE NO DAMAGE			
30	ő	5070	0.37798	18.3	18.6	18.3	18.6	0.982	953.2	NO DAMAGE			
30 30	-5 -1∩	24 474	0.00179 0.03534	18.3 18.3	18.6 18.6	18.2 18.2	18.6 18.6	0.979 0.976	817.0 714.9	NO DAMAGE NO DAMAGE			
30	-15	474	0.03534	18.3	18.6	18.2	18.6	0.976	635.5	NO DAMAGE			
30	-20	25	0.00186	18.3	18.6	18.1	18.6	0.970	571.9	NO DAMAGE			
30 30	-25 -30	1 35	0.00007 0.00261	18.3 18.3	18.6 18.6	18.0 18.0	18.6 18.6	0.967 0.964	519.9 476.6	NO DAMAGE NO DAMAGE			
30	-40	27	0.00201	18.3	18.6	17.9	18.6	0.958	408.5	NO DAMAGE			
30 30	-50 -60	23 20	0.00171 0.00149	18.3 18.3	18.6 18.6	17.7 17.6	18.6 18.6	0.952 0.946	357.5 317.7	NO DAMAGE NO DAMAGE			
30	-65	1	0.00007	18.3	18.6	17.6	18.6	0.943	301.0	NO DAMAGE			
30 30	-70 -80	9 5	0.00067 0.00037	18.3 18.3	18.6 18.6	17.5 17.4	18.6 18.6	0.940	286.0 260.0	NO DAMAGE NO DAMAGE			
30	-90	6	0.00045	18.3	18.6	17.3	18.6	0.928	238.3	NO DAMAGE			
30 30	-95 -100	2 2	0.00015 0.00015	18.3 18.3	18.6 18.6	17.2 17.2	18.6 18.6	0.925 0.922	228.8 220.0	NO DAMAGE NO DAMAGE			
30	-110	2	0.00015	18.3	18.6	17.1	18.6	0.916	204.3	NO DAMAGE			
30 30	-120 -125	1	0.00007 0.00007	18.3 18.3	18.6 18.6	17.0 16.9	18.6 18.6	0.910 0.907	190.6 184.5	NO DAMAGE NO DAMAGE			
30	-135	i	0.00007	18.3	18.6	16.8	18.6	0.901	173.3	NO DAMAGE			
30 30	-140 -145	1	0.00007	18.3 18.3	18.6 18.6	16.7 16.7	18.6 18.6	0.898 0.895	168.2 163.4	NO DAMAGE			
30	-200	i	0.00007	18.3	18.6	16.1	18.6	0.862	124.3	NO DAMAGE			
30	-210	1	0.00007	18.3 18.3	18.6	16.0 15.3	18.6 18.6	0.856	119.2	NO DAMAGE			
30 25	-270 15	9876	0.00007 0.73628	18.3	18.6 18.6	18.5	18.6	0.821 0.994	95.3 2851.1	NO DAMAGE NO DAMAGE			
25	10	1825 7958	0.13606	18.3	18.6 18.6	18.4 18.4	18.6 18.6	0.991	1900.7 1425.5	NO DAMAGE			
25 25	5 0	7958 410	0.59329 0.03057	18.3 18.3	18.6	18.4	18.6	0.988	1425.5	NO DAMAGE NO DAMAGE			
25	-5	105	0.00783	18.3	18.6	18.2	18.6	0.982	950.4	NO DAMAGE			
25 25	-10 -15	1 33	0.00007 0.00246	18.3	18.6	18.2	18.6 18.6	0.979 0.976	814.6 712.8	NO DAMAGE NO DAMAGE			
25	-20	3	0.00022	18.3	18.6	18.1	18.6	0.973	633.6	NO DAMAGE			
25 25	-25 -30	317 1	0.02363 0.00007	18.3 18.3	19.6 19.6	18.0 18.0	18.6 18.6	0.970 0.967	570.2 518.4	NO DAMAGE NO DAMAGE			
25	-35	89	0.00664	18.3	18.6	17.9	18.6	0.964	475.2	NO DAMAGE			
25 25	-40 -45	2 11	0.00015 0.00082	18.3 18.3	18.6 18.6	17.9 17.8	18.6 18.6	0.961 0.958	438.6 407.3	NO DAMAGE NO DAMAGE			
25	-65	3	0.00022	18.3	18.6	17.6	18.6	0.946	316.8	NO DAMAGE			
25 25	-70 -75	1 3	0.00007 0.00022	18.3 18.3	18.6 18.6	17.5 17.5	18.6 18.6	0.943 0.940	300.1 285.1	NO DAMAGE NO DAMAGE			
25	-85	1	0.00007	18.3	18.6	17.4	18.6	0.934	259.2	NO DAMAGE			
25 25	-95 -105	3 6	0.00022 0.00045	18.3 18.3	18.6 18.6	17.2 17.1	18.6 18.6	0.928 0.922	237.6 219.3	NO DAMAGE NO DAMAGE			
25	-125	3	0.00022	18.3	18.6	16.9	18.6	0.910	190.1	NO DAMAGE			
25 25	-135 -145	1	0.00007 0.00007	18.3 18.3	18.6 18.6	16.8 16.7	18.6 18.6	0.904	178.2 167.7	NO DAMAGE NO DAMAGE			
25 25	-145	1	0.00007	18.3	18.6	16.6	18.6	0.898	158.4	NO DAMAGE			
20 20	10 5	22202 1921	1.65522 0.14322	18.3 18.3	18.5 18.5	18.4 18.4	18.5 18.5	0.994 0.991	2842.5 1895.0	NO DAMAGE NO DAMAGE			
20	0	21178	1.57888	18.3	18.5	18.4	18.5	0.988	1421.3	NO DAMAGE			
20	-5 -10	101 1141	0.00753 0.08506	18.3 18.3	18.5 18.5	18.2 18.2	18.5 18.5	0.985 0.982	1137.0 947.5	NO DAMAGE NO DAMAGE			
20 20	-15	4	0.00030	18.3	18.5	18.1	18.5	0.982	812.2	NO DAMAGE			
20 20	-20 -25	49	0.00365 0.00007	18.3	18.5	18.1	18.5	0.976	710.6	NO DAMAGE			
20	-25 -30	1 47	0.00350	18.3 18.3	18.5 18.5	18.0 18.0	18.5 18.5	0.973 0.970	631.7 568.5	NO DAMAGE NO DAMAGE			
20	-40	39 1	0.00291	18.3	18.5	17.9	18.5	0.964	473.8	NO DAMAGE			
20 20	-45 -50	22	0.00007 0.00164	18.3 18.3	18.5 18.5	17.8 17.7	18.5 18.5	0.961 0.958	437.3 406.1	NO DAMAGE NO DAMAGE			
20	-55 -60	1	0.00007	18.3	18.5 18.5	17.7	18.5 18.5	0.955 0.952	379.0 355.3	NO DAMAGE			
20 20	-65	12 1	0.00089 0.00007	18.3 18.3	18.5	17.6 17.6	18.5	0.952	334.4	NO DAMAGE NO DAMAGE			
20	-70	10	0.00075	18.3	18.5	17.5	18.5	0.946	315.8	NO DAMAGE			
20 20	-80 -85	10 1	0.00075 0.00007	18.3 18.3	18.5 18.5	17.4 17.4	18.5 18.5	0.940 0.937	284.3 270.7	NO DAMAGE NO DAMAGE			
20	-90	6	0.00045	18.3	18.5	17.3	18.5	0.934	258.4	NO DAMAGE			
20 20	-100 -110	2 2	0.00015 0.00015	18.3 18.3	18.5 18.5	17.2 17.1	18.5 18.5	0.928 0.922	236.9 218.7	NO DAMAGE NO DAMAGE			
20	-130	1	0.00007	18.3	18.5	16.9	18.5	0.910	189.5	NO DAMAGE			
20 15	-185 5	1 10885	0.00007 0.81151	18.3 18.3	18.5 18.5	16.2 18.4	18.5 18.5	0.877 0.994	138.7 2834.0	NO DAMAGE NO DAMAGE			
15	0	1626	0.12122	18.3	18.5	18.3	18.5	0.991	1889.3	NO DAMAGE			
15 15	-5 -10	1500 1	0.11183 0.00007	18.3 18.3	18.5 18.5	18.2 18.2	18.5 18.5	0.988	1417.0 1133.6	NO DAMAGE NO DAMAGE			
15	-15	1448	0.10795	18.3	18.5	18.1	18.5	0.982	944.7	NO DAMAGE			
15 15	-20 -25	7 657	0.00052 0.04898	18.3 18.3	18.5 18.5	18.1 18.0	18.5 18.5	0.979 0.976	809.7 708.5	NO DAMAGE NO DAMAGE			
15	-30	1	0.00007	18.3	18.5	18.0	18.5	0.973	629.8	NO DAMAGE			
15 15	-35 -40	14 2	0.00104 0.00015	18.3 18.3	18.5 18.5	17.9 17.9	18.5 18.5	0.970 0.967	566.8 515.3	NO DAMAGE NO DAMAGE			
15	-45	5	0.00037	18.3	18.5	17.8	18.5	0.964	472.3	NO DAMAGE			
15 15	-55 -65	3	0.00022 0.00022	18.3 18.3	18.5 18.5	17.7 17.6	18.5 18.5	0.958 0.952	404.9 354.2	NO DAMAGE NO DAMAGE			
15	-70	1	0.00007	18.3	18.5	17.5	18.5	0.949	333.4	NO DAMAGE			

Page G.1-110 February 2, 2018

					Dyna					to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	a/N	cycles per mile Yield stress	153.8 60 ksi
15	-75	1	0.00007	18.3	18.5	17.5	18.5	0.946	314.9	NO DAMAGE	GI/14	Tield diebb	00 1101
15 15	-80 -85	1 3	0.00007 0.00022	18.3	18.5 18.5	17.4 17.4	18.5 18.5	0.943 0.940	298.3 283.4	NO DAMAGE NO DAMAGE			
15	-95	5	0.00037	18.3	18.5	17.2	18.5	0.934	257.6	NO DAMAGE			
15	-100	1	0.00007	18.3	18.5	17.2	18.5	0.931	246.4	NO DAMAGE			
15 15	-105 -125	8 2	0.00060 0.00015	18.3 18.3	18.5 18.5	17.1 16.9	18.5 18.5	0.928	236.2 202.4	NO DAMAGE NO DAMAGE			
15	-155	2	0.00015	18.3	18.5	16.6	18.5	0.897	166.7	NO DAMAGE			
15 15	-195 -235	1	0.00007 0.00007	18.3 18.3	18.5 18.5	16.1 15.7	18.5 18.5	0.873 0.849	135.0 113.4	NO DAMAGE NO DAMAGE			
10	0	37244	2.77664	18.3	18.4	18.3	18.4	0.994	2825.4	NO DAMAGE			
10 10	-5 -10	1213 11887	0.09043 0.88621	18.3 18.3	18.4 18.4	18.2 18.2	18.4 18.4	0.991	1883.6 1412.7	NO DAMAGE NO DAMAGE			
10	-15	26	0.88621	18.3	18.4	18.1	18.4	0.985	1130.2	NO DAMAGE			
10	-20	95	0.00708	18.3	18.4	18.1	18.4	0.982	941.8	NO DAMAGE			
10 10	-25 -30	2 77	0.00015 0.00574	18.3 18.3	18.4 18.4	18.0	18.4 18.4	0.979	807.3 706.4	NO DAMAGE NO DAMAGE			
10	-35	3	0.00022	18.3	18.4	17.9	18.4	0.973	627.9	NO DAMAGE			
10 10	-40 -50	38 25	0.00283 0.00186	18.3 18.3	18.4 18.4	17.9 17.7	18.4 18.4	0.970 0.964	565.1 470.9	NO DAMAGE NO DAMAGE			
10	-55	1	0.00007	18.3	18.4	17.7	18.4	0.961	434.7	NO DAMAGE			
10 10	-60 -70	7	0.00052	18.3 18.3	18.4 18.4	17.6 17.5	18.4 18.4	0.958 0.952	403.6 353.2	NO DAMAGE			
10	-70 -75	11 2	0.00082 0.00015	18.3	18.4	17.5	18.4	0.952	332.4	NO DAMAGE NO DAMAGE			
10	-80	9	0.00067	18.3	18.4	17.4	18.4	0.946	313.9	NO DAMAGE			
10 10	-90 -95	7 1	0.00052 0.00007	18.3 18.3	18.4 18.4	17.3 17.2	18.4 18.4	0.939	282.5 269.1	NO DAMAGE NO DAMAGE			
10	-100	6	0.00045	18.3	18.4	17.2	18.4	0.933	256.9	NO DAMAGE			
10	-110	1	0.00007	18.3 18.3	18.4 18.4	17.1	18.4	0.927 0.897	235.5 166.2	NO DAMAGE NO DAMAGE			
10 10	-160 -175	1	0.00007 0.00007	18.3	18.4	16.5 16.4	18.4 18.4	0.888	152.7	NO DAMAGE			
10	-190	2	0.00015	18.3	18.4	16.2	18.4	0.879	141.3	NO DAMAGE			
10 5	-255 -5	1 8727	0.00007 0.65062	18.3 18.3	18.4 18.4	15.5 18.2	18.4 18.4	0.840 0.994	106.6 2816.9	NO DAMAGE NO DAMAGE			
5	-10	15	0.00112	18.3	18.4	18.2	18.4	0.991	1877.9	NO DAMAGE			
5 5	-15 -20	4923 5	0.36702	18.3 18.3	18.4 18.4	18.1	18.4 18.4	0.988	1408.4 1126.8	NO DAMAGE NO DAMAGE			
5	-25	386	0.02878	18.3	18.4	18.0	18.4	0.982	939.0	NO DAMAGE			
5	-30	4	0.00030	18.3	18.4	18.0	18.4	0.979	804.8	NO DAMAGE			
5 5	-35 -40	51 1	0.00380 0.00007	18.3 18.3	18.4 18.4	17.9 17.9	18.4 18.4	0.976 0.973	704.2 626.0	NO DAMAGE NO DAMAGE			
5	-45	17	0.00127	18.3	18.4	17.8	18.4	0.970	563.4	NO DAMAGE			
5 5	-50 -55	3 17	0.00022 0.00127	18.3 18.3	18.4 18.4	17.7 17.7	18.4 18.4	0.967 0.964	512.2 469.5	NO DAMAGE NO DAMAGE			
5	-60	1	0.00007	18.3	18.4	17.6	18.4	0.961	433.4	NO DAMAGE			
5 5	-65 -75	4 7	0.00030 0.00052	18.3 18.3	18.4 18.4	17.6 17.5	18.4 18.4	0.958 0.951	402.4 352.1	NO DAMAGE NO DAMAGE			
5	-75	4	0.00032	18.3	18.4	17.5	18.4	0.945	313.0	NO DAMAGE			
5	-90	1	0.00007	18.3	18.4	17.3	18.4	0.942	296.5	NO DAMAGE			
5 5	-95 -110	4 1	0.00030 0.00007	18.3 18.3	18.4 18.4	17.2 17.1	18.4 18.4	0.939	281.7 244.9	NO DAMAGE NO DAMAGE			
5	-115	2	0.00015	18.3	18.4	17.0	18.4	0.927	234.7	NO DAMAGE			
5 5	-125 -145	1	0.00007 0.00007	18.3 18.3	18.4 18.4	16.9 16.7	18.4 18.4	0.921 0.909	216.7 187.8	NO DAMAGE NO DAMAGE			
5	-155	i	0.00007	18.3	18.4	16.6	18.4	0.903	176.1	NO DAMAGE			
5 5	-165 -175	1	0.00007	18.3 18.3	18.4 18.4	16.5 16.4	18.4 18.4	0.897	165.7 156.5	NO DAMAGE NO DAMAGE			
5	-255	i	0.00007	18.3	18.4	15.5	18.4	0.842	108.3	NO DAMAGE			
5 0	-285 -10	1 9883	0.00007 0.73680	18.3 18.3	18.4 18.3	15.1 18.2	18.4 18.3	0.824 0.994	97.1 2808.3	NO DAMAGE NO DAMAGE			
0	-15	1482	0.11049	18.3	18.3	18.1	18.3	0.994	1872.2	NO DAMAGE			
0	-20	595	0.04436	18.3	18.3	18.1	18.3	0.988	1404.2	NO DAMAGE			
0 N	-25 -30	59 122	0.00440 0.00910	18.3 18.3	18.3 18.3	18.0 18.0	18.3 18.3	0.985 0.982	1123.3 936.1	NO DAMAGE NO DAMAGE			
0	-35	15	0.00112	18.3	18.3	17.9	18.3	0.979	802.4	NO DAMAGE			
0	-40 -45	36 5	0.00268 0.00037	18.3 18.3	18.3 18.3	17.9 17.8	18.3 18.3	0.976 0.973	702.1 624.1	NO DAMAGE NO DAMAGE			
0	-50	35	0.00261	18.3	18.3	17.7	18.3	0.970	561.7	NO DAMAGE			
0	-55 -60	4 13	0.00030 0.00097	18.3 18.3	18.3 18.3	17.7 17.6	18.3 18.3	0.967	510.6 468.1	NO DAMAGE NO DAMAGE			
Ō	-65	2	0.00015	18.3	18.3	17.6	18.3	0.960	432.1	NO DAMAGE			
0	-70 -75	12 2	0.00089	18.3 18.3	18.3	17.5 17.5	18.3	0.957 0.954	401.2 374.4	NO DAMAGE NO DAMAGE			
0	-/5 -80	7	0.00015	18.3	18.3 18.3	17.5	18.3 18.3	0.954	374.4	NO DAMAGE			
0	-85	3	0.00022	18.3	18.3	17.4	18.3	0.948	330.4	NO DAMAGE			
0	-90 -95	5 2	0.00037 0.00015	18.3 18.3	18.3 18.3	17.3 17.2	18.3 18.3	0.945 0.942	312.0 295.6	NO DAMAGE NO DAMAGE			
0	-100	9	0.00067	18.3	18.3	17.2	18.3	0.939	280.8	NO DAMAGE			
0	-105 -110	2 4	0.00015 0.00030	18.3 18.3	18.3 18.3	17.1 17.1	18.3 18.3	0.936	267.5 255.3	NO DAMAGE NO DAMAGE			
0	-120	3	0.00022	18.3	18.3	17.0	18.3	0.927	234.0	NO DAMAGE			
0	-125	3	0.00022	18.3	18.3	16.9	18.3	0.924	224.7	NO DAMAGE			
0	-140 -155	1	0.00007	18.3 18.3	18.3 18.3	16.7 16.6	18.3 18.3	0.915 0.906	200.6 181.2	NO DAMAGE NO DAMAGE			
Ö	-180	1	0.00007	18.3	18.3	16.3	18.3	0.890	156.0	NO DAMAGE			
-5 -5	-15 -20	19509 1685	1.45445 0.12562	18.3 18.3	18.2 18.2	18.1	18.2 18.2	0.994 0.991	2799.8 1866.5	NO DAMAGE NO DAMAGE			
-5	-25	7756	0.57823	18.3	18.2	18.0	18.2	0.988	1399.9	NO DAMAGE			
-5 -5	-30 -35	412 2199	0.03072 0.16394	18.3 18.3	18.2 18.2	18.0 17.9	18.2 18.2	0.985	1119.9 933.3	NO DAMAGE NO DAMAGE			
-5	-40	111	0.00828	18.3	18.2	17.9	18.2	0.979	799.9	NO DAMAGE			

Page G.1-111 February 2, 2018

					Dyna	amic				to			
Max	Min	No.	α	Static	Śtre Max	ess Min	Max	R Min/Max	Endurance Limit	Failure N	a/N		53.8 D ksi
мах -5	мin -45	No. 789	Pct 0.05882	Stress 18.3	Max 18.2	17.8	Adjusted 18.2	MIN/Max 0.976	699.9	NO DAMAGE	α/N	Yield stress 60	J KSI
-5	-50	49	0.00365	18.3	18.2	17.7	18.2	0.973	622.2	NO DAMAGE			
-5	-55	349	0.02602	18.3	18.2	17.7	18.2	0.969	560.0	NO DAMAGE			
-5 -5	-60 -65	12 127	0.00089 0.00947	18.3 18.3	18.2 18.2	17.6 17.6	18.2 18.2	0.966	509.1 466.6	NO DAMAGE NO DAMAGE			
-5	-70	11	0.00082	18.3	18.2	17.5	18.2	0.960	430.7	NO DAMAGE			
-5	-75	45	0.00335	18.3	18.2	17.5	18.2	0.957	400.0	NO DAMAGE			
-5 -5	-80 -85	6 41	0.00045 0.00306	18.3 18.3	18.2 18.2	17.4 17.4	18.2 18.2	0.954 0.951	373.3 350.0	NO DAMAGE NO DAMAGE			
-5 -5	-90	5	0.00037	18.3	18.2	17.4	18.2	0.948	329.4	NO DAMAGE			
-5 -5	-95	47	0.00350	18.3	18.2	17.2	18.2	0.945	311.1	NO DAMAGE			
-5 -5	-100 -105	7 13	0.00052 0.00097	18.3 18.3	18.2 18.2	17.2	18.2 18.2	0.942	294.7 280.0	NO DAMAGE NO DAMAGE			
-5 -5	-110	1	0.00007	18.3	18.2	17.1	18.2	0.936	266.6	NO DAMAGE			
-5	-115	14	0.00104	18.3	18.2	17.0	18.2	0.933	254.5	NO DAMAGE			
-5 -5	-125 -135	4 3	0.00030 0.00022	18.3 18.3	18.2 18.2	16.9 16.8	18.2 18.2	0.927 0.921	233.3 215.4	NO DAMAGE NO DAMAGE			
-5	-145	3	0.00022	18.3	18.2	16.7	18.2	0.914	200.0	NO DAMAGE			
-5 -5	-155	1	0.00007	18.3	18.2	16.6	18.2	0.908	186.7	NO DAMAGE			
-5 -5	-165 -175	1	0.00007 0.00007	18.3 18.3	18.2 18.2	16.5 16.4	18.2 18.2	0.902 0.896	175.0 164.7	NO DAMAGE NO DAMAGE			
-5 -5	-185	i	0.00007	18.3	18.2	16.2	18.2	0.890	155.5	NO DAMAGE			
-5	-205	2	0.00015	18.3	18.2	16.0	18.2	0.878	140.0	NO DAMAGE			
-5 -5	-215 -235	1	0.00007 0.00007	18.3 18.3	18.2 18.2	15.9 15.7	18.2 18.2	0.872 0.860	133.3 121.7	NO DAMAGE NO DAMAGE			
-10	-20	31560	2.35289	18.3	18.2	18.1	18.2	0.994	2791.2	NO DAMAGE			
-10	-25	5740	0.42793	18.3	18.2	18.0	18.2	0.991	1860.8	NO DAMAGE			
-10 -10	-30 -35	19970 956	1.48882 0.07127	18.3 18.3	18.2 18.2	18.0 17.9	18.2 18.2	0.988	1395.6 1116.5	NO DAMAGE NO DAMAGE			
-10	-40	5567	0.41504	18.3	18.2	17.9	18.2	0.982	930.4	NO DAMAGE			
-10	-45	300	0.02237	18.3	18.2	17.8	18.2	0.979	797.5	NO DAMAGE			
-10 -10	-50 -55	1639 37	0.12219 0.00276	18.3 18.3	18.2 18.2	17.7 17.7	18.2 18.2	0.975 0.972	697.8 620.3	NO DAMAGE NO DAMAGE			
-10	-60	645	0.04809	18.3	18.2	17.6	18.2	0.969	558.2	NO DAMAGE			
-10	-65	11	0.00082	18.3	18.2	17.6	18.2	0.966	507.5	NO DAMAGE			
-10 -10	-70 -75	300 2	0.02237 0.00015	18.3 18.3	18.2 18.2	17.5 17.5	18.2 18.2	0.963	465.2 429.4	NO DAMAGE NO DAMAGE			
-10	-80	215	0.01603	18.3	18.2	17.4	18.2	0.957	398.7	NO DAMAGE			
-10 -10	-85 -90	7	0.00052	18.3 18.3	18.2 18.2	17.4	18.2 18.2	0.954	372.2	NO DAMAGE			
-10	-95	114 1	0.00850 0.00007	18.3	18.2	17.3 17.2	18.2	0.951 0.948	348.9 328.4	NO DAMAGE NO DAMAGE			
-10	-100	63	0.00470	18.3	18.2	17.2	18.2	0.945	310.1	NO DAMAGE			
-10 -10	-105 -110	2 46	0.00015 0.00343	18.3 18.3	18.2 18.2	17.1 17.1	18.2 18.2	0.942	293.8 279.1	NO DAMAGE NO DAMAGE			
-10	-115	3	0.00022	18.3	18.2	17.1	18.2	0.936	265.8	NO DAMAGE			
-10	-120	21	0.00157	18.3	18.2	17.0	18.2	0.933	253.7	NO DAMAGE			
-10 -10	-125 -130	1 12	0.00007 0.00089	18.3 18.3	18.2 18.2	16.9 16.9	18.2 18.2	0.930 0.926	242.7 232.6	NO DAMAGE NO DAMAGE			
-10	-140	6	0.00045	18.3	18.2	16.7	18.2	0.920	214.7	NO DAMAGE			
-10	-150	6	0.00045	18.3	18.2	16.6	18.2	0.914	199.4	NO DAMAGE			
-10 -10	-155 -160	2 2	0.00015 0.00015	18.3 18.3	18.2 18.2	16.6 16.5	18.2 18.2	0.911 0.908	192.5 186.1	NO DAMAGE NO DAMAGE			
-10	-170	5	0.00037	18.3	18.2	16.4	18.2	0.902	174.5	NO DAMAGE			
-10	-180	1	0.00007	18.3	18.2	16.3	18.2	0.896	164.2	NO DAMAGE			
-10 -10	-190 -195	1	0.00007 0.00007	18.3 18.3	18.2 18.2	16.2 16.1	18.2 18.2	0.890 0.887	155.1 150.9	NO DAMAGE NO DAMAGE			
-10	-200	1	0.00007	18.3	18.2	16.1	18.2	0.884	146.9	NO DAMAGE			
-10 -10	-210 -220	1	0.00007 0.00007	18.3 18.3	18.2 18.2	16.0 15.8	18.2 18.2	0.877	139.6 132.9	NO DAMAGE NO DAMAGE			
-15	-220	15612	1.16392	18.3	18.1	18.0	18.1	0.994	2782.7	NO DAMAGE			
-15	-30	4802	0.35800	18.3	18.1	18.0	18.1	0.991	1855.1	NO DAMAGE			
-15 -15	-35 -40	11214 1636	0.83603 0.12197	18.3 18.3	18.1 18.1	17.9 17.9	18.1 18.1	0.988 0.985	1391.3 1113.1	NO DAMAGE NO DAMAGE			
-15	-45	2753	0.20524	18.3	18.1	17.8	18.1	0.982	927.6	NO DAMAGE			
-15	-50	106	0.00790	18.3	18.1	17.7	18.1	0.978	795.1	NO DAMAGE			
-15 -15	-55 -60	686 20	0.05114 0.00149	18.3 18.3	18.1 18.1	17.7 17.6	18.1 18.1	0.975 0.972	695.7 618.4	NO DAMAGE NO DAMAGE			
-15	-65	218	0.01625	18.3	18.1	17.6	18.1	0.969	556.5	NO DAMAGE			
-15 -15	-70 -75	12 108	0.00089	18.3 18.3	18.1 18.1	17.5 17.5	18.1 18.1	0.966	505.9 463.8	NO DAMAGE NO DAMAGE			
-15 -15	-/5 -80	106	0.00790	18.3	18.1	17.5	18.1	0.963	463.8	NO DAMAGE			
-15	-85	68	0.00507	18.3	18.1	17.4	18.1	0.957	397.5	NO DAMAGE			
-15 -15	-90 -95	1	0.00007	18.3	18.1	17.3	18.1	0.954	371.0	NO DAMAGE			
-15	-95 -100	28 3	0.00209 0.00022	18.3 18.3	18.1 18.1	17.2 17.2	18.1 18.1	0.951 0.948	347.8 327.4	NO DAMAGE NO DAMAGE			
-15	-105	13	0.00097	18.3	18.1	17.1	18.1	0.945	309.2	NO DAMAGE			
-15 -15	-110 -115	1 5	0.00007 0.00037	18.3 18.3	18.1 18.1	17.1 17.0	18.1 18.1	0.942	292.9 278.3	NO DAMAGE NO DAMAGE			
-15 -15	-115 -120	1	0.00037	18.3	18.1	17.0	18.1	0.939	265.0	NO DAMAGE			
-15	-125	3	0.00022	18.3	18.1	16.9	18.1	0.932	253.0	NO DAMAGE			
-15 -15	-135 -145	2 4	0.00015 0.00030	18.3 18.3	18.1 18.1	16.8 16.7	18.1 18.1	0.926 0.920	231.9 214.1	NO DAMAGE NO DAMAGE			
-15	-155	1	0.00007	18.3	18.1	16.6	18.1	0.914	198.8	NO DAMAGE			
-15	-160	1	0.00007	18.3	18.1	16.5	18.1	0.911	191.9	NO DAMAGE			
-15 -15	-165 -170	3 2	0.00022 0.00015	18.3 18.3	18.1 18.1	16.5 16.4	18.1 18.1	0.908	185.5 179.5	NO DAMAGE NO DAMAGE			
-15	-185	1	0.00007	18.3	18.1	16.2	18.1	0.896	163.7	NO DAMAGE			
-15 -15	-205 -240	1	0.00007	18.3 18.3	18.1	16.0 15.6	18.1 18.1	0.883	146.5 123.7	NO DAMAGE NO DAMAGE			
-15 -15	-240 -245	1	0.00007	18.3	18.1	15.6	18.1	0.859	121.0	NO DAMAGE			
-20	-30	30520	2.27535	18.3	18.1	18.0	18.1	0.994	2774.1	NO DAMAGE			

Page G.1-112 February 2, 2018

					Dyna	amic				to			
Max	Min	No.	α Pct	Static Stress	Śtre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N		153.8 30 ksi
-20	-35	6326	0.47162	18.3	18.1	17.9	18.1	0.991	1849.4	NO DAMAGE	UNIN	rielu stress	JU KSI
-20	-40	18311	1.36514	18.3	18.1	17.9	18.1	0.988	1387.1	NO DAMAGE			
-20 -20	-45 -50	518 5081	0.03862 0.37880	18.3 18.3	18.1 18.1	17.8 17.7	18.1 18.1	0.985 0.982	1109.7 924.7	NO DAMAGE NO DAMAGE			
-20	-55	59	0.00440	18.3	18.1	17.7	18.1	0.978	792.6	NO DAMAGE			
-20 -20	-60 -65	1465 29	0.10922 0.00216	18.3 18.3	18.1 18.1	17.6 17.6	18.1 18.1	0.975 0.972	693.5 616.5	NO DAMAGE NO DAMAGE			
-20	-70	431	0.03213	18.3	18.1	17.5	18.1	0.969	554.8	NO DAMAGE			
-20 -20	-75 -80	8 196	0.00060 0.01461	18.3 18.3	18.1 18.1	17.5 17.4	18.1 18.1	0.966	504.4 462.4	NO DAMAGE NO DAMAGE			
-20	-85	3	0.00022	18.3	18.1	17.4	18.1	0.960	426.8	NO DAMAGE			
-20 -20	-90 -95	52 2	0.00388	18.3 18.3	18.1 18.1	17.3	18.1 18.1	0.957	396.3 369.9	NO DAMAGE NO DAMAGE			
-20 -20	-95 -100	34	0.00253	18.3	18.1	17.2	18.1	0.954	346.8	NO DAMAGE			
-20	-110	11	0.00082	18.3	18.1	17.1	18.1	0.945	308.2	NO DAMAGE			
-20 -20	-120 -130	13 4	0.00097 0.00030	18.3 18.3	18.1 18.1	17.0 16.9	18.1 18.1	0.938	277.4 252.2	NO DAMAGE NO DAMAGE			
-20	-150	1	0.00007	18.3	18.1	16.6	18.1	0.920	213.4	NO DAMAGE			
-20 -20	-155 -160	1	0.00007	18.3 18.3	18.1 18.1	16.6 16.5	18.1 18.1	0.917	205.5 198.2	NO DAMAGE NO DAMAGE			
-20	-170	1	0.00007	18.3	18.1	16.4	18.1	0.908	184.9	NO DAMAGE			
-25 -25	-35 -40	14163 2509	1.05589 0.18705	18.3 18.3	18.0 18.0	17.9 17.9	18.0 18.0	0.994 0.991	2765.6 1843.7	NO DAMAGE NO DAMAGE			
-25 -25	-45	7096	0.52903	18.3	18.0	17.8	18.0	0.988	1382.8	NO DAMAGE			
-25	-50	460	0.03429	18.3	18.0	17.7	18.0	0.985	1106.2	NO DAMAGE			
-25 -25	-55 -60	2477 92	0.18467 0.00686	18.3 18.3	18.0 18.0	17.7 17.6	18.0 18.0	0.981	921.9 790.2	NO DAMAGE NO DAMAGE			
-25	-65	885	0.06598	18.3	18.0	17.6	18.0	0.975	691.4	NO DAMAGE			
-25 -25	-70 -75	46 446	0.00343	18.3 18.3	18.0 18.0	17.5 17.5	18.0 18.0	0.972	614.6 553.1	NO DAMAGE NO DAMAGE			
-25	-80	10	0.00075	18.3	18.0	17.4	18.0	0.966	502.8	NO DAMAGE			
-25 -25	-85 -90	155 4	0.01156 0.00030	18.3 18.3	18.0 18.0	17.4 17.3	18.0 18.0	0.963 0.960	460.9 425.5	NO DAMAGE NO DAMAGE			
-25	-95	55	0.00410	18.3	18.0	17.2	18.0	0.957	395.1	NO DAMAGE			
-25 -25	-100 -105	1 13	0.00007	18.3 18.3	18.0 18.0	17.2 17.1	18.0 18.0	0.954	368.7 345.7	NO DAMAGE NO DAMAGE			
-25	-115	10	0.00075	18.3	18.0	17.0	18.0	0.944	307.3	NO DAMAGE			
-25	-120 -125	2	0.00015	18.3	18.0	17.0	18.0	0.941	291.1	NO DAMAGE			
-25 -25	-125	9	0.00067 0.00015	18.3 18.3	18.0 18.0	16.9 16.8	18.0 18.0	0.938 0.932	276.6 251.4	NO DAMAGE NO DAMAGE			
-25	-145	2	0.00015	18.3	18.0	16.7	18.0	0.926	230.5	NO DAMAGE			
-25 -25	-155 -165	3 1	0.00022 0.00007	18.3 18.3	18.0 18.0	16.6 16.5	18.0 18.0	0.920 0.913	212.7 197.5	NO DAMAGE NO DAMAGE			
-25	-180	1	0.00007	18.3	18.0	16.3	18.0	0.904	178.4	NO DAMAGE			
-25 -25	-205 -225	1	0.00007 0.00007	18.3 18.3	18.0 18.0	16.0 15.8	18.0 18.0	0.889 0.876	153.6 138.3	NO DAMAGE NO DAMAGE			
-25	-235	1	0.00007	18.3	18.0	15.7	18.0	0.870	131.7	NO DAMAGE			
-30 -30	-40 -45	19532 2909	1.45616 0.21687	18.3 18.3	18.0 18.0	17.9 17.8	18.0 18.0	0.994 0.991	2757.0 1838.0	NO DAMAGE NO DAMAGE			
-30	-50	13716	1.02257	18.3	18.0	17.7	18.0	0.988	1378.5	NO DAMAGE			
-30 -30	-55 -60	553 3849	0.04123 0.28695	18.3 18.3	18.0 18.0	17.7 17.8	18.0 18.0	0.984 0.981	1102.8 919.0	NO DAMAGE NO DAMAGE			
-30	-65	168	0.01252	18.3	18.0	17.6	18.0	0.978	787.7	NO DAMAGE			
-30 -30	-70 -75	1165 39	0.08685 0.00291	18.3 18.3	18.0 18.0	17.5 17.5	18.0 18.0	0.975 0.972	689.3 612.7	NO DAMAGE NO DAMAGE			
-30	-75	266	0.00291	18.3	18.0	17.5	18.0	0.969	551.4	NO DAMAGE			
-30	-85	5	0.00037	18.3	18.0	17.4	18.0	0.966	501.3	NO DAMAGE			
-30 -30	-90 -95	68 2	0.00507 0.00015	18.3 18.3	18.0 18.0	17.3 17.2	18.0 18.0	0.963	459.5 424.2	NO DAMAGE NO DAMAGE			
-30	-100	35	0.00261	18.3	18.0	17.2	18.0	0.957	393.9	NO DAMAGE			
-30 -30	-110 -120	12 3	0.00089 0.00022	18.3 18.3	18.0 18.0	17.1 17.0	18.0 18.0	0.950 0.944	344.6 306.3	NO DAMAGE NO DAMAGE			
-30	-125	1	0.00007	18.3	18.0	16.9	18.0	0.941	290.2	NO DAMAGE			
-30 -30	-130 -140	5 5	0.00037 0.00037	18.3 18.3	18.0 18.0	16.9 16.7	18.0 18.0	0.938 0.932	275.7 250.6	NO DAMAGE NO DAMAGE			
-30	-145	2	0.00015	18.3	18.0	16.7	18.0	0.929	239.7	NO DAMAGE			
-30 -30	-150 -160	1	0.00007 0.00007	18.3 18.3	18.0 18.0	16.6 16.5	18.0 18.0	0.926 0.919	229.8 212.1	NO DAMAGE NO DAMAGE			
-30	-170	1	0.00007	18.3	18.0	16.4	18.0	0.913	196.9	NO DAMAGE			
-30 -30	-180 -190	1	0.00007	18.3 18.3	18.0 18.0	16.3 16.2	18.0 18.0	0.907	183.8 172.3	NO DAMAGE NO DAMAGE			
-30	-195	i	0.00007	18.3	18.0	16.1	18.0	0.898	167.1	NO DAMAGE			
-30 -30	-200 -215	1	0.00007 0.00007	18.3 18.3	18.0 18.0	16.1 15.9	18.0 18.0	0.895 0.885	162.2 149.0	NO DAMAGE NO DAMAGE			
-30	-255	i	0.00007	18.3	18.0	15.5	18.0	0.860	122.5	NO DAMAGE			
-35 -35	-45 -50	12272 2344	0.91491 0.17475	18.3 18.3	17.9 17.9	17.8 17.7	17.9 17.9	0.994 0.991	2748.5 1832.3	NO DAMAGE NO DAMAGE			
-35	-55	8732	0.65099	18.3	17.9	17.7	17.9	0.988	1374.2	NO DAMAGE			
-35 -35	-60 -65	676 3860	0.05040 0.28777	18.3 18.3	17.9 17.9	17.6 17.6	17.9 17.9	0.984 0.981	1099.4 916.2	NO DAMAGE			
-35 -35	-65 -70	154	0.28777	18.3	17.9 17.9	17.6	17.9 17.9	0.981	916.2 785.3	NO DAMAGE			
-35	-75	1443	0.10758	18.3	17.9	17.5	17.9	0.975	687.1	NO DAMAGE			
-35 -35	-80 -85	32 453	0.00239 0.03377	18.3 18.3	17.9 17.9	17.4 17.4	17.9 17.9	0.972	610.8 549.7	NO DAMAGE NO DAMAGE			
-35	-90	6	0.00045	18.3	17.9	17.3	17.9	0.966	499.7	NO DAMAGE			
-35 -35	-95 -100	105 4	0.00783	18.3 18.3	17.9 17.9	17.2 17.2	17.9 17.9	0.963	458.1 422.8	NO DAMAGE NO DAMAGE			
-35	-105	28	0.00209	18.3	17.9	17.1	17.9	0.956	392.6	NO DAMAGE			
-35 -35	-115 -120	14	0.00104 0.00007	18.3 18.3	17.9 17.9	17.0 17.0	17.9 17.9	0.950 0.947	343.6 323.4	NO DAMAGE NO DAMAGE			
-35	-125	4	0.00030	18.3	17.9	16.9	17.9	0.944	305.4	NO DAMAGE			

Page G.1-113 February 2, 2018

					Dyna	ımic				to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
-35	-130	1	0.00007	18.3	17.9	16.9	17.9	0.941	289.3	NO DAMAGE	GDT4	riciu sciess	UU KSI
-35 -35	-135 -150	5	0.00037 0.00007	18.3 18.3	17.9 17.9	16.8 16.6	17.9 17.9	0.938	274.8 239.0	NO DAMAGE NO DAMAGE			
-35	-165	1 2	0.00007	18.3	17.9	16.5	17.9	0.928	211.4	NO DAMAGE			
-35	-175	1	0.00007	18.3	17.9	16.4	17.9	0.913	196.3	NO DAMAGE			
-35 -35	-180 -215	1	0.00007 0.00007	18.3 18.3	17.9 17.9	16.3 15.9	17.9 17.9	0.910 0.888	189.6 152.7	NO DAMAGE NO DAMAGE			
-40	-50	14077	1.04948	18.3	17.9	17.7	17.9	0.994	2739.9	NO DAMAGE			
-40	-55	2298	0.17132	18.3	17.9	17.7	17.9	0.991	1826.6	NO DAMAGE			
-40 -40	-60 -65	10806 770	0.80562 0.05741	18.3 18.3	17.9 17.9	17.6 17.6	17.9 17.9	0.988	1370.0 1096.0	NO DAMAGE NO DAMAGE			
-40	-70	2852	0.21262	18.3	17.9	17.5	17.9	0.981	913.3	NO DAMAGE			
-40	-75	135	0.01006	18.3	17.9	17.5	17.9	0.978	782.8	NO DAMAGE			
-40 -40	-80 -85	567 32	0.04227 0.00239	18.3 18.3	17.9 17.9	17.4 17.4	17.9 17.9	0.975 0.972	685.0 608.9	NO DAMAGE NO DAMAGE			
-40	-90	154	0.01148	18.3	17.9	17.3	17.9	0.969	548.0	NO DAMAGE			
-40 -40	-95 -100	8 43	0.00060 0.00321	18.3 18.3	17.9 17.9	17.2 17.2	17.9 17.9	0.966	498.2 456.7	NO DAMAGE NO DAMAGE			
-40	-105	5	0.00037	18.3	17.9	17.1	17.9	0.959	421.5	NO DAMAGE			
-40	-110	13	0.00097	18.3	17.9	17.1	17.9	0.956	391.4	NO DAMAGE			
-40 -40	-115 -120	2 7	0.00015 0.00052	18.3 18.3	17.9 17.9	17.0 17.0	17.9 17.9	0.953	365.3 342.5	NO DAMAGE NO DAMAGE			
-40	-125	1	0.00007	18.3	17.9	16.9	17.9	0.947	322.3	NO DAMAGE			
-40 -40	-130 -140	7 2	0.00052 0.00015	18.3 18.3	17.9 17.9	16.9 16.7	17.9 17.9	0.944	304.4 274.0	NO DAMAGE NO DAMAGE			
-40	-140	2	0.00015	18.3	17.9	16.5	17.9	0.925	228.3	NO DAMAGE			
-40	-165	1	0.00007	18.3	17.9	16.5	17.9	0.922	219.2	NO DAMAGE			
-40 -45	-180 -55	1 13228	0.00007 0.98618	18.3 18.3	17.9 17.8	16.3 17.7	17.9 17.8	0.913 0.994	195.7 2731.4	NO DAMAGE NO DAMAGE			
-45	-60	2591	0.19317	18.3	17.8	17.6	17.8	0.991	1820.9	NO DAMAGE			
-45 -45	-65 -70	13577 751	1.01220 0.05599	18.3 18.3	17.8 17.8	17.6 17.5	17.8 17.8	0.987 0.984	1365.7 1092.6	NO DAMAGE NO DAMAGE			
-45	-75	4721	0.35196	18.3	17.8	17.5	17.8	0.981	910.5	NO DAMAGE			
-45	-80	159	0.01185	18.3	17.8	17.4	17.8	0.978	780.4	NO DAMAGE			
-45 -45	-85 -90	1270 32	0.09468 0.00239	18.3 18.3	17.8 17.8	17.4 17.3	17.8 17.8	0.975	682.8 607.0	NO DAMAGE NO DAMAGE			
-45	-95	224	0.01670	18.3	17.8	17.2	17.8	0.969	546.3	NO DAMAGE			
-45 -45	-100 -105	7 59	0.00052 0.00440	18.3 18.3	17.8 17.8	17.2 17.1	17.8 17.8	0.966	496.6 455.2	NO DAMAGE NO DAMAGE			
-45	-110	6	0.00045	18.3	17.8	17.1	17.8	0.959	420.2	NO DAMAGE			
-45 -45	-115 -120	31 5	0.00231 0.00037	18.3 18.3	17.8 17.8	17.0 17.0	17.8 17.8	0.956	390.2 364.2	NO DAMAGE NO DAMAGE			
-45	-125	12	0.00089	18.3	17.8	16.9	17.8	0.950	341.4	NO DAMAGE			
-45 -45	-135 -145	7 3	0.00052 0.00022	18.3 18.3	17.8 17.8	16.8 16.7	17.8 17.8	0.944	303.5 273.1	NO DAMAGE NO DAMAGE			
-45 -45	-175	1	0.00022	18.3	17.8	16.4	17.8	0.919	210.1	NO DAMAGE			
-45	-215	1	0.00007	18.3	17.8	15.9	17.8	0.894	160.7	NO DAMAGE			
-45 -50	-230 -60	13667	0.00007 1.01891	18.3 18.3	17.8 17.7	15.7 17.6	17.8 17.7	0.884 0.994	147.6 2722.8	NO DAMAGE NO DAMAGE			
-50	-65	2746	0.20472	18.3	17.7	17.6	17.7	0.991	1815.2	NO DAMAGE			
-50 -50	-70 -75	9048 799	0.67455 0.05957	18.3 18.3	17.7 17.7	17.5 17.5	17.7 17.7	0.987 0.984	1361.4 1089.1	NO DAMAGE NO DAMAGE			
-50	-80	1862	0.13882	18.3	17.7	17.4	17.7	0.981	907.6	NO DAMAGE			
-50 -50	-85 -90	159 403	0.01185 0.03004	18.3 18.3	17.7 17.7	17.4 17.3	17.7 17.7	0.978 0.975	778.0 680.7	NO DAMAGE NO DAMAGE			
-50	-95	32	0.00239	18.3	17.7	17.2	17.7	0.972	605.1	NO DAMAGE			
-50 -50	-100 -105	122 12	0.00910	18.3 18.3	17.7 17.7	17.2 17.1	17.7 17.7	0.969 0.965	544.6 495.1	NO DAMAGE NO DAMAGE			
-50	-110	33	0.00246	18.3	17.7	17.1	17.7	0.962	453.8	NO DAMAGE			
-50 -50	-115 -120	2 11	0.00015 0.00082	18.3 18.3	17.7 17.7	17.0 17.0	17.7 17.7	0.959 0.956	418.9 389.0	NO DAMAGE NO DAMAGE			
-50	-125	2	0.00002	18.3	17.7	16.9	17.7	0.953	363.0	NO DAMAGE			
-50 -50	-130 -135	5 1	0.00037 0.00007	18.3 18.3	17.7 17.7	16.9 16.8	17.7 17.7	0.950 0.947	340.4 320.3	NO DAMAGE NO DAMAGE			
-50	-140	2	0.00015	18.3	17.7	16.7	17.7	0.943	302.5	NO DAMAGE			
-50 -50	-150 -160	1 3	0.00007 0.00022	18.3 18.3	17.7 17.7	16.6 16.5	17.7 17.7	0.937 0.931	272.3 247.5	NO DAMAGE NO DAMAGE			
-50	-170	1	0.00022	18.3	17.7	16.4	17.7	0.925	226.9	NO DAMAGE			
-50 -50	-180 -215	2	0.00015	18.3 18.3	17.7 17.7	16.3 15.9	17.7 17.7	0.918	209.4 165.0	NO DAMAGE NO DAMAGE			
-50 -55	-215 -65	16459	1.22706	18.3	17.7	17.6	17.7	0.896	2714.3	NO DAMAGE			
-55	-70	2658	0.19816	18.3	17.7	17.5	17.7	0.991	1809.5	NO DAMAGE			
-55 -55	-75 -80	14709 1037	1.09660 0.07731	18.3 18.3	17.7 17.7	17.5 17.4	17.7 17.7	0.987 0.984	1357.1 1085.7	NO DAMAGE NO DAMAGE			
-55	-85	3097	0.23089	18.3	17.7	17.4	17.7	0.981	904.8	NO DAMAGE			
-55 -55	-90 -95	215 683	0.01603 0.05092	18.3 18.3	17.7 17.7	17.3 17.2	17.7 17.7	0.978	775.5 678.6	NO DAMAGE NO DAMAGE			
-55	-100	56	0.00417	18.3	17.7	17.2	17.7	0.972	603.2	NO DAMAGE			
-55 -55	-105 -110	306 6	0.02281 0.00045	18.3 18.3	17.7 17.7	17.1	17.7 17.7	0.969 0.965	542.9 493.5	NO DAMAGE NO DAMAGE			
-55	-115	132	0.00984	18.3	17.7	17.0	17.7	0.962	452.4	NO DAMAGE			
-55 -55	-120 -125	3 30	0.00022 0.00224	18.3 18.3	17.7 17.7	17.0 16.9	17.7 17.7	0.959 0.956	417.6 387.8	NO DAMAGE NO DAMAGE			
-55	-135	4	0.00030	18.3	17.7	16.8	17.7	0.950	339.3	NO DAMAGE			
-55 -55	-145 -155	3 1	0.00022 0.00007	18.3 18.3	17.7 17.7	16.7 16.6	17.7 17.7	0.943 0.937	301.6 271.4	NO DAMAGE NO DAMAGE			
-55	-160	1	0.00007	18.3	17.7	16.5	17.7	0.934	258.5	NO DAMAGE			
-55 -55	-165 -195	1	0.00007 0.00007	18.3 18.3	17.7 17.7	16.5 16.1	17.7 17.7	0.931	246.8 193.9	NO DAMAGE NO DAMAGE			
-55	-205	1	0.00007	18.3	17.7	16.0	17.7	0.906	181.0	NO DAMAGE			
-55	-225	1	0.00007	18.3	17.7	15.8	17.7	0.893	159.7	NO DAMAGE			

Page G.1-114 February 2, 2018

					Dyna					to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
-55	-235	1	0.00007	18.3	17.7	15.7	17.7	0.887	150.8	NO DAMAGE			
-55 -60	-270 -70	1 12251	0.00007 0.91335	18.3 18.3	17.7 17.6	15.3 17.5	17.7 17.6	0.865 0.994	126.2 2705.7	NO DAMAGE NO DAMAGE			
-60	-75	2961	0.22075	18.3	17.6	17.5	17.6	0.991	1803.8	NO DAMAGE			
-60 -60	-80 -85	7155 1139	0.53342 0.08492	18.3 18.3	17.6 17.6	17.4 17.4	17.6	0.987 0.984	1352.9	NO DAMAGE NO DAMAGE			
-60	-85	1533	0.08492	18.3	17.6	17.4	17.6 17.6	0.984	1082.3 901.9	NO DAMAGE			
-60	-95	213	0.01588	18.3	17.6	17.2	17.6	0.978	773.1	NO DAMAGE			
-60 -60	-100 -105	311 44	0.02319 0.00328	18.3 18.3	17.6 17.6	17.2 17.1	17.6 17.6	0.975 0.972	676.4 601.3	NO DAMAGE NO DAMAGE			
-60	-110	70	0.00522	18.3	17.6	17.1	17.6	0.968	541.1	NO DAMAGE			
-60 -60	-115 -120	11 23	0.00082	18.3 18.3	17.6 17.6	17.0 17.0	17.6 17.6	0.965	492.0 451.0	NO DAMAGE NO DAMAGE			
-60	-125	1	0.00007	18.3	17.6	16.9	17.6	0.959	416.3	NO DAMAGE			
-60	-130	3	0.00022	18.3	17.6	16.9	17.6	0.956	386.5	NO DAMAGE			
-60 -60	-140 -150	3 1	0.00022 0.00007	18.3 18.3	17.6 17.6	16.7 16.6	17.6 17.6	0.949	338.2 300.6	NO DAMAGE NO DAMAGE			
-60	-160	3	0.00022	18.3	17.6	16.5	17.6	0.937	270.6	NO DAMAGE			
-60 -60	-170 -190	2	0.00015 0.00007	18.3 18.3	17.6 17.6	16.4 16.2	17.6 17.6	0.930	246.0 208.1	NO DAMAGE NO DAMAGE			
-60	-195	i	0.00007	18.3	17.6	16.1	17.6	0.915	200.4	NO DAMAGE			
-65	-75	16359	1.21961	18.3	17.6	17.5	17.6	0.994	2697.2	NO DAMAGE			
-65 -65	-80 -85	3270 10064	0.24379 0.75030	18.3 18.3	17.6 17.6	17.4 17.4	17.6 17.6	0.990 0.987	1798.1 1348.6	NO DAMAGE NO DAMAGE			
-65	-90	1010	0.07530	18.3	17.6	17.3	17.6	0.984	1078.9	NO DAMAGE			
-65 -65	-95 -100	2428 173	0.18101 0.01290	18.3 18.3	17.6 17.6	17.2 17.2	17.6 17.6	0.981	899.1 770.6	NO DAMAGE NO DAMAGE			
-65	-105	939	0.07001	18.3	17.6	17.1	17.6	0.975	674.3	NO DAMAGE			
-65 -65	-110 -115	22 235	0.00164	18.3 18.3	17.6 17.6	17.1 17.0	17.6 17.6	0.971	599.4 539.4	NO DAMAGE NO DAMAGE			
-65	-115	235 34	0.01752	18.3	17.6	16.9	17.6	0.962	449.5	NO DAMAGE			
-65	-130	1	0.00007	18.3	17.6	16.9	17.6	0.959	415.0	NO DAMAGE			
-65 -65	-135 -140	4	0.00030	18.3 18.3	17.6 17.6	16.8 16.7	17.6 17.6	0.956	385.3 359.6	NO DAMAGE NO DAMAGE			
-65	-145	4	0.00030	18.3	17.6	16.7	17.6	0.949	337.1	NO DAMAGE			
-65 -65	-155 -160	1 2	0.00007	18.3 18.3	17.6 17.6	16.6 16.5	17.6 17.6	0.943	299.7 283.9	NO DAMAGE NO DAMAGE			
-65	-165	2	0.00015	18.3	17.6	16.5	17.6	0.940	269.7	NO DAMAGE			
-65	-175	2	0.00015	18.3	17.6	16.4	17.6	0.930	245.2	NO DAMAGE			
-65 -65	-195 -205	1	0.00007 0.00007	18.3 18.3	17.6 17.6	16.1 16.0	17.6 17.6	0.918 0.911	207.5 192.7	NO DAMAGE NO DAMAGE			
-65	-215	1	0.00007	18.3	17.6	15.9	17.6	0.905	179.8	NO DAMAGE			
-70 -70	-80 -85	10471 3301	0.78064 0.24610	18.3 18.3	17.5 17.5	17.4 17.4	17.5 17.5	0.994 0.990	2688.6 1792.4	NO DAMAGE NO DAMAGE			
-70	-90	5651	0.42130	18.3	17.5	17.3	17.5	0.987	1344.3	NO DAMAGE			
-70	-95	952	0.07097	18.3	17.5	17.2	17.5	0.984	1075.5	NO DAMAGE			
-70 -70	-100 -105	1144 124	0.08529 0.00924	18.3 18.3	17.5 17.5	17.2 17.1	17.5 17.5	0.981 0.978	896.2 768.2	NO DAMAGE NO DAMAGE			
-70	-110	229	0.01707	18.3	17.5	17.1	17.5	0.975	672.2	NO DAMAGE			
-70 -70	-115 -120	16 40	0.00119 0.00298	18.3 18.3	17.5 17.5	17.0 17.0	17.5 17.5	0.971	597.5 537.7	NO DAMAGE NO DAMAGE			
-70	-125	2	0.00015	18.3	17.5	16.9	17.5	0.965	488.8	NO DAMAGE			
-70 -70	-130	9	0.00067	18.3	17.5 17.5	16.9	17.5	0.962	448.1	NO DAMAGE			
-70 -70	-140 -150	2	0.00022 0.00015	18.3 18.3	17.5	16.7 16.6	17.5 17.5	0.955 0.949	384.1 336.1	NO DAMAGE NO DAMAGE			
-70	-160	1	0.00007	18.3	17.5	16.5	17.5	0.943	298.7	NO DAMAGE			
-70 -70	-165 -170	1	0.00007 0.00007	18.3 18.3	17.5 17.5	16.5 16.4	17.5 17.5	0.940 0.936	283.0 268.9	NO DAMAGE NO DAMAGE			
-70	-180	2	0.00015	18.3	17.5	16.3	17.5	0.930	244.4	NO DAMAGE			
-70 -70	-190 -200	1 3	0.00007 0.00022	18.3 18.3	17.5 17.5	16.2 16.1	17.5 17.5	0.924	224.1 206.8	NO DAMAGE NO DAMAGE			
-75	-85	14182	1.05731	18.3	17.5	17.4	17.5	0.994	2680.1	NO DAMAGE			
-75	-90	2967	0.22120	18.3	17.5	17.3	17.5	0.990	1786.7	NO DAMAGE			
-75 -75	-95 -100	9334 735	0.69588 0.05480	18.3 18.3	17.5 17.5	17.2 17.2	17.5 17.5	0.987 0.984	1340.0 1072.0	NO DAMAGE NO DAMAGE			
-75	-105	2065	0.15395	18.3	17.5	17.1	17.5	0.981	893.4	NO DAMAGE			
-75 -75	-110 -115	86 338	0.00641 0.02520	18.3 18.3	17.5 17.5	17.1 17.0	17.5 17.5	0.978 0.974	765.7 670.0	NO DAMAGE NO DAMAGE			
-75	-120	14	0.00104	18.3	17.5	17.0	17.5	0.971	595.6	NO DAMAGE			
-75 -75	-125 -130	45 3	0.00335	18.3 18.3	17.5 17.5	16.9 16.9	17.5 17.5	0.968	536.0 487.3	NO DAMAGE NO DAMAGE			
-75	-135	5	0.00022	18.3	17.5	16.8	17.5	0.962	446.7	NO DAMAGE			
-75	-140	1	0.00007	18.3	17.5	16.7	17.5	0.959	412.3	NO DAMAGE			
-75 -75	-145 -150	2	0.00015 0.00007	18.3 18.3	17.5 17.5	16.7 16.6	17.5 17.5	0.955 0.952	382.9 357.3	NO DAMAGE NO DAMAGE			
-75	-155	1	0.00007	18.3	17.5	16.6	17.5	0.949	335.0	NO DAMAGE			
-75 -75	-160 -165	3 2	0.00022 0.00015	18.3 18.3	17.5 17.5	16.5 16.5	17.5 17.5	0.946 0.943	315.3 297.8	NO DAMAGE NO DAMAGE			
-75	-195	2	0.00015	18.3	17.5	16.1	17.5	0.923	223.3	NO DAMAGE			
-75	-205	1	0.00007	18.3	17.5	16.0	17.5	0.917	206.2	NO DAMAGE			
-75 -80	-215 -90	1 8101	0.00007 0.60395	18.3 18.3	17.5 17.4	15.9 17.3	17.5 17.4	0.911 0.994	191.4 2671.5	NO DAMAGE NO DAMAGE			
-80	-95	2409	0.17960	18.3	17.4	17.2	17.4	0.990	1781.0	NO DAMAGE			
-80 -80	-100 -105	3830 649	0.28554 0.04838	18.3 18.3	17.4 17.4	17.2 17.1	17.4 17.4	0.987 0.984	1335.8 1068.6	NO DAMAGE NO DAMAGE			
-80	-110	766	0.05711	18.3	17.4	17.1	17.4	0.981	890.5	NO DAMAGE			
-80	-115	61	0.00455	18.3	17.4	17.0	17.4	0.978	763.3	NO DAMAGE			
-80 -80	-120 -125	135 1	0.01006 0.00007	18.3 18.3	17.4 17.4	17.0 16.9	17.4 17.4	0.974 0.971	667.9 593.7	NO DAMAGE NO DAMAGE			
-80	-130	33	0.00246	18.3	17.4	16.9	17.4	0.968	534.3	NO DAMAGE			
-80	-135	2	0.00015	18.3	17.4	16.8	17.4	0.965	485.7	NO DAMAGE			

Page G.1-115 February 2, 2018

					Dyna	mic		_		to			
Max	Min	No.	α Pct	Static Stress	Stre Max	Min	Max Adjusted	Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
-80 -80	-140 -145	10 2	0.00075 0.00015	18.3	17.4 17.4	16.7 16.7	17.4 17.4	0.962 0.958	445.3 411 N	NO DAMAGE NO DAMAGE			
-80	-150	2	0.00015	18.3	17.4	16.6	17.4	0.955	381.6	NO DAMAGE			
-80	-170	1	0.00007	18.3	17.4 17.4	16.4	17.4	0.942	296.8	NO DAMAGE			
-80 -80	-180 -200	i	0.00007 0.00007	18.3 18.3	17.4	16.3 16.1	17.4 17.4	0.936	267.2 222.6	NO DAMAGE NO DAMAGE			
-85	-95	13290	0.99081	18.3	17.4	17.2	17.4	0.994	2663.0	NO DAMAGE			
-85 -85	-100 -105	2275 6479	0.16961 0.48303	18.3 18.3	17.4 17.4	17.2 17.1	17.4 17.4	0.990 0.987	1775.3 1331.5	NO DAMAGE NO DAMAGE			
-85	-110	483	0.03601	18.3	17.4	17.1	17.4	0.984	1065.2	NO DAMAGE			
-85 -85	-115 -120	766 50	0.05711 0.00373	18.3 18.3	17.4 17.4	17.0 17.0	17.4 17.4	0.981 0.978	887.7 760.9	NO DAMAGE NO DAMAGE			
-85	-125	69	0.00514	18.3	17.4	16.9	17.4	0.974	665.7	NO DAMAGE			
-85 -85	-130 -135	7 8	0.00052 0.00080	18.3 18.3	17.4 17.4	16.9 16.8	17.4 17.4	0.971	591.8 532.6	NO DAMAGE NO DAMAGE			
-85	-140	2	0.00015	18.3	17.4	16.7	17.4	0.965	484.2	NO DAMAGE			
-85 -85	-145 -150	2	0.00015 0.00007	18.3	17.4 17.4	16.7 16.6	17.4 17.4	0.961	443.8 409.7	NO DAMAGE			
-85	-155	8	0.00060	18.3	17.4	16.6	17.4	0.955	380.4	NO DAMAGE			
-85 -85	-160 -165	1 2	0.00007 0.00015	18.3 18.3	17.4 17.4	16.5 16.5	17.4 17.4	0.952 0.949	355.1 332.9	NO DAMAGE NO DAMAGE			
-85	-175	1	0.00007	18.3	17.4	16.4	17.4	0.942	295.9	NO DAMAGE			
-85 -90	-205 -100	2 5702	0.00015 0.42510	18.3 18.3	17.4 17.3	16.0 17.2	17.4 17.3	0.923	221.9 2654.4	NO DAMAGE NO DAMAGE			
-90	-100	1616	0.42510	18.3	17.3	17.2	17.3	0.994	2654.4 1769.6	NO DAMAGE			
-90	-110	2362	0.17609	18.3	17.3	17.1	17.3	0.987	1327.2	NO DAMAGE			
-90 -90	-115 -120	348 508	0.02594 0.03787	18.3 18.3	17.3 17.3	17.0 17.0	17.3 17.3	0.984 0.981	1061.8 884.8	NO DAMAGE NO DAMAGE			
-90	-125	42	0.00313	18.3	17.3	16.9	17.3	0.977	758.4	NO DAMAGE			
-90 -90	-130 -135	85 5	0.00634 0.00037	18.3 18.3	17.3 17.3	16.9 16.8	17.3 17.3	0.974 0.971	663.6 589.9	NO DAMAGE NO DAMAGE			
-90	-140	17	0.00127	18.3	17.3	16.7	17.3	0.968	530.9	NO DAMAGE			
-90 -90	-145 -150	3 5	0.00022 0.00037	18.3	17.3 17.3	16.7 16.6	17.3 17.3	0.965 0.961	482.6 442.4	NO DAMAGE NO DAMAGE			
-90	-155	2	0.00015	18.3	17.3	16.6	17.3	0.958	408.4	NO DAMAGE			
-90 -90	-160 -170	6 2	0.00045 0.00015	18.3 18.3	17.3 17.3	16.5 16.4	17.3 17.3	0.955 0.948	379.2 331.8	NO DAMAGE NO DAMAGE			
-90	-180	1	0.00007	18.3	17.3	16.3	17.3	0.942	294.9	NO DAMAGE			
-90 -90	-190 -200	2	0.00015 0.00007	18.3 18.3	17.3 17.3	16.2 16.1	17.3 17.3	0.936	265.4 241.3	NO DAMAGE NO DAMAGE			
-90	-250	i	0.00007	18.3	17.3	15.5	17.3	0.829	165.9	NO DAMAGE			
-95 -95	-105	8428 1303	0.62833	18.3	17.2 17.2	17.1	17.2	0.994 0.990	2645.9 1763.9	NO DAMAGE			
-95 -95	-110 -115	3709	0.09714 0.27652	18.3 18.3	17.2	17.1	17.2 17.2	0.990	1763.9	NO DAMAGE NO DAMAGE			
-95	-120	265	0.01976	18.3	17.2	17.0	17.2	0.984	1058.4	NO DAMAGE			
-95 -95	-125 -130	319 31	0.02378 0.00231	18.3 18.3	17.2 17.2	16.9 16.9	17.2 17.2	0.981 0.977	882.0 756.0	NO DAMAGE NO DAMAGE			
-95	-135	43	0.00321	18.3	17.2	16.8	17.2	0.974	661.5	NO DAMAGE			
-95 -95	-140 -145	3 6	0.00022 0.00045	18.3 18.3	17.2 17.2	16.7 16.7	17.2 17.2	0.971 0.968	588.0 529.2	NO DAMAGE NO DAMAGE			
-95	-150	4	0.00030	18.3	17.2	16.6	17.2	0.964	481.1	NO DAMAGE			
-95 -95	-155 -160	5 3	0.00037 0.00022	18.3 18.3	17.2 17.2	16.6 16.5	17.2 17.2	0.961 0.958	441.0 407.1	NO DAMAGE NO DAMAGE			
-95	-165	3	0.00022	18.3	17.2	16.5	17.2	0.955	378.0	NO DAMAGE			
-95 -95	-175 -195	1	0.00007 0.00007	18.3 18.3	17.2 17.2	16.4 16.1	17.2 17.2	0.948	330.7 264.6	NO DAMAGE NO DAMAGE			
-95	-225	i	0.00007	18.3	17.2	15.8	17.2	0.916	203.5	NO DAMAGE			
-100 -100	-110 -115	4039 1147	0.30112 0.08551	18.3 18.3	17.2 17.2	17.1 17.0	17.2 17.2	0.994	2637.3 1758.2	NO DAMAGE NO DAMAGE			
-100	-120	1845	0.13755	18.3	17.2	17.0	17.2	0.987	1318.7	NO DAMAGE			
-100 -100	-125 -130	199 436	0.01484 0.03251	18.3 18.3	17.2 17.2	16.9 16.9	17.2 17.2	0.984	1054.9 879.1	NO DAMAGE NO DAMAGE			
-100	-135	20	0.00149	18.3	17.2	16.8	17.2	0.977	753.5	NO DAMAGE			
-100 -100	-140 -145	67 2	0.00500 0.00015	18.3 18.3	17.2 17.2	16.7 16.7	17.2 17.2	0.974 0.971	659.3 586.1	NO DAMAGE NO DAMAGE			
-100	-150	14	0.00104	18.3	17.2	16.6	17.2	0.968	527.5	NO DAMAGE			
-100 -100	-160 -170	7	0.00052 0.00007	18.3 18.3	17.2 17.2	16.5 16.4	17.2 17.2	0.961 0.955	439.6 376.8	NO DAMAGE NO DAMAGE			
-100	-175	1	0.00007	18.3	17.2	16.4	17.2	0.951	351.6	NO DAMAGE			
-100 -100	-180 -185	2	0.00015 0.00007	18.3 18.3	17.2 17.2	16.3 16.2	17.2 17.2	0.948 0.945	329.7 310.3	NO DAMAGE NO DAMAGE			
-100	-190	i	0.00007	18.3	17.2	16.2	17.2	0.942	293.0	NO DAMAGE			
-105 -105	-115 -120	6351 994	0.47348 0.07411	18.3 18.3	17.1	17.0 17.0	17.1 17.1	0.993	2628.8 1752.5	NO DAMAGE NO DAMAGE			
-105	-125	2749	0.20495	18.3	17.1	16.9	17.1	0.987	1314.4	NO DAMAGE			
-105 -105	-130 -135	177 305	0.01320 0.02274	18.3 18.3	17.1 17.1	16.9 16.8	17.1 17.1	0.984	1051.5 876.3	NO DAMAGE NO DAMAGE			
-105	-140	16	0.00119	18.3	17.1	16.7	17.1	0.977	751.1	NO DAMAGE			
-105 -105	-145 -150	18 4	0.00134 0.00030	18.3 18.3	17.1 17.1	16.7 16.6	17.1 17.1	0.974	657.2 584.2	NO DAMAGE NO DAMAGE			
-105	-155	4	0.00030	18.3	17.1	16.6	17.1	0.967	525.8	NO DAMAGE			
-105 105	-160	2	0.00015	18.3 18.3	17.1 17.1	16.5 16.5	17.1 17.1	0.964 0.961	478.0 438.1	NO DAMAGE			
-105 -105	-165 -175	5 3	0.00037 0.00022	18.3	17.1	16.4	17.1	0.954	375.5	NO DAMAGE NO DAMAGE			
-105	-185 -190	2 2	0.00015	18.3	17.1	16.2	17.1	0.948	328.6	NO DAMAGE			
-105 -105	-195	1	0.00015 0.00007	18.3 18.3	17.1 17.1	16.2 16.1	17.1 17.1	0.945 0.941	309.3 292.1	NO DAMAGE NO DAMAGE			
-105 -110	-210	1 3584	0.00007	18.3	17.1 17.1	16.0 17.0	17.1	0.932	250.4 2620.2	NO DAMAGE NO DAMAGE			
-110 -110	-120 -125	3584 852	0.26720 0.06352	18.3 18.3	17.1	16.9	17.1 17.1	0.993	2620.2 1746.8	NO DAMAGE			
-110	-130	1577	0.11757	18.3	17.1	16.9	17.1	0.987	1310.1	NO DAMAGE			

Page G.1-116 February 2, 2018

				O:	Dyna	mic		_		to			450.0
Max	Min	No.	α Pct	Static Stress	Stre Max	ss Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile Yield stress	153.8 60 ksi
-110	-135	127	0.00947	18.3	17.1	16.8	17.1	0.984 0.980	1048.1	NO DAMAGE NO DAMAGE			
-110 -110	-140 -145	260 13	0.01938	18.3	17.1 17.1	16.7 16.7	17.1 17.1	0.980	873.4 748.6	NO DAMAGE			
-110	-150	38	0.00283	18.3	17.1	16.6	17.1	0.974	655.1	NO DAMAGE			
-110 -110	-155 -160	5 10	0.00037 0.00075	18.3 18.3	17.1 17.1	16.6 16.5	17.1 17.1	0.971	582.3 524.0	NO DAMAGE NO DAMAGE			
-110	-165	1	0.00007	18.3	17.1	16.5	17.1	0.964	476.4	NO DAMAGE			
-110 -110	-170 -175	2 2	0.00015 0.00015	18.3 18.3	17.1 17.1	16.4 16.4	17.1 17.1	0.961 0.958	436.7 403.1	NO DAMAGE NO DAMAGE			
-110	-180	2	0.00015	18.3	17.1	16.3	17.1	0.954	374.3	NO DAMAGE			
-110 -115	-205 -125	2	0.00015	18.3 18.3	17.1 17.0	16.0 16.9	17.1 17.0	0.938	275.8 2611.7	NO DAMAGE			
-115	-125	5236 840	0.39036 0.06262	18.3	17.0	16.9	17.0	0.993 0.990	1741.1	NO DAMAGE NO DAMAGE			
-115	-135	1968	0.14672	18.3	17.0	16.8	17.0	0.987	1305.8	NO DAMAGE			
-115 -115	-140 -145	141 138	0.01051 0.01029	18.3 18.3	17.0 17.0	16.7 16.7	17.0 17.0	0.984 0.980	1044.7 870.6	NO DAMAGE NO DAMAGE			
-115	-150	9	0.00067	18.3	17.0	16.6	17.0	0.977	746.2	NO DAMAGE			
-115 -115	-155 -160	21	0.00157 0.00015	18.3 18.3	17.0 17.0	16.6 16.5	17.0 17.0	0.974	652.9 580.4	NO DAMAGE NO DAMAGE			
-115	-165	ê	0.00060	18.3	17.0	16.5	17.0	0.967	522.3	NO DAMAGE			
-115 -115	-170 -175	1 5	0.00007 0.00037	18.3 18.3	17.0 17.0	16.4 16.4	17.0 17.0	0.964	474.9 435.3	NO DAMAGE NO DAMAGE			
-115	-175	1	0.00007	18.3	17.0	16.2	17.0	0.954	373.1	NO DAMAGE			
-115	-245	1	0.00007	18.3	17.0	15.6	17.0	0.915	200.9	NO DAMAGE			
-120 -120	-130 -135	2973 831	0.22165 0.06195	18.3 18.3	17.0 17.0	16.9 16.8	17.0 17.0	0.993 0.990	2603.1 1735.4	NO DAMAGE NO DAMAGE			
-120	-140	1120	0.08350	18.3	17.0	16.7	17.0	0.987	1301.6	NO DAMAGE			
-120 -120	-145 -150	100 164	0.00746 0.01223	18.3 18.3	17.0 17.0	16.7 16.6	17.0 17.0	0.984 0.980	1041.3 867.7	NO DAMAGE NO DAMAGE			
-120	-155	8	0.00060	18.3	17.0	16.6	17.0	0.977	743.8	NO DAMAGE			
-120	-160	25	0.00186	18.3	17.0	16.5	17.0	0.974	650.8	NO DAMAGE			
-120 -120	-170 -180	2	0.00015 0.00022	18.3 18.3	17.0 17.0	16.4 16.3	17.0 17.0	0.967 0.961	520.6 433.9	NO DAMAGE NO DAMAGE			
-120	-190	1	0.00007	18.3	17.0	16.2	17.0	0.954	371.9	NO DAMAGE			
-120 -120	-200 -205	1	0.00007 0.00007	18.3 18.3	17.0 17.0	16.1 16.0	17.0 17.0	0.947 0.944	325.4 306.3	NO DAMAGE NO DAMAGE			
-120	-215	1	0.00007	18.3	17.0	15.9	17.0	0.938	274.0	NO DAMAGE			
-125 -125	-135 -140	4276 683	0.31879 0.05092	18.3 18.3	16.9 16.9	16.8 16.7	16.9 16.9	0.993	2594.6 1729.7	NO DAMAGE NO DAMAGE			
-125	-145	1552	0.11571	18.3	16.9	16.7	16.9	0.987	1297.3	NO DAMAGE			
-125 -125	-150 -155	97 88	0.00723 0.00656	18.3	16.9 16.9	16.6 16.6	16.9 16.9	0.984	1037.8 864.9	NO DAMAGE NO DAMAGE			
-125	-160	17	0.00000	18.3	16.9	16.5	16.9	0.977	741.3	NO DAMAGE			
-125	-165	13	0.00097	18.3	16.9	16.5	16.9	0.974	648.6	NO DAMAGE			
-125 -125	-170 -175	4 3	0.00030 0.00022	18.3 18.3	16.9 16.9	16.4 16.4	16.9 16.9	0.970	576.6 518.9	NO DAMAGE NO DAMAGE			
-125	-180	1	0.00007	18.3	16.9	16.3	16.9	0.964	471.7	NO DAMAGE			
-125 -125	-185 -190	3 1	0.00022	18.3 18.3	16.9 16.9	16.2 16.2	16.9 16.9	0.960	432.4 399.2	NO DAMAGE NO DAMAGE			
-125	-195	1	0.00007	18.3	16.9	16.1	16.9	0.954	370.7	NO DAMAGE			
-130 -130	-140 -145	2817 656	0.21002 0.04891	18.3 18.3	16.9 16.9	16.7 16.7	16.9 16.9	0.993 0.990	2586.0 1724.0	NO DAMAGE NO DAMAGE			
-130	-150	896	0.06680	18.3	16.9	16.6	16.9	0.987	1293.0	NO DAMAGE			
-130 -130	-155 -160	95 94	0.00708 0.00701	18.3 18.3	16.9 16.9	16.6 16.5	16.9 16.9	0.983	1034.4 862.0	NO DAMAGE NO DAMAGE			
-130	-165	10	0.00075	18.3	16.9	16.5	16.9	0.977	738.9	NO DAMAGE			
-130	-170 -175	15	0.00112	18.3	16.9	16.4	16.9	0.974	646.5 574.7	NO DAMAGE NO DAMAGE			
-130 -130	-175	4 2	0.00030 0.00015	18.3 18.3	16.9 16.9	16.4 16.3	16.9 16.9	0.970	517.2	NO DAMAGE			
-130	-185	1	0.00007	18.3	16.9	16.2	16.9	0.964	470.2	NO DAMAGE			
-130 -130	-190 -195	2	0.00015 0.00007	18.3 18.3	16.9 16.9	16.2 16.1	16.9 16.9	0.960 0.957	431.0 397.9	NO DAMAGE NO DAMAGE			
-130	-220	1	0.00007	18.3	16.9	15.8	16.9	0.940	287.3	NO DAMAGE			
-130 -135	-230 -145	1 3311	0.00007 0.24684	18.3 18.3	16.9 16.8	15.7 16.7	16.9 16.8	0.934	258.6 2577.5	NO DAMAGE NO DAMAGE			
-135	-150	514	0.03832	18.3	16.8	16.6	16.8	0.990	1718.3	NO DAMAGE			
-135 -135	-155 -160	1106 58	0.08246 0.00432	18.3 18.3	16.8 16.8	16.6 16.5	16.8 16.8	0.987 0.983	1288.7 1031.0	NO DAMAGE NO DAMAGE			
-135	-165	81	0.00604	18.3	16.8	16.5	16.8	0.980	859.2	NO DAMAGE			
-135 -135	-170 -175	10 14	0.00075 0.00104	18.3 18.3	16.8 16.8	16.4 16.4	16.8 16.8	0.977 0.973	736.4 644.4	NO DAMAGE NO DAMAGE			
-135	-175	3	0.00022	18.3	16.8	16.3	16.8	0.970	572.8	NO DAMAGE			
-135 -135	-185 -190	4	0.00030 0.00007	18.3 18.3	16.8 16.8	16.2 16.2	16.8 16.8	0.967	515.5 468.6	NO DAMAGE NO DAMAGE			
-135	-190	1	0.00007	18.3	16.8	16.1	16.8	0.964 0.960	429.6	NO DAMAGE			
-140	-150	1992	0.14851	18.3	16.7	16.6	16.7	0.993	2568.9	NO DAMAGE			
-140 -140	-155 -160	454 517	0.03385 0.03854	18.3 18.3	16.7 16.7	16.6 16.5	16.7 16.7	0.990	1712.6 1284.5	NO DAMAGE NO DAMAGE			
-140	-165	61	0.00455	18.3	16.7	16.5	16.7	0.983	1027.6	NO DAMAGE			
-140 -140	-170 -175	54 20	0.00403 0.00149	18.3 18.3	16.7 16.7	16.4 16.4	16.7 16.7	0.980	856.3 734.0	NO DAMAGE NO DAMAGE			
-140	-180	20	0.00149	18.3	16.7	16.3	16.7	0.973	642.2	NO DAMAGE			
-140 -140	-185 -190	1 1	0.00007 0.00007	18.3 18.3	16.7 16.7	16.2 16.2	16.7 16.7	0.970 0.967	570.9 513.8	NO DAMAGE NO DAMAGE			
-140	-195	i	0.00007	18.3	16.7	16.1	16.7	0.963	467.1	NO DAMAGE			
-140 -140	-200 -210	1	0.00007 0.00007	18.3 18.3	16.7 16.7	16.1 16.0	16.7 16.7	0.960 0.953	428.2 367.0	NO DAMAGE NO DAMAGE			
-145	-155	2955	0.22030	18.3	16.7	16.6	16.7	0.993	2560.4	NO DAMAGE			
-145 -145	-160 -165	431 765	0.03213	18.3 18.3	16.7 16.7	16.5 16.5	16.7 16.7	0.990 0.987	1706.9 1280.2	NO DAMAGE NO DAMAGE			
-145 -145	-165 -170	765 78	0.05703 0.00582	18.3	16.7	16.5	16.7	0.987	1024.2	NO DAMAGE			

Page G.1-117 February 2, 2018

					Dyna	mic		_		to			450.0
Max	Min	No.	α Pct	Static Stress	Stre Max	ss Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles pe Yield :	153.8 60 ksi
-145 -145	-175 -180	50 16	0.00373 0.00119	18.3	16.7 16.7	16.4 16.3	16.7 16.7	0.980	853.5 731.5	NO DAMAGE NO DAMAGE			
-145	-185	6	0.000119	18.3	16.7	16.2	16.7	0.973	640.1	NO DAMAGE			
-145	-190	4	0.00030	18.3	16.7	16.2	16.7	0.970	569.0	NO DAMAGE			
-145 -145	-195 -205	8 2	0.00060 0.00015	18.3 18.3	16.7 16.7	16.1 16.0	16.7 16.7	0.967	512.1 426.7	NO DAMAGE NO DAMAGE			
-145	-225	1	0.00007	18.3	16.7	15.8	16.7	0.947	320.0	NO DAMAGE			
-150 -150	-160 -165	1535 428	0.11444 0.03191	18.3 18.3	16.6 16.6	16.5 16.5	16.6 16.6	0.993	2551.8 1701.2	NO DAMAGE NO DAMAGE			
-150	-170	353	0.02632	18.3	16.6	16.4	16.6	0.987	1275.9	NO DAMAGE			
-150 -150	-175 -180	44 54	0.00328 0.00403	18.3 18.3	16.6 16.6	16.4 16.3	16.6 16.6	0.983 0.980	1020.7 850.6	NO DAMAGE NO DAMAGE			
-150	-185	5	0.00037	18.3	16.6	16.2	16.6	0.977	729.1	NO DAMAGE			
-150 -150	-190 -195	10 1	0.00075 0.00007	18.3 18.3	16.6 16.6	16.2 16.1	16.6 16.6	0.973 0.970	638.0 567.1	NO DAMAGE NO DAMAGE			
-150	-200	4	0.00030	18.3	16.6	16.1	16.6	0.966	510.4	NO DAMAGE			
-150 -155	-210 -185	2 2322	0.00015 0.17311	18.3	16.6 16.6	16.0 16.5	16.6 16.6	0.960	425.3 2543.3	NO DAMAGE NO DAMAGE			
-155	-170	392	0.02922	18.3	16.6	16.4	16.6	0.990	1695.5	NO DAMAGE			
-155 -155	-175 -180	511 47	0.03810 0.00350	18.3 18.3	16.6 16.6	16.4 16.3	16.6 16.6	0.987	1271.6 1017.3	NO DAMAGE NO DAMAGE			
-155	-185	35	0.00350	18.3	16.6	16.2	16.6	0.980	847.8	NO DAMAGE			
-155	-190	2	0.00015	18.3	16.6	16.2	16.6	0.976	726.7	NO DAMAGE			
-155 -155	-195 -200	6 1	0.00045 0.00007	18.3 18.3	16.6 16.6	16.1 16.1	16.6 16.6	0.973	635.8 565.2	NO DAMAGE NO DAMAGE			
-155	-205	4	0.00030	18.3	16.6	16.0	16.6	0.966	508.7	NO DAMAGE			
-155 -155	-210 -215	1 2	0.00007 0.00015	18.3 18.3	16.6 16.6	16.0 15.9	16.6 16.6	0.963 0.960	462.4 423.9	NO DAMAGE NO DAMAGE			
-155	-225	1	0.00007	18.3	16.6	15.8	16.6	0.953	363.3	NO DAMAGE			
-160 -160	-170 -175	1521 311	0.11339 0.02319	18.3 18.3	16.5 16.5	16.4 16.4	16.5 16.5	0.993	2534.7 1689.8	NO DAMAGE NO DAMAGE			
-160	-180	371	0.02766	18.3	16.5	16.3	16.5	0.987	1267.4	NO DAMAGE			
-160 -160	-185 -190	35 29	0.00261 0.00216	18.3	16.5 16.5	16.2 16.2	16.5 16.5	0.983	1013.9 844.9	NO DAMAGE NO DAMAGE			
-160	-200	8	0.00060	18.3	16.5	16.1	16.5	0.973	633.7	NO DAMAGE			
-160 -160	-205 -210	1 4	0.00007 0.00030	18.3 18.3	16.5 16.5	16.0 16.0	16.5 16.5	0.970 0.966	563.3 506.9	NO DAMAGE NO DAMAGE			
-160	-210	1	0.00030	18.3	16.5	15.9	16.5	0.963	460.9	NO DAMAGE			
-160 -160	-220 -240	1	0.00007 0.00007	18.3 18.3	16.5 16.5	15.8 15.6	16.5 16.5	0.960	422.5 316.8	NO DAMAGE NO DAMAGE			
-160	-240	i	0.00007	18.3	16.5	15.0	16.5	0.906	181.1	NO DAMAGE			
-165 -165	-175 -180	1805 295	0.13457	18.3	16.5 16.5	16.4	16.5	0.993	2526.2 1684.1	NO DAMAGE			
-165 -165	-180	382	0.02199 0.02848	18.3 18.3	16.5	16.3 16.2	16.5 16.5	0.990 0.986	1263.1	NO DAMAGE NO DAMAGE			
-165	-190	19	0.00142	18.3	16.5	16.2	16.5	0.983	1010.5	NO DAMAGE			
-165 -165	-195 -200	11 4	0.00082 0.00030	18.3 18.3	16.5 16.5	16.1 16.1	16.5 16.5	0.980 0.976	842.1 721.8	NO DAMAGE NO DAMAGE			
-165	-205	10	0.00075	18.3	16.5	16.0	16.5	0.973	631.5	NO DAMAGE			
-165 -165	-210 -215	1	0.00007 0.00007	18.3 18.3	16.5 16.5	16.0 15.9	16.5 16.5	0.970 0.966	561.4 505.2	NO DAMAGE NO DAMAGE			
-165	-225	4	0.00030	18.3	16.5	15.8	16.5	0.959	421.0	NO DAMAGE			
-165 -165	-235 -245	2	0.00015 0.00007	18.3 18.3	16.5 16.5	15.7 15.8	16.5 16.5	0.953 0.946	360.9 315.8	NO DAMAGE NO DAMAGE			
-165	-255	1	0.00007	18.3	16.5	15.5	16.5	0.939	280.7	NO DAMAGE			
-170 -170	-180 -185	1099 240	0.08193 0.01789	18.3 18.3	16.4 16.4	16.3 16.2	16.4 16.4	0.993	2517.6 1678.4	NO DAMAGE NO DAMAGE			
-170	-190	237	0.01767	18.3	16.4	16.2	16.4	0.986	1258.8	NO DAMAGE			
-170 -170	-195 -200	21 32	0.00157 0.00239	18.3 18.3	16.4 16.4	16.1 16.1	16.4 16.4	0.983	1007.1 839.2	NO DAMAGE NO DAMAGE			
-170	-205	6	0.00045	18.3	16.4	16.0	16.4	0.976	719.3	NO DAMAGE			
-170 -170	-210 -215	3	0.00022 0.00022	18.3 18.3	16.4 16.4	16.0 15.9	16.4 16.4	0.973	629.4 559.5	NO DAMAGE NO DAMAGE			
-170	-220	1	0.00007	18.3	16.4	15.8	16.4	0.966	503.5	NO DAMAGE			
-175 -175	-185 -190	1609 240	0.11996 0.01789	18.3 18.3	16.4 16.4	16.2 16.2	16.4 16.4	0.993	2509.1 1672.7	NO DAMAGE NO DAMAGE			
-175	-195	304	0.02266	18.3	16.4	16.1	16.4	0.986	1254.5	NO DAMAGE			
-175 -175	-200 -205	10 16	0.00075 0.00119	18.3 18.3	16.4 16.4	16.1 16.0	16.4 16.4	0.983	1003.6 836.4	NO DAMAGE NO DAMAGE			
-175	-210	5	0.00037	18.3	16.4	16.0	16.4	0.976	716.9	NO DAMAGE			
-175 -175	-215 -225	6 2	0.00045 0.00015	18.3 18.3	16.4 16.4	15.9 15.8	16.4 16.4	0.973 0.966	627.3 501.8	NO DAMAGE NO DAMAGE			
-175	-235	3	0.00022	18.3	16.4	15.7	16.4	0.959	418.2	NO DAMAGE			
-175 -180	-255 -190	1 1003	0.00007 0.07478	18.3 18.3	16.4 16.3	15.5 16.2	16.4 16.3	0.945	313.6 2500.5	NO DAMAGE NO DAMAGE			
-180	-195	213	0.01588	18.3	16.3	16.1	16.3	0.990	1667.0	NO DAMAGE			
-180 -180	-200 -205	183 19	0.01364 0.00142	18.3 18.3	16.3 16.3	16.1 16.0	16.3 16.3	0.986	1250.3 1000.2	NO DAMAGE NO DAMAGE			
-180	-210	18	0.00134	18.3	16.3	16.0	16.3	0.979	833.5	NO DAMAGE			
-180 -180	-215 -220	1	0.00007 0.00007	18.3 18.3	16.3 16.3	15.9 15.8	16.3 16.3	0.976	714.4 625.1	NO DAMAGE NO DAMAGE			
-180	-240	1	0.00007	18.3	16.3	15.6	16.3	0.959	416.8	NO DAMAGE			
-185 -185	-195 -200	1474 295	0.10989 0.02199	18.3 18.3	16.2 16.2	16.1 16.1	16.2 16.2	0.993	2492.0 1661.3	NO DAMAGE NO DAMAGE			
-185	-205	300	0.02237	18.3	16.2	16.0	16.2	0.986	1246.0	NO DAMAGE			
-185	-210	14	0.00104	18.3	16.2	16.0	16.2	0.983	996.8	NO DAMAGE			
-185 -185	-215 -220	15 2	0.00112 0.00015	18.3 18.3	16.2 16.2	15.9 15.8	16.2 16.2	0.979 0.976	830.7 712.0	NO DAMAGE NO DAMAGE			
-185 -185	-225 -235	10 11	0.00075	18.3	16.2	15.8	16.2	0.973	623.0 498.4	NO DAMAGE NO DAMAGE			
-185 -185	-235 -245	11	0.00082	18.3 18.3	16.2 16.2	15.7 15.6	16.2 16.2	0.959	498.4	NO DAMAGE			
-190	-200	1217	0.09073	18.3	16.2	16.1	16.2	0.993	2483.4	NO DAMAGE			

Page G.1-118 February 2, 2018

					Dyna					to			
Max	Min	No.	α Pct	Static Stress	Stre Max	ess Min	Max Adjusted	R Min/Max	Endurance Limit	Failure N	α/N	cycles per mile 153. Yield stress 60 k	
-190	-205	282	0.02102	18.3	16.2	16.0	16.2	0.990	1655.6	NO DAMAGE			
-190 -190	-210 -215	125 10	0.00932 0.00075	18.3 18.3	16.2 16.2	16.0 15.9	16.2 16.2	0.986	1241.7 993.4	NO DAMAGE NO DAMAGE			
-190	-220	6	0.00045	18.3	16.2	15.8	16.2	0.979	827.8	NO DAMAGE			
-190 -190	-230 -400	2	0.00015 0.00007	18.3 18.3	16.2 16.2	15.7 13.8	16.2 16.2	0.972 0.855	620.9 118.3	NO DAMAGE NO DAMAGE			
-195	-205	1915	0.14277	18.3	16.1	16.0	16.1	0.993	2474.9	NO DAMAGE			
-195 -195	-210	306	0.02281	18.3 18.3	16.1	16.0	16.1	0.990	1649.9 1237.4	NO DAMAGE			
-195 -195	-215 -220	280 2	0.02087 0.00015	18.3	16.1 16.1	15.9 15.8	16.1 16.1	0.986 0.983	1237.4 990.0	NO DAMAGE NO DAMAGE			
-195	-225	15	0.00112	18.3	16.1	15.8	16.1	0.979	825.0	NO DAMAGE			
-195 -195	-235 -240	5 1	0.00037	18.3 18.3	16.1 16.1	15.7 15.6	16.1 16.1	0.972	618.7 550.0	NO DAMAGE NO DAMAGE			
-195	-245	5	0.00037	18.3	16.1	15.6	16.1	0.965	495.0	NO DAMAGE			
-195	-255	1	0.00007	18.3	16.1	15.5	16.1	0.959	412.5	NO DAMAGE			
-200 -200	-210 -215	1092 185	0.08141 0.01379	18.3 18.3	16.1 16.1	16.0 15.9	16.1 16.1	0.993	2466.3 1644.2	NO DAMAGE NO DAMAGE			
-200	-220	66	0.00492	18.3	16.1	15.8	16.1	0.986	1233.2	NO DAMAGE			
-200 -200	-225 -230	2	0.00015 0.00007	18.3 18.3	16.1 16.1	15.8 15.7	16.1 16.1	0.983	986.5 822.1	NO DAMAGE NO DAMAGE			
-205	-215	1078	0.08037	18.3	16.0	15.9	16.0	0.993	2457.8	NO DAMAGE			
-205 -205	-220 -225	63 152	0.00470 0.01133	18.3 18.3	16.0 16.0	15.8 15.8	16.0 16.0	0.990 0.986	1638.5 1228.9	NO DAMAGE NO DAMAGE			
-205	-225	4	0.00030	18.3	16.0	15.7	16.0	0.983	983.1	NO DAMAGE			
-205	-235	15	0.00112	18.3	16.0	15.7	16.0	0.979	819.3	NO DAMAGE			
-205 -205	-245 -255	15 6	0.00112 0.00045	18.3 18.3	16.0 16.0	15.6 15.5	16.0 16.0	0.972 0.965	614.4 491.6	NO DAMAGE NO DAMAGE			
-210	-220	338	0.02520	18.3	16.0	15.8	16.0	0.993	2449.2	NO DAMAGE			
-210 -210	-225 -230	56 23	0.00417	18.3 18.3	16.0 16.0	15.8 15.7	16.0 16.0	0.990	1632.8 1224.6	NO DAMAGE NO DAMAGE			
-210	-240	4	0.00030	18.3	16.0	15.6	16.0	0.979	816.4	NO DAMAGE			
-210	-360	1	0.00007	18.3	16.0	14.3	16.0	0.895	163.3	NO DAMAGE			
-215 -215	-225 -230	503 11	0.03750 0.00082	18.3 18.3	15.9 15.9	15.8 15.7	15.9 15.9	0.993	2440.7 1627.1	NO DAMAGE NO DAMAGE			
-215	-235	172	0.01282	18.3	15.9	15.7	15.9	0.986	1220.3	NO DAMAGE			
-215 -215	-245 -250	29 1	0.00216 0.00007	18.3 18.3	15.9 15.9	15.6 15.5	15.9 15.9	0.979	813.6 697.3	NO DAMAGE NO DAMAGE			
-215	-255	4	0.00030	18.3	15.9	15.5	15.9	0.972	610.2	NO DAMAGE			
-220	-230	89 12	0.00664	18.3 18.3	15.8 15.8	15.7 15.7	15.8 15.8	0.993	2432.1	NO DAMAGE			
-220 -220	-235 -240	33	0.00089 0.00246	18.3	15.8	15.6	15.8	0.986	1621.4 1216.1	NO DAMAGE NO DAMAGE			
-220	-250	9	0.00067	18.3	15.8	15.5	15.8	0.979	810.7	NO DAMAGE			
-220 -225	-260 -235	1 732	0.00007 0.05457	18.3 18.3	15.8 15.8	15.4 15.7	15.8 15.8	0.972	608.0 2423.6	NO DAMAGE NO DAMAGE			
-225	-240	11	0.00082	18.3	15.8	15.6	15.8	0.989	1615.7	NO DAMAGE			
-225 -225	-245 -255	260 3	0.01938 0.00022	18.3 18.3	15.8 15.8	15.6 15.5	15.8 15.8	0.986	1211.8 807.9	NO DAMAGE NO DAMAGE			
-225	-255	1	0.00022	18.3	15.8	15.4	15.8	0.975	692.5	NO DAMAGE			
-225	-270	1	0.00007	18.3	15.8	15.3	15.8	0.968	538.6	NO DAMAGE			
-230 -230	-240 -245	86 12	0.00641 0.00089	18.3 18.3	15.7 15.7	15.6 15.6	15.7 15.7	0.993	2415.0 1610.0	NO DAMAGE NO DAMAGE			
-230	-250	14	0.00104	18.3	15.7	15.5	15.7	0.986	1207.5	NO DAMAGE			
-230 -230	-265 -320	1	0.00007 0.00007	18.3 18.3	15.7 15.7	15.3 14.7	15.7 15.7	0.975	690.0 268.3	NO DAMAGE NO DAMAGE			
-235	-245	440	0.03280	18.3	15.7	15.6	15.7	0.993	2406.5	NO DAMAGE			
-235 -235	-250 -255	5 45	0.00037 0.00335	18.3 18.3	15.7 15.7	15.5 15.5	15.7 15.7	0.989 0.986	1604.3 1203.2	NO DAMAGE NO DAMAGE			
-235	-260	1	0.00007	18.3	15.7	15.4	15.7	0.982	962.6	NO DAMAGE			
-235	-265	1	0.00007	18.3	15.7	15.3	15.7	0.979	802.2	NO DAMAGE			
-240 -240	-250 -255	42 2	0.00313 0.00015	18.3 18.3	15.6 15.6	15.5 15.5	15.6 15.6	0.993	2397.9 1598.6	NO DAMAGE NO DAMAGE			
-240	-260	8	0.00060	18.3	15.6	15.4	15.6	0.986	1199.0	NO DAMAGE			
-240 -240	-270 -280	2	0.00015 0.00007	18.3 18.3	15.6 15.6	15.3 15.2	15.6 15.6	0.979 0.971	799.3 599.5	NO DAMAGE NO DAMAGE			
-245	-255	86	0.00641	18.3	15.6	15.5	15.6	0.993	2389.4	NO DAMAGE			
-245 -245	-260 -265	6 12	0.00045 0.00089	18.3 18.3	15.6 15.6	15.4 15.3	15.6 15.6	0.989 0.986	1592.9 1194.7	NO DAMAGE NO DAMAGE			
-245	-270	1	0.00007	18.3	15.6	15.3	15.6	0.982	955.8	NO DAMAGE			
-250 -250	-260 -265	25 5	0.00186	18.3 18.3	15.5 15.5	15.4 15.3	15.5 15.5	0.993	2380.8 1587.2	NO DAMAGE NO DAMAGE			
-250 -250	-200	2	0.00037	18.3	15.5	15.3	15.5	0.989	1190.4	NO DAMAGE			
-250	-280	1	0.00007	18.3	15.5	15.2	15.5	0.978	793.6	NO DAMAGE			
-255 -255	-265 -270	49 8	0.00365 0.00060	18.3 18.3	15.5 15.5	15.3 15.3	15.5 15.5	0.993 0.989	2372.3 1581.5	NO DAMAGE NO DAMAGE			
-255	-275	6	0.00045	18.3	15.5	15.2	15.5	0.986	1186.1	NO DAMAGE			
-255 -255	-285 -315	1	0.00007 0.00007	18.3 18.3	15.5 15.5	15.1 14.8	15.5 15.5	0.978 0.957	790.8 395.4	NO DAMAGE NO DAMAGE			
-255	-535	2	0.00015	18.3	15.5	12.3	15.5	0.798	84.7	NO DAMAGE			
-260 -260	-270 -275	13 3	0.00097 0.00022	18.3	15.4 15.4	15.3 15.2	15.4 15.4	0.993	2363.7 1575.8	NO DAMAGE NO DAMAGE			
-260 -260	-275 -310	2	0.00022	18.3	15.4	14.8	15.4	0.989	472.7	NO DAMAGE			
-265	-275	22	0.00164	18.3	15.3	15.2	15.3	0.993	2355.2	NO DAMAGE			
-265 -265	-280 -285	3 1	0.00022 0.00007	18.3 18.3	15.3 15.3	15.2 15.1	15.3 15.3	0.989 0.985	1570.1 1177.6	NO DAMAGE NO DAMAGE			
-265	-295	1	0.00007	18.3	15.3	15.0	15.3	0.978	785.1	NO DAMAGE			
-265 -270	-300 -280	1 6	0.00007 0.00045	18.3 18.3	15.3 15.3	15.0 15.2	15.3 15.3	0.975	672.9 2346.6	NO DAMAGE NO DAMAGE			
-270	-280 -285	2	0.00045	18.3	15.3	15.1	15.3	0.989	2346.6 1564.4	NO DAMAGE			
-270	-290 -295	1	0.00007 0.00007	18.3 18.3	15.3 15.3	15.1 15.0	15.3	0.985 0.982	1173.3 938.7	NO DAMAGE NO DAMAGE			
-270 -275	-295 -285	12	0.00007	18.3	15.3	15.1	15.3 15.2	0.982	2338.1	NO DAMAGE			
										_			

Page G.1-119 February 2, 2018

					Dyna					to			
			α	Static	Stre		M ax	R	Endurance	Failure		cycles per mile	153.8
Max	Min	No.	Pct	Stress	Max	Min	Adjusted	Min/Max	Limit	N	α/N	Yield stress	60 ksi
-275	-290	11	0.00082	18.3	15.2	15.1	15.2	0.989	1558.7	NO DAMAGE			
-275	-295	3	0.00022	18.3	15.2	15.0	15.2	0.985	1169.0	NO DAMAGE			
-275	-300	1	0.00007	18.3	15.2	15.0	15.2	0.982	935.2	NO DAMAGE			
-275	-305	1	0.00007	18.3	15.2	14.9	15.2	0.978	779.4	NO DAMAGE			
-275	-345	1	0.00007	18.3	15.2	14.5	15.2	0.949	334.0	NO DAMAGE			
-280	-290	19	0.00142	18.3	15.2	15.1	15.2	0.993	2329.5	NO DAMAGE			
-280	-295	4	0.00030	18.3	15.2	15.0	15.2	0.989	1553.0	NO DAMAGE			
-285	-295	8	0.00060	18.3	15.1	15.0	15.1	0.993	2321.0	NO DAMAGE			
-285	-300	1	0.00007	18.3	15.1	15.0	15.1	0.989	1547.3	NO DAMAGE			
-285	-315	2	0.00015	18.3	15.1	14.8	15.1	0.978	773.7	NO DAMAGE			
-285	-325	1	0.00007	18.3	15.1	14.7	15.1	0.971	580.2	NO DAMAGE			
-285	-335	4	0.00030	18.3	15.1	14.6	15.1	0.963	464.2	NO DAMAGE			
-290	-300	3	0.00022	18.3	15.1	15.0	15.1	0.993	2312.4	NO DAMAGE			
-295	-305	6	0.00045	18.3	15.0	14.9	15.0	0.993	2303.9	NO DAMAGE			
-295	-315	11	0.00082	18.3	15.0	14.8	15.0	0.985	1151.9	NO DAMAGE			
-295	-325	16	0.00119	18.3	15.0	14.7	15.0	0.978	768.0	NO DAMAGE			
-295	-335	14	0.00104	18.3	15.0	14.6	15.0	0.970	576.0	NO DAMAGE			
-300	-315	1	0.00007	18.3	15.0	14.8	15.0	0.989	1530.2	NO DAMAGE			
-305	-315	63	0.00470	18.3	14.9	14.8	14.9	0.993	2286.8	NO DAMAGE			
-305	-325	124	0.00924	18.3	14.9	14.7	14.9	0.985	1143.4	NO DAMAGE			
-305	-335	25	0.00186	18.3	14.9	14.6	14.9	0.978	762.3	NO DAMAGE			
-305	-345	8	0.00060	18.3	14.9	14.5	14.9	0.970	571.7	NO DAMAGE			
-315	-325	133	0.00992	18.3	14.8	14.7	14.8	0.992	2269.7	NO DAMAGE			
-315	-335	114	0.00850	18.3	14.8	14.6	14.8	0.985	1134.8	NO DAMAGE			
-315	-345	13	0.00097	18.3	14.8	14.5	14.8	0.977	756.6	NO DAMAGE			
-325	-335	32	0.00239	18.3	14.7	14.6	14.7	0.992	2252.6	NO DAMAGE			
-325	-345	2	0.00015	18.3	14.7	14.5	14.7	0.985	1126.3	NO DAMAGE			
-345	-385	1	0.00007	18.3	14.5	14.0	14.5	0.969	554.6	NO DAMAGE			
-355	-375	1	0.00007	18.3	14.3	14.1	14.3	0.984	1100.6	NO DAMAGE			
-365	-385	2	0.00015	18.3	14.2	14.0	14.2	0.984	1092.1	NO DAMAGE			
-375	-385	1	0.00007	18.3	14.1	14.0	14.1	0.992	2167.1	NO DAMAGE			
		1341324.00000	99.99940							Sum	7.79E-10		
										N	1.28E+09		
										Miles	8.35E+06		

Page G.1-120 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

APPENDIX G-2 ATLAS RAILCAR SPECIAL PURPOSE SPECIFICATIONS

Page G.2-1 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

APPENDIX G-2.1 ATLAS RAILCAR WELDING PROCEDURE QUALIFICATIONS AND SPECIFICATIONS

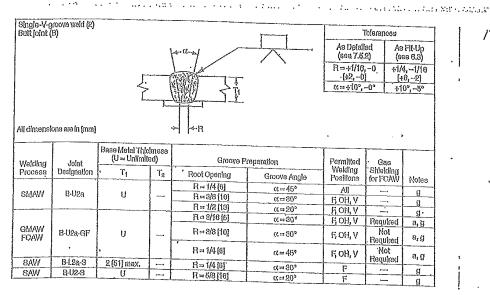
Page G.2-2 February 2, 2018

Appendix G-2.1.1 Procedure Qualification Record Example

AWS D1	6.1/D15.1M:2	012				D XEMMA
		P	Hocedure	e Qualifica	tion record (POR)	
	PROCI	edure specif	REATION		Groove Weld	Test results .
Meteria	l specificatio	A572 Grade	50		Tensile strength, psi	
Walding	antonona Fi	CAW				
Manual	or machine	Both (Semi-Au	tomatic)		2, (B) 77322	
Position	of welding	Vertical ·				
Filler m	etal specific	ation AWS A5.2	0		Guided-band tests (2 root-	, 2 face-, or 4 side-bend)
Filler m	etal classific	ation E71T-1			Root	Face
Weld m	etal grade ⁶				1. Side- Pass	1. Side-Pass
Shieldla	ng gas _CO2	Flow	rate 35 cfh		2, Side-Pass	2. Side-Pass
Single :	or multiple p	ass Multiple			Rediographic-ultrasonio e	veral and the a
Singla	e elcilium ic	C Single		Schenaria and Control of the Control	មនុកពេទិវិធាតិពេល-ការក្មេខសម្រាក ខ	ACHINEUPH
Welding	g current <u>DC</u>	EP				
Welding) progressio	n Uphill'			UT report no. #256	
		70 deg.				
	at treatment	ston Mills - Clock	#921	***	Fillet weld	test results
		matal has no AV			Minimum size muiticle pass	Maximum size single pass
whhues	ole villen tilles	maigi nas no rat	to diasomeann	174	Macroetch	Macroetob
	Mannon				1. N/A 2. N/A	1, N/A 3, N/A
	Linspecti				3. N/A	2. N/A
Appear	ance Accer	otable			011	•
	ut NONE			-	All-weld-metal tension tes	Ĭ.
Piping	porosity <u>NO</u>	ONE	TOTAL PARTY OF THE		Tensile strength, psi N/A	
					Yield point/strength, psi N/A	
		014		· · · · · · · · · · · · · · · · · · ·	Elongation in 2 in, % N/A	
Wilnes	sed by Danie	el S. Gjurich			Laboratory test no. 📈	<u>A</u>
			,	Welding Pri)CEDURE	
Pass	Electrode	Electrical Cha	racteristics			(34)
No.	Size	Amperes	Volts	Travel Speed	Joint	Detail
						· · · · · · · · · · · · · · · · · · ·
All	1/16"	255	26	4 ipm	See Attached:	
					i	
			-			
					1	
					1	
				1		
		1		1		•
					Ì	
					Thickness of weld layer	s not to exceed 1/4"
				<u> </u>	<u> </u>	
Ne, ine and test Locomo	ied in accord	d, certify that tit lance with the re	e statements equirements	in this record of AWS D15.1;	are correct and that the test v () Raliroad Well (year)	velds were prepared, welded ding Specification for Care and
7*****	ura na F-0	01			Manufacturan - Danies - to -	Kasgro Rail Corp.
		<u> </u>			Manufacturer or Contractor	<i>11.</i>
Revision	1 no				Authorized by	ZX
Form D-2	,				Date 7-10-14	
41111 U-1	•		•			

181

Page G.2-3 February 2, 2018


Appendix G-2.1.2 Prequalified Welding Procedure Specifications

			F 04		
	* '	re qualification	noF-00		, A216/gr WCC , etc.)
	specification process	FCAW	42 (120), 212,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 210g. 1100, via,
	or machine _	Both			
	of welding .	Flat, Horizontal	l, Vertical, Overh	ead	
iller me	etal specifica	tion			
iller me	etal classifica	itionE/11-1			
lux _N	etal grade*_	N/A			
Shieldin	g gasCO2				Flow rate 35-50 cfh
	r multiple pa				
	r multiple ar	'C irect			
Velding	DCEP DCEP	ii ect			
Veldi no	progression	Vertical (3G) - U	Jphill		
Root tre	at ment _ Cle	an to sound metal			
reheat	and interpa-	ss temperature	See attached	report	
		ment None			
Appli ca	bleonly when	fill ermetal has no	o AVVS classific	cation.	
			1	WELDING PRO	OCEDURE
D	Plantin de	Electrical Che	racteristics	Travel	
Pass No.	Electrode Size	Amperes	Volts	Speed	Joint Detail
As	Required			-	See attached details
- 40	0.451	100 000	07.00	0.40:	
F-1G	.045" 1/16"	180-280 200-400	27-32 25-31	8-13 ipm 8-13 ipm	
	3/32"	250-400	17-32	6-13 ipm	
H-2G	1/16"	200-400	25-31	8-13 ipm	
11-20	3/32"	250-400	17-32	6-13 ipm	
	0.4511	100.010	04.00		ł:
V-3G	.045" 1/16"	160-210 180-250	24-39 25-30	4-9 ipm 6-11 ipm	
					1
0-4G		180-240	24-29	8-13 ipm	ř I
	1/16"	200-270	26-30	8-13 ipm	
		1		1	
					Thickness of weld layers not to exceed 1/4"
					ass size, etc., within the limitation of variables given in AWS and Locomotives.
			arming appoint	ZUNIOI UBIS	TO SOUGHVERDS
Thispr D15.1:					
D15.1:	(<u>2012</u> (year)				
D15.1:	(- -001			Manufacturer or Contractor KASGRO RAIL CORP.
D15.1:	(Authorized by

Page G.2-4 February 2, 2018

	••	* *	• • • •	*****				i
				,•	•		· /{	1
	•••	•			ANNE	KD	•	,
		PREGUALII	FIED WEL	pļva PROCE	iduné specification (wps)			•
	l epecilloation			and A52 Gra	ide 60			
	g procese l or machine _	Manua J		<u>. </u>	The state of the s			
Poslilo	i of welding _	Flat,	Horizon	tal, Vertlo	al, dverhead	-ermed 1	į	
Filler hi Filler ni	polilosys isto eolileacio isto	ton <u>A5.29</u> tton E819-1	- M-10	37 HB	***************************************			•
Flux		N/A		· · · · · · · · · · · · · · · · · · ·	,			
Oblabile	elel grado.*	C02	من <u>ث</u>		Flow rate 35 - 50 CFH			
elgn 8	or multiple pas	s Single	/Multip	la .	1101711110			>
- Single	r multiple are	Single	<u> </u>	·		·		ī,
	tennem	Revere	(0		1			
Welding	progression	Vertic	al (39)	- Uphill				
Root is	alment	a temperature	to sound	u morar Etached rer	ort	radio mai		
PostWe	d Heat Treatn	nent None			None X			
*Applical	lie only whon f	ilet melál has no	AWB ofesalil	onton.				
promiseratory				Welding Pro	ocedure			
Pass	Eleotrade -	Welding 0		doud or	Cura			
No.	Size	Amperes	Volle	Travol Speed	doint Detail			
As I	required		,		* See Attached Report.			
n-je	1/16"	200-400	25-31	8-13 Jym	••			
H-2G	1/16"	. 180-250 180-250	24-39 24-39	8-13 1pm 6-11 1pm	· ·			
V-3G O-4G	1/16" 1/16"	200-270	26-30	8-13 1pm				
~	.,,,,	, , , , , , , , , , , , , , , , , , , ,			,	•		
	. 1							
	.							
'	1				•			
	1	.]	•		į.			
		/			Thickness of weld layers not to exceed $1/4^{\rm H}$			
Thie proq Disti, (_	edure may ve ,, 2012) (year)	ary due to fabric Rallicad Weldli	salion seque ig Specilica	anco, fil-up, pas llonCata and	e size, etc., within the limitation of variables given in A Lacomotives.	ws		
Mana andres	ana uta f	002		×	denulacturer or Contractor, KASERO RATT, CORP.			
					withorized by William Sala	<u> </u>		
	10			•	No. of the Contract of the Con			
Form Did				Į.	Date6-10-14			
				•	•			
		•		•				

Page G.2-5 February 2, 2018

:

Figure 7.1B—Prequalified Complete Joint Penetration (CJP) Groove Welded Joint Details

Page G.2-6 February 2, 2018

	ŧ.	
١,		•
	TEST QUALIFIED WELDING PROCEDURE SPECIFICATION (WPS)	
	Material specification <u>A572 grade 60 to A656 grade 80</u> Welding process <u>F-C-A-M.</u>	
	Matiual or machine Manual.	
	Filler metal specification A5, 29	
	Filler metal classification <u>taiti-niici hs</u>	
	Weld matel grade: N/A.	
	Single of multiple pass Single/Multiple Flow rate 35 to 50 GRH	
	Single or mylliple are <u>'Bingle</u> Welding autreni <u>Direct</u>	
	Polarity Reverse Welding progression Vertical Uphill	
	Hoof treatment	*********
	Preheat and Interprese temperatura 250° F Postweld Heat Trastment None None X	
	Applicable only when Illier metal has no AWS classification.	
-)	Магріуа Биосарлия	. !
	Pasa Electrode Trayel	
	no. etze Amperea Volta speed Joint detail	
	All: 1/16" See attached 8-11 in	
	All 1/16" See attached 8-11 ign	
	* .	
- 1	2.	
.		
	1.	
	The procedure was that he had a large	
ļ	This procedure may vary due to fabrication sequence, lit-up, pass size, etc., within the limitation of variables AWS DIS.1. (1997)	glveri in
į	Procedure no. F-003 Manufacturer or contractor Rail C	
i	Hevision no. Authorized by Mark Sool	ا
ł	Form D-1 Date 11/25/13 O	

Page G.2-7 February 2, 2018

TEST QUALIFIED WELDING PROCEDURE SPECIFICATION (WPS)

Qualified by procedure qualification #_09KRC_1092 Material specification _A514T1 to A572 Grade 60. Welding processF.C.A.W. Manual or machineManual _ Position of weldingVert.ical _ Filler metal specificationA5_29 Filler metal classificationW111T1_K3 Flux	
Weld metal grade* Shielding gas 75% Argon 25% C02 Single or multiple pass Multiple Single or multiple arc Single Welding current Direct Polarity Reverse Welding progression Uphill Root treatment Clean to sound metal Preheat and interpass temperature See attrached rep	_ Flow rate40_ Cारम

WELDING PROCEDURE

			Welding	Welding current				
	Pass no.	Electrode size	Amperes	Volts	Travel speed	Joint detail		
A THE PARTY OF THE	All	•062 ¹¹	190-300	27–30	8-11 ipm	R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

This procedure may vary due to fabrication sequence, fit-up, pass size, etc., within the limitation of variables given in AWS D15.1, $(\frac{2012}{\text{year}})$.

Procedure no. F-004	Manufacturer or contractor, KASGRO RATE, CORP.
Revision no1	Authorized by
Form D-3	Date 11/25/13 .

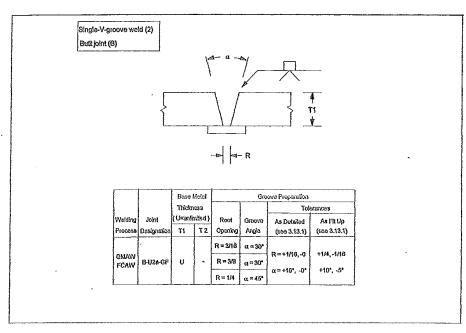
Page G.2-8 February 2, 2018

^{*}Applicable only when filler metal has no AWS classification.

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

	•
ANNEX D	
TEST QUALIFIED WELDING PROCEDURE SPECIFICATI	AWS D15.1/D15.1M:2012 IONS (WPS)
Qualified by procedure qualification no. O8KRF-1087-6/30/08/ AND 15KR-F1087-1/14/15.	•
**Material specification A572 GRADE 60 TO A240 GRADE 304	
elding process F.C.A.W.	
anual or machine <u>Manual</u>	
sition of welding 1G Flat	
riller metal specification 5.22	
Filler metal classification <u>DW-309L</u>	
Flux	
weid illetal grade	
Shielding gas <u>CO2</u> . Flow rate <u>40 – 50 CFH</u>	
Single or multiple pass <u>Multiple</u>	
Single or multiple arc <u>Single</u>	
Welding current DCEP	
Polarity Reverse	
Welding progression Forehand	
Root treatment <u>Clean to sound metal</u>	
Preheat and Interpass temperature 50°F	
Post weld Heat Treatment None . None x	
*Applicable only when filler metal has no aws classification.	

WELDING PROCEDURE


lass	Electrode Size	Welding		Travel Speed	
		Amperes	Volts	Travel Speed	Joint Detail
ALL	.062"	240-280	29-33	15-18 imp	.375

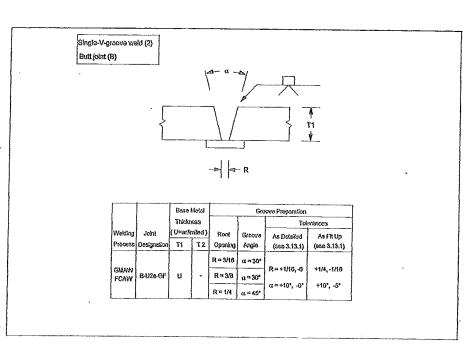
This procedure may vary due to fabrication sequence, fit-up, pass size, etc., within the limitation of variables given in AWS D15.1, { 2012 } Railroad Welding Specification for Cars and Locomotives.

{Year}

Procedure no. <u>08KR-F1087</u>	Manufacturer or Contractor KASGRO RAIL CORP.
vision no. 2	Authorized by
(7-1	Date <u>07/27/15</u>

Page G.2-9 February 2, 2018

b-u2a-gf.gfl


Preheat

Less than or = to 3/4" 50 deg. Over 3/4" thru 1-12" 150 deg. Over 1-1/2" thru 2-1/2" 225 deg. Over 2-1/2" 300 deg.

Page G.2-10 February 2, 2018

ANN!	EX D				AWS D15.1/D16,1M:20	112
		test q	JALIFIED W	ELDING PRO	OCEDURE SPECIFICATION (WPS)	
Quali	ified by proc	edure qualifica	ilon no 15KF	R-F1087		(·)
Mate	rial specifica Ing process	ation A572 Gr	. 65 to A240 C	3r, 304		→ ' '
Manu	al or machle	ne Both (Sem	i-Automatic)			_
Positi	on of weidin	g Flat, Horizo	ontal.			_
Filler	meial specil	ication AWS	A5.22			-
Flux_		fication_DW-3	09L			
Weld i	metal grade					-
		02 - Welding C			Flow rate 30 to 50	•
	or multiple or multiple	pass Multiple				-
	g current_E					-
Polarit	y DCEP					
/Veldin Root ≠	g progressi	on <u>N/A</u> Brind, chip and	udan bees t			
reher	eaunent _C at and intern	ass temperatu	wire brush	hed		
Postwe	ld Heat Trea	alment N/A				•
Applica	ible only whe	n filler metal has	no AWS classifi	cation.		
	ı			WELDING PR	OCEDURE	
Pass	Electrode	Electrical Ci	aracterístics	Travel		
No.	Size	Amperes	Volts	Speed	Joint Detail	
Ali	1/16"	229-281	26-30	Varlous	See Attached:	
- 1					See Attached;	()
- 1					1	V /
- 1						
1						
	1					
- 1						
	1					
- 1	- 1		-			
- 1	1					
			1			
		ļ	1			
	1		l			
	-		į	j		
		1		-	Thickness of weld layers not to exceed 1/4"	
proce	dure may v	ary due to fabri	cation sequen	CO. fit-un nace	s size, etc., within the limitation of variables given in AWS	
.1: (Railroad Welo	ling Specificati	on for Cars and	s size, etc., within the limitation of variables given in AWS d Locomotives,	
edure	no. 15KR-1	-1087		M	lanufacturer or Contractor <u>Kasgro Rail</u> Car	
sion n	o				uthorized by	ı
D-3					ate 1-14-15	()
				D	210 6 /4-1	1 / j
						1
				182		i
						;

Page G.2-11 February 2, 2018

b-u2a-gf.gfl

Preheat

Less than or = to 3/4" 50 deg.
Over 3/4" thru 1-12" 150 deg.
Over 1-1/2" thru 2-1/2" 225 deg.
Over 2-1/2" 300 deg.

Page G.2-12 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

APPENDIX G-2.2 ATLAS RAILCAR SECUREMENT AND JACKING LUGS PROOF TESTING

Page G.2-13 February 2, 2018

Appendix G-2.2.1 Procedure #11 Lug Proof Test Procedure, Rev 5

1

Kasgro Rail Corp Procedure # 11 Lug Proof Test Procedure

Revision: 5

JULY 28, 2017

Scope: Procedure Proof Test Tie Down Lugs Component: S-2043 Shipping Container Railcar Drawing: Car Body Arrangement Drawing No.:

Standard Identifier:

For Proof Test Apparatus and Component Assembly Refer to

Drawings D-1128-1, 3, 4 and 5

Lug Proof Test Procedure

Position the Car Body on Lay Out Table in the Inverted Position Against Stops on Lay Out Table

A-End Lugs – Orient the Fixture Such That the Applied Load is in-line with the Plane of the Lugs and is $39^0\pm1^0$ From Horizontal

Center Lugs — Orient the Fixture Such That the Applied Load is in-line With the Plane of the Lugs and is $29^{\circ} \pm 1^{\circ}$ From Horizontal.

Bolt Lug Test Fixtures to the Layout Table as Required by Drawing D-1128-1 Pin Hydraulic Cylinder to Fixtures at Both Ends

Test Procedure – End Lugs

Pressurize Rod End of Cylinder to 3000 P.S.I. \pm 45 P.S.I. \pm 140 P.S.I.

To Obtain a Test Load of 66800 LBS + 4452 - 0

Maintain Pressure for 10 minutes

Release

Repeat At Other Lug. As an Option, Both Lugs May be Tested Simultaneously.

Record Information on the Proof Test Certification Form

Page G.2-14 February 2, 2018

2

Test Procedure – Center Lugs

Pressurize Rod End of Cylinder to 3000 P.S.I. + 45 P.S.I. – 140 P.S.I.
To Obtain a Test Load of 66800 LBS + 4452 - 0
Maintain Pressure for 10 minutes
Release
Repeat At Other Lug. As an Option, Both Lugs May be Tested Simultaneously.
Record Information on the Proof Test Certification Form

NDT Requirements

Acceptance Criteria Per AWS D 15.1

Magnetic Particle Test — Final Weld

Visual Inspect — Final Weld

Visual Inspect Weld After Proof Testing

Magnetic Particle Test Final Weld After Proof of Testing

Visually Inspect the Attachment Lug and Lug Eye for Damage and Deformation

Equipment to be Used

- 1) Penincular Hydraulic Cylinder, Model 1-P3600A, or equivalent, With a 6" Bore and 2.5" Rod and a Working Pressure of 5000 P.S.I.
- 2) Calibrated Pressure Gage

Test Records:

The results of each load test are to be recorded and certified on the "Component/Equipment Proof Test Certification" sheet.

Seller's Authorized Representative:		Signature
		Typed Name
	•	Date

Page G.2-15 February 2, 2018

Appendix G-2.2.2 Securing and Jacking Lug Proof Test Certification Form, Form 45, Rev 1

^

SECURING AND JACKING LUG PROOF TEST CERTIFICATION FORM

Form 45 Rev 1

7-15-2015

Component – Tie Down Lugs
Drawing Number – D – 1114-37
Part Number – 3-138
Standard Identifier –
Car #
Use Lug Proof Test Procedure # 11

Test Pressure	Test Load in Pounds	Minutes Tested	Post Test Inspection	Date
			A	
		1		1.000.000

Securing and Jacking Lug Proof Test to be performed using Kasgro Rail Corp Lug Test Fixture Drawing D-1128-1

The securing and jacking lugs have been proof tested in strict accordance with all applicable specifications, drawings, procedures and contract requirements, including amendments / change notices.

Proof Test Certification covering compliance to this specification, Proof Test Procedure and results of pre-and post-proof test NDT inspection results are on file at Kasgro Rail Corp.

Seller's Author	zed Representative:					
Date:						
Sellers Name:	KASGRO RAIL CORP					
Note: The recording	ng of false, fictitious, or fra	ลนdulent stateme	ents on this docun	nent may be punish	able as a felony und	er

Page G.2-16 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

APPENDIX G-2.3 ATLAS RAILCAR SPRING PROPERTIES REQUIREMENT SPRING TEST REQUIREMENTS AND TOLERANCES PROCEDURE #12, REV 3

Page G.2-17 February 2, 2018

23 February 2016

Kasgro Rail Corporation Spring Testing

290-ton flatcar springs shall be manufactured in accordance with the Association of American Railroads Specification M-114, ASTM A125, Kasgro Rail Corporation (Kasgro) Drawing D-1114-33, and the requirements specified herein. Kasgro reserves the right to reject springs not meeting the below stated requirements. All criteria herein shall be met unless otherwise approved or authorized by Kasgro.

Subsequent to end grinding, wet florescent magnetic particle testing of each spring shall be performed as specified on Drawing D-1114-33. Test and acceptance criteria shall be as follows:

- > Examination shall be by the continuous method.
- > Indications less than 1/64 inch shall be disregarded.
- > There shall be no linear indications 1/32 inch or greater. A linear indication is any indication where the length of the major axis is at least three times the length of the minor axis.
- > Rounded indications larger than 1/16 are cause for rejection.
- Linearly disposed rounded indications shall be cause for rejection. Linearly disposed indications are three or more indications where adjacent indications are separated by less than 1/8 inch and a straight line can be drawn touching all three indications.
- Surface indications that are not crack-like in appearance and are due to surface roughness may be accepted provided that at least 10 percent of each type of indication is removed and the indications do not reappear upon re-examination.
- Local material removal (reworked surfaces) to determine the relevancy of an indication or to evaluate surface roughness shall be limited to a depth of 1/64 inch. Material may be removed by polishing or hand grinding (e.g., 100 grit stone).
- > Reworked surfaces shall be blended. Blended contours shall have no discontinuities or lapped-over surfaces. The bottom radius of a blended cavity shall be at least three times

Kasgro Rail Corporation

Page 1 of 6

The recording of false, fictitious, or fraudulent statements or entries on this document may be punishable as a felony under federal law statutes.

Page G.2-18 February 2, 2018

23 February 2016

the depth of the cavity, and the edges of the cavity shall be blended into the surrounding surfaces. All reworked and blended areas shall be re-wet florescent magnetic particle tested to confirm defect removal.

- All indications revealed by magnetic particle inspection do not necessarily represent defects since non-relevant indications are sometimes encountered. Indications caused by approved marking methods may be considered non-relevant. Examples of other such indications are as follows:
 - (a) Magnetic Writing. These indications are caused by contact with other steel or magnets while magnetized. They may be fuzzy and will be destroyed by demagnetization. They shall be verified as non-relevant by demagnetizing and re-examination.
- (b) Change in Section. Indications which are broad and fuzzy may be caused by a concentration of the magnetic field coincident with a change in section. Non-relevancy shall be verified by a visual examination of the section and re-examination at a lower magnetizing current.
- (c) Flow Lines. These are large groups of parallel indications which may occur in wrought material under excessive currents. Non-relevancy shall be determined by demagnetization and re-examination at a lower current.

Spring measurement and load test requirements and tolerances are defined as follows:

- 1. All springs are to be tested with the following values to be recorded.
- 1.1. Free Height Spring height in inches under zero load. If heights are measured in fractions of an inch, minimum data resolution is to be 0.03125 inches (1/32). If heights are measured digitally, minimum data resolution is to be 0.02 inches.
- 1.2. Solid Height Spring height in inches under a load which forces all or most coils into contact. If heights are measured in fractions of an inch, minimum data resolution is to

Kasgro Rail Corporation

Page 2 of 6

The recording of false, fictitious, or fraudulent statements or entries on this document may be punishable as a felony under federal law statutes.

Page G.2-19 February 2, 2018

23 February 2016

be 0.03125 inches (1/32). If heights are measured digitally, minimum data resolution is to be 0.02 inches.

- 1.3. Load at Test Height 1 Spring load in pounds at a defined test height (Test Height 1). Actual test height is to be within ±0.0625 inches (1/16) of the defined test height. Minimum data resolution is to be to 1 pound.
- 1.4. Load at Test Height 2 Spring load in pounds at a defined test height (Test Height 2). Actual test height is to be within ± 0.0625 inches (1/16) of the defined test height. Minimum data resolution is to be 1 pound.
- 2. Springs are to be compressed to solid height three (3) times before start of the above tests.
- Testing is to be performed using industry-accepted methods. All gages, test machines, load cells, or other test equipment are to be properly maintained and have current calibration certificates. Evidence of such calibration is to be provided on request.
- 4. Results are to be provided in the form of a Microsoft Excel spreadsheet. The spreadsheet is to include header lines clearly identifying the spring tested and the test equipment used. Test results are to then follow in tabular form. Data are to include: Spring Serial Number, Free Height, Solid Height, Load at Test Height 1, Load at Test Height 2, Test Date, and Test Operator. Average and standard deviation values for each of the numeric data are to be calculated (using the Microsoft Excel AVERAGE and STDEVP functions). These values are to be followed by lines providing the minimum and maximum accepted value for each measurement as per the tables given in Paragraphs 5 and 6 below. A sample spreadsheet meeting the above requirements will be provided. A signed and dated <u>paper</u> copy of the spreadsheet is to be provided attesting that the measurements are accurate and have been performed according to the stated requirements.
- 5. Test heights and acceptance tolerances for individual springs are as shown in Table 1. Minimum and maximum accepted values are given in the shaded columns. Solid Height max-

Kasgro Rail Corporation

Page 3 of 6

The recording of false, fictitious, or fraudulent statements or entries on this document may be punishable as a felony under federal law statutes.

Page G.2-20 February 2, 2018

23 February 2016

imum tolerances must be maintained per values listed in Table 1. *Solid height minimum dimensions are shown as desired values only and it is not required to have all springs meet the minimum value.

Kasgro Rail Corporation

Page 4 of 6

The recording of false, fictitious, or fraudulent statements or entries on this document may be punishable as a felony under federal law statutes.

Page G.2-21 February 2, 2018

23 February 2016

Table 1. Spring Test Heights and Acceptance Tolerances

						1								
	Free 1	Free Height (inches)	nches)	Solid F	Solid Height (inches)	ches)	Test Heights	eights	Load (Load (Ibs) at Height 1	sicht1	Load	Load (The) at Height 2	Sight 2
Spring		Min	Max		Min*	Max		2		Min	Max	2 22 2	Min	May
1-88	11.720	11.501	11.939	069.9	6.250	6.750	10.250	8.000	1707	1415	1000	1320	4008	7517
1-89	11.720	11.501	11.939	0.690	6.250	6.750	10.250	8,000	736	610	193	1861	1726	1007
1-90	13.000	12.750	13.250	069.9	6.250	6.750	10.250	8.000	2955	2616	30.94	5373	5034	1707
1-91	13.000	12.750	13.250	069.9	6.250	6.750	10.250	8.000	957	848	1067	1771	1631	1057
1-92	9.250	9.125	9.375	069.9	6.250	6.750	9.000	8.000	1047	511	1583	5234	1602	1001 1777
1-93	9.250	9.125	9.375	069.9	6.250	6.750	9.000	8.000	555	120	840	2020	2702	2061
1-94	11.090	10.903	11.278	0.690	6.250	6.750	10,250	8.000	1116	824	007),	7106	2814	7200
1-95	11.090	10.903	11.278	6.690	6.250	6.750	10.250	8,000	552	407	969	2030	1886	21.75
1-96	11.000	10.813	11.188	069.9	6.250	6.750	10.250	8.000	1808	1288	2056	7231	6777	7775
1-97	11.000	10.813	11.188	9.690	6.250	6.750	10.250	8.000	707	500	205	2804	2607	3005
1-99	7.500	7.375	7.625	5.375	4.935	5.435	7.250	6.250	139	08	10%	709	500 2	752
										3	,	H 2	3	50,

Table 2 provides acceptance tolerance per spring population (i.e., all springs of one type). The given tolerance ranges apply to the average value for a population. This requirement is intended to ensure that springs within a population do not cluster to one side or other of the tolerance range for individual springs. Minimum and maximum accepted values are again given in the shaded columns. 9

Kasgro Rail Corporation

Page 5 of 6

The recording of false, fictitious, or fraudulent statements or entries on this document may be punishable as a falony under federal law statutes.

Page G.2-22 February 2, 2018

23 February 2016

Table 2. Spring Population Acceptance Tolerances

Free Fleight (inches)	Height (inches)	nches)		Load (Load (lbs) at Height 1	eight 1	Load (Load (lbs) at Height 2	eight 2
Spring Min Max		Max			Min	Max		Min	Max
11.720 11.647 11.793	11.647 11.793	ļ	J	1707	1610	1804	4320	4222	4417
11.720 11.647 11.793	11.647	11.793	<u>L</u> .	736	694	7778	1861	1820	1903
13.000 12.917 13.083	12.917	13.083	J	2955	2842	3068	5373	5260	5486
13.000 12.917 13.083	_	13.083		957	921	994	1741	1704	1778
9.250 9.208 9.292	9.208 9.292			1047	898	1225	5234	5055	5413
9.250 9.208 9.292	9.208	9.292	ļ	555	461	650	2776	2682	2871
11.090 11.028 11.153	11.153		' '	1116	1019	1214	4106	4009	4204
11.090 11.028 11.153		11.153	ĺ	552	504	009	2030	1982	2078
11.000 10.938 11.063	11.063	<u> </u>	1	1808	1635	1981	7231	7058	7404
11.000 10.938 11.063		11.063	l	701	634	768	2804	2737	2871
7.500 7.458 7.542	7.458	7.542		139	119	158	694	674	714
			l			İ			_

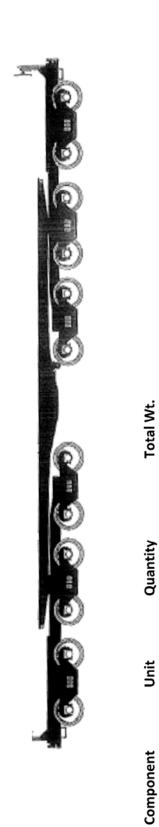
Kasgro Rail Corporation

Page 6 of 6

The recording of false, ficttious, or fraudulent statements or entries on this document may be punishable as a felony under federal law statutes.

Page G.2-23 February 2, 2018

APPENDIX G-2.4 ATLAS RAILCAR WEIGHTING


Page G.2-24 February 2, 2018

Appendix G-2.4.1 Procedure #13, Car Weighting Procedure, Rev 5

Kasgro Rail Corp	
Procedure # 13 Car Weighing Procedure	
car weigning Procedure	
Revision: 5	7-28-2017
Scope: Procedure for Weighing a Load Component: S-2043 Shipping Contained	
Drawing: General Arrangement	- Maried
Test Procedure:	
 Determine the weight of the empty the weight at each location (trucks) 	r car by centering each truck on the scale and recording A through F).
•	te the weight of a shipping container and securement This may be accomplished by using test weight
components as illustrated in Exhibit	• • •
All weights shall be positioned on th	ne car body so that the combined center-of-gravity is
Ø.	ar (i.e. approximately equal weight on each span
bolster.)	
and recording the weight at each lo	of the loaded car by centering each truck on the scale cation (trucks A through F).
Equipment to be used:	
1) Calibrated 2000 series Fairbanks	Rail Scale
Test Records:	
	recorded and certified on the Railcar Weighing Form.
Seller's Authorized Representative:	Signature
	Typed Name
	Date
्र ुवी	
.4	

Page G.2-25 February 2, 2018

Actual amount of weight to be applied to Cask Car Deck and applicable shop test weights to be used, to be decided later.

Total

Page G.2-26 February 2, 2018

Appendix G-2.4.2 Railcar Weighting Form, Form 46, Rev 3

Drawing Number – D-1114-40 Standard Identifier – Car # Use Car Weighing Procedure # 13 Truck	, de			WEIGHING FORN m 46 Rev 3	1	7-7-2015
F E D C B TOTAL Total weight on individual trucks shall range from 15.75% to 18% of the total weight. 2) The percentage of the weight on ithe outboard trucks (trucks A & B) 3) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Iller's Authorized Representative: Loaded Car Pounds Percentage of Total weight Shims Applied Shims	Standard Ident Car#	ifier –				
A F E D C B TOTAL The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) 3) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Iller's Authorized Representative:	Truck	Empty Car	Loaded Car		Shims Applied	
D C B TOTAL Coceptance Criteria: 1) The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. 2) The greater weight must be on the outboard trucks (trucks A & B) 3) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Iller's Authorized Representative:	А	1 sanse	rounus			
D C B TOTAL The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Sees Name: KASGRO RAIL CORP	F	-				
D C B TOTAL The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Sees Name: KASGRO RAIL CORP	-					
C B TOTAL The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Selection of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2.	E					
B TOTAL Total The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Iller's Authorized Representative: Lers Name: KASGRO RAIL CORP	D					
B TOTAL Total The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. The greater weight must be on the outboard trucks (trucks A & B) All Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2.						
TOTAL ceptance Criteria: 1) The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. 2) The greater weight must be on the outboard trucks (trucks A & B) 3) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. ller's Authorized Representative:						
ceptance Criteria: 1) The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. 2) The greater weight must be on the outboard trucks (trucks A & B) 3) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. ler's Authorized Representative: ers Name: KASGRO RAIL CORP	В					
 The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. Jer's Authorized Representative: Pers Name: KASGRO RAIL CORP	TOTAL					
 The percentage of the weight on individual trucks shall range from 15.75% to 18% of the total weight. The greater weight must be on the outboard trucks (trucks A & B) Shims shall be installed beneath the span bolster center plates to obtain the required load distribution; refer to Drawing D-1118-SHIM-2. er's Authorized Representative: 	entance Crite	ria:				
er's Authorized Representative:ers Name: KASGRO RAIL CORP	 The percentage The great Shims sha 	entage of the weighter weight must be	on the outboard	trucks (trucks A &	B)	
ers Name: KASGRO RAIL CORP	refer to D	rawing D-1118-SHI	M-2.		owner the requ	area load distribution;
lers Name: KASGRO RAIL CORP	ller's Authorize	ed Representative:				
Y. The recording of false fields were a second seco						
	ta: The recording	of folio flatin				

Page G.2-27 February 2, 2018

Appendix G-2.4.3 Kasgro Track Scale Calibration Form, Form 14, Rev 2

KASGRO RAIL CORP FORM 14 MEASURING AND TEST EQUIPMENT CALIBRATION RECORD

Revision "2" 6/5/03

Equipment Type	Track Scale		Serial No. 100470050	Serial No. 100470050013				
Calibration Frequency	Annually	Acc	eptance Criteria NIST					
Check Method	Test Car# WC2	Test Car# WC210500						
Action to take when res	ults are unsatisi	factory per 2.8 of Q	uality Manual					
Location	Date Cal.	Date Next Cal.	As Found Condition	Calibrated By				
Kas 1	5/25/2016	5/25/2017	OK	Rail Scale Inc				
<u> </u>								
				1				

Page G.2-28 February 2, 2018

Appendix G-2.4.4 10/14/2015 Railscale, Inc. Track Scale – Test and Inspection Report

Hatl Scale, Inc.
TOTAL /
\ /
\/
V

TRACK SCALE - TEST AND INSPECTION REPORT

As per NIST Handbook 44 Testing Standards

DATE OF TEST

	/				<u>D5</u>		5/2016	1									
V													Ra	ailroad	ID #:[_		None
ī	ocation information		7 1						1								
Railroad			-	Manufa	chiror				Location								
CSX			—-i l		ks Scale				Length of		Rail	_	1	Date of Last RSI Test		st .	
City/State			⊣	Instrument Sozial Number			06	5/17/201	5								
New Castle, PA	\		7 1	100470		Numu		-	# of Section	ns	Total	<u> </u>	city	Se	ctional (Capac	city
Owner/Industry	/ Name		- - -	100470	000010				2	l_		125		L	85	;	
Kasgro Rail Co			-	Operation	оп Туре		Tour		Type/Cond								
			}	Control			Static			Displa				Digita	4		
Le	ocation Information		_ <u>}</u> -	Girder T			Digital			Dead				No			
House Conditio	n Good		}-	Deck Ty			Continuo	US		Girder	Condi	tion		Good			
Pit Condition	Good		1 1-				Live			Deck (Conditi	on		Good			
Pit Foundation	Type Concrete						Bearings o							Good			
Pit Drainage Ty	pe Drain						ail Right E				-			Good			
				onaitio	n of Appr	oach R	ail Left End	d						Good			
		Tes	t Vehicle	Inform	ation								Strai	n/Ruild	lup Test		
Test Car#	Nominal 1	Weight		Wheel E	3ase	Jac	KS	Ca	libation Date		Sub.	Wei		1,700110	up rest		
WC210500	80,000) lbs.		5'3'	ı	N/A		_	10/14/2015			Weig		-	0000		
	nce as Found			S	R. Test	Beam	Scale Only			-+		l Wei		- 101	1000	***	
Indicator Reading (lbs.)	0	SR a	t Zero Lo	ad			SR at M L	ບລເ	, ,	-	Disp			-	A contract of the contract of		
		SRM	eets Re	ouireme	nts?	-	N/A				Error		gne				
Master Scale Lo	cation		of Minne			i	18//4				Complies? See Remarks						
TEST RESU	LTS										100111	pilos		136	se rema	BIKS	
First 2 Runs As F	ound								Sections								
Run Info	Test Load	Zero	1	2	Zer	0			T T								_
>	80,000 lbs.	0	0	0	0	+			 	-+		<u> </u>			<u> </u>	 	_
<	80,000 lbs.	0	0	0	0	\dashv			$\vdash \vdash \vdash$				_			_	
		1	\vdash	+-	+	+			 							ـــــ	
		†	 	+-	+	+-											
-		 	 	+-	+-	+							_ _			<u> </u>	
Weather Conditi	lons:	Clear	·	1,	Wind Fact						İ					<u></u>]
EMARKS					WILL LAC	or.		Von	e	Temp	erature	:		War	m]
	eded. No power avail	able for a s	train test		-												
	pillable by RSI to:					¬		_									\supset
, , , , , ,	•	OMOUTION	Indust				stry PO #:		K16-0139		is test			nnual			
	OHOLIN	SOMETHO	VOSIAI	ED ABC	VE THIS	TEST	HAS BEEN	1 LE	FT Weighi	ng Withli	n Toler	ance					
all P	marin	:	M/	W		7	Th	4	gen	· ·	14	M		1		1	
wner/Industry Rep Il Baker	presentative	State Repr Not Availal	esentativ ble	re T		Sca		nv I	er Representativ				esentat lamrick		L. Stranger	ا کیس	•

Page G.2-29 February 2, 2018

APPENDIX G-2.5 ATLAS RAILCAR BRAKE TESTING

Page G.2-30 February 2, 2018

Appendix G-2.5.1 Static Force Brake Test Data, Form 36-A, Rev 1

FOF	RM 36-A		STATIC			AIL CORP		Rev 1	10/27/2008	-1
	System:		DB-60 / EP-60 Date: November 20, 2008							
	Rigging:	Elicon Natio				Product On	der:	200 Too EM		
	: Adjuster: brake:		nal 7100-33			Car Type: For:		290 Ton FM		
	brake: Crank:	N/A	nai 33000-2			Car Series:		39470-3948	8	
	ve Wheel:	8"				Test Car No):		Ī	
Brake	Shoe:	2" true Guar	ď			Date Built:		Jul-08		
Air Bı	rake Force	(Gross):	N/A	#		Light Weigh	ht:	195,600	#	
	Lever Ra		N/A]:1		Gross Rail		789,000	#	
		e (Gross):	4475 Vert.	#		Brake Force				
EMPT	Y LOAD %	6: 	40	%		Brake Arrar	ngement:	E1114-2	<u> </u>	
		MEA	SURED BI	RAKE SH	OE FOR	CE (IN NET	POUND	S)		
	Brake Cyl	inder Pressu	re (psig):							
			Min red 6-7	Light Car:	27.25	Loaded Car:	64.5	FORCE	3350 ibs. on	
	WHEEL	CHANNEL.	UNTAPPED	UNTAPPEO	TAPPED	UNTAPPED	TAPPED	Н	Yerl, Chain	-
Р	L-1	1	405	1335	1708	3656	4107	A	4328	-
N	R-1	2	428	1508	1913	4175	4488	N	4804	-
E	L-2	3	472	1524	1853	4118	4510	D	5308	-
U	R-2	4	432	1552	1816	4241	4534	В	5442	-
М	L-3	1	372	1382	1751	3934	4203	R	3250	
A	R-3	2	443	1559	1916	4537	4634	A	3691	-
T	L-4	3	468	1456	1783	3925	4283	K	3738	-
1	R-4	44	489	1564	1825	4336	4479	E	3956	-
c	L-5	1 2	460	1350 1440	1760	3730 3820	4130		2430	-
	R-5 L-6	3	490 480	1440	1810	3910	4340		2900 2590	-
- 1	R-6	4	580	1600	1950	4130	4670		3110	-
ı	K-0 L-7	1	630	1470	1660	4350	4700		3610	1
	R-7	2	520	1380	1570	3970	4470		3390	1
	L-8	3	360	1500	1730	4670	4740		3340	1
	R-8	4	510	1270	1440	3990	4120		2820	1
- 1	L-9	1	520	1500	1680	3920	4400		3900	1
	R-9	2	530	1470	1710	3800	4380		3850	1
- 1	L-10	3	470	1520	1770	3970	4210		3520	1
	R-10	4	440	1320	1683	3621	4161		3165	1
ļ	L-11	1	470	1540	1790	4174	4753		5327	1
	R-11	2	392	1423	1756	3927	4674		5179	1
	L-12	3	392	1361	1690	3996	4583		4358]
	R-12	4	443	1269	1572	3653	4202		3963]
	TOTA		11196		41936		105981		91969	
_	BCP @ Min.	"A" End	(AVERAGE)	'8' End		(MNNMUM) 3863.9	(AVERAGE) 4415.9	(MXXMUM) 4967.9		-
	Red.	Dagueranus	468.50		Port C				64.50	
	Loaded		27/8°E23/4°F27/8		Brake Cyl	Inder Pressure,			64.50 75	1
KAVÉ	L: Emply	521/4 C23/8 D2	25/16'E21/4'F25			Handbrake	⊏mergene	y Application:		<u></u>
			Pneun Loade			Loaded %	- 1	_	neumatic Light %	
	OE FORCE >	100 =	Loade	,u 70		Loaded 75		41938 ; 195600		21.44
IET SH	OE FORCE x		105981 789000	13.43	91969 789000	x 100≈	11.68			
	SHOE FORCE		105981 N/A	#VALUE!	91989 1475 Vert.	<u>x 100 = </u>	#VALUE!	41936 2 #VALUE!	=	#VALUE
	BRAKE PIPE	CHARGE OF	90	psig			ATTESTED:			

Page G.2-31 February 2, 2018

Appendix G-2.5.2 Air Brake Test Report, Form 6-A, Rev 1

Rev.1				
	Kasara Pa	Corn		
	Kasgro Ra	•		
4	FORM 6-A 2/25/			
Air Brake Test Report		CA	R NUMBER	
(X=Tested)				···
				2.3
Single Car Test, 1Set		Single Car Test, 2 Sets		
Single Car Test (includes B.C. Pressrure Test)		Single Car Test (includes B.C	. Pressure Test), 2 Sets	:
Slack Adjuster Test		Retainer Valve Test		
Empty / Load Valve Test		Brake Pipe Leakage Test		
System Leakage Test		Equalization Pressure		
Piston Travel (Unit Brakes)		if Equipped With Load Senso		
Piston Travel (Trk MTD Brakes)		Equalization Pressure Load S		
WABCOPAC / NYPOAC Piston Travel Adjustment		Equalization Pressure Loade		·
(Truck Mounted Brakees with Slack Adjuster		Equalization Pressure Empty	,	. × .
#1 #2 #3 #4		Slack Adjuster Rack Measure	ment	
Lube Handbrake				
	·	EMELGEN	CH PRESSURE	X
SYSTEM REPAIRS- List repairs, parts replaced, Locati	on, and why made.			• * • • •
Piston Travels				
B.END: (1) 234 (2) 278 (3) 234	B-END: SEX	VICE LOADED - 64 PSI		
DB-10 - DB-20		EMERGENLY - 75 PSI		
40% LOAD SENSER		FINPTY - 25 PSI		
A-END: (4) 23/4 (5) 23/4 (6) 3.		KE COADED - 6.3 PFI		
DB-10 - PB-20		MERCENCY - 74 PST		
40 % LOAD SENSOR		EMPTY - 24 PSI		
1				
<u> </u>				
Signature of Tester ~		Date \-4-17		
Note: The recording of false, fictitious, or fraudulent:	statements on this do	cument may be punishable as a fel	lony under federal statues	

Page G.2-32 February 2, 2018

Appendix G-2.5.3 EP-60 Single Car Test Results

Page 1

Page G.2-33 February 2, 2018

Appendix G-2.5.4 Example of AAR Air Brake Test Witness Letter TTCI Letter #CC-209.221 datd January 17, 2017

Kenneth Pfahler
Field Inspector - MID/QA Auditor
427 North 3rd Street, Ext.
Bellwood, PA 16617
Cell: 814-515-3803
Email: ken_pfahler@ttci.aar.com

January 17, 2017

File: CC-209,221

<u>Subject:</u> Single Car Air Brake Test Observations Results / Kasgro Rail Corporation, New Castle, PA / Specifications S-2043 & S-486 -- H/D Flat Car () used to carry High-Level Radioactive Material

Mr. David L. Cackovic
Chief - Technical Standards & Inspections
Transportation Technology Center, Inc.
P.O. Box 11130
Pueblo, CO 81001
E-mail: David_Cackovic@aar.com

Dear Mr. Cackovic,

Specification testing of Heavy Duty Flat Car, specifically the Single Car Air Brake Test has been completed. Testing was done at the Kasgro Rail Corporation facility in New Castle, Pennsylvania on January 17, 2017 to comply with Specification S-2043 and S-486.

I was present (test witness) for the required Single Car Air Brake Test and can conclude that applicable requirements of AAR Specification S-486 have been satisfactorily addressed. I also witnessed the Brake Pipe Restriction Test and can conclude that the AAR Specification S-471 appeared to have been satisfactorily addressed. Additionally, per an email from Mr. Belport dated July 27, 2010 a Brake Shoe Force Measurement Test was to be performed on two (2) cars, this has been satisfactory completed on KRL 39470 and

Attached information was supplied by the Kasgro Rail Corporation in support of the approval process. Should you need any additional information, please do not hesitate to call.

Sincerely,

Kenneth Pjahler Kenneth Pfahler

ce: TTCI, Kasgro

Page G.2-34 February 2, 2018

(1 of 6)

Appendix G-2.5.5 Wabtec Corporation Practice Test and Practical Exam per AAR Standard S-486-13

			am on Freig Fests per A			Wabted CORPORATION
NAME:	Kasgro	Rai I	corp	DATE: _ MARK: _	1-5	-16
correct per AAI	R S-486-13.1 e statement c	There is o	ect answer for eac nly one answer the each case. READ	nat is the mo	ost correct fo	r each question
application a. 65 p b. 60 p c. 70 p d. 50 p	on a loaded osi osi osi	car?	er pressure that m	nust be obta	ined for a ful	l service brake
kept free fro than a. 365 b. 60 c c. 30 d d. 92 c	om leakage a _ after being days. lays lays	ind must b placed in	ults with the Manu be disassembled, to service or mor	, cleaned an	d tested not	less frequently
must be ¾" a. 4 fe b. 6 fe c. 8 fe d. 2 fe	I.D. with ½" o et. et. et	connection	pe between the tons nipples and no	est device a ot exceed	nd the outle in lengt	t hose coupling h (AAR 2.2.2).
car. Which a. Any b The c. The	location is co tap on the ca tap downstre	rrect? ar will work eam from the n from the	gauge it must be a k the empty/load e empty/load equi	quipment	ne correct ta	o on the freight
a. no l b. 1 ps ç. 3 ps	eakage si in one minu	ıte	uch leakage fron	n the test de	vice rotary v	alve exhaust?

Page G.2-35 February 2, 2018

© 2013 Wabtec Corporation

Written Exam - AAR S-486-13

© 2013 Wabtec Corporation (2 of 6)	(
b Loaded c. Empty or loaded does not matter d. Whatever the car is – empty or loaded e. None of the above 10. Cars with an A-1 Reduction Relay Valve and less than feet of brake pipe must have the B-1 Quick Service valve nullified when performing the Separate Vent Valve Test 3.4. a. 100 b. 90 c. 85 d. Any length of feet e. Not required to plug	
d. To check for leakage at the angle cock e. To check for leakage past the dirt collector/cutout cock. 9. When checking brake cylinder piston travel in accordance with Piston Travel & Rigging Test 3.9, a car equipped with empty/load brake equipment must have the equipment in the position. a. Empty	(
8. In the Brake Pipe Leakage Test (3.3) with the cut-out cock closed, the brake pipe is charged to 90 psi and the brake pipe is checked for leakage. The reservoirs are completely drained of air for this test, why? a. To check for leakage from the reservoirs. b. To check for leakage in the brake cylinder. c. To check for leakage in the brake pipe.	7
7. When performing a daily test, what variance between the brake cylinder pressure gauge and the test device is allowed per the Daily Test (2.3.4)? (a) +/- 3psi. b. +/- 5psi. c. +/- 6psi. d. All of the above. e. None of the above.	
 6. Why is it necessary to blow out the supply line before any connection is made to the Single Car Test Device? a. To remove moisture from the air line. b. To remove dirt from the air line. c. To remove any foreign object from the air line. d. All of the above. e. None of the above. 	C

Page G.2-36 February 2, 2018

Written Exam - AAR S-486-13

11. During the Service Stability Test 3.8, if the car goes into emergency, the most probable cause of failure would be the a Emergency portion. b. Service portion c. #8 vent valve. d. Empty/load valve. e. None of the above.	
12. Before performing the Service Stability Test 3.8 on a car equipped with a #8 Vent Valve the vent valve must be nullified by a. Removing the valve b. Closing the cut-out cock c. Removing the vent on the valve and inserting the plug portion of the vent into the body of the vent valve d. Hitting it with a hammer e. None of the above	
 13. When checking piston travel during the Piston Travel & Rigging Test 3.9, the piston trave must be in accordance with what standards? a. The badge plate b. The decal on the car c. 7 – 9 inches d. AAR Rule 3 e. The standard for that car, which may be a, b, c or d or any combination thereof. 	el
14. The Hand Brake Inspection (AAR 3.6) includes the following requirements. a. An air brake application to check the piston travel b. Oil the handbrake with 30W oil, apply the handbrake, check the bell crank, check the shoes with a bar, release the handbrake c. Checking the brake shoes for wear d. Checking the operation of the empty/load equipment e. All of the above	:k
15. In the Emergency Test 3.10, once the 3/8" cock has been opened, the brake cylinder pressure must be compared to the pressure noted in the Service Stability Test? a. The same b. A minimum of 5 psi higher than full service pressure c. A minimum of 5 psi lower than full service pressure d. Zero psi e. None of the above.	

© 2013 Wabtec Corporation

(3 of 6)

Page G.2-37 February 2, 2018

(4 of 6)

Written Exam - AAR S-486-13

16. For the Service Stability Test 3.8, brake pipe pressure is reduced to?
a. 30 psi
b. 40 psi
(c) 50 psi.
d. Reduce pressure to zero
e. None of the above.
17. During the Release After Emergency Test 3.11, brake pipe is charged to 28 psi, the rotary valve is placed in position 3. Brake pipe must rise. This verifies the is functioning correctly? (a) Service Accelerated Release Feature (b) Brake cylinder (c) Reservoir (d) Single Car Test Device (e) Emergency Accelerated Release Feature
18. How long must the brake cylinder remain extended during the Retaining Valve Test 3.12?
a. Five minutes
b. Ten minutes
(c) Four minutes
d. Four hours
e. Does not have to remain applied
19. Brake cylinder pressure at the end of the waiting period described in question 18 for the Retaining Valve Test 3.12 must be? a. 25 psi b. 12 psi c. 15 psi d. Between 60 - 70 psi e. Higher than full service
20. The flowrator is used to verify the car is charged when performing the Minimum application
and Quick Service Limiting Valve Test 3.13. What is the minimum point that the car must be
charged to perform this test?
(a.)The ball floats below the top of the tube
b. The ball is below the red line.
c. The ball is at the bottom of the tube.
d. The ball is two lines below the red line.
e. None of the above.

Page G.2-38 February 2, 2018

© 2013 Wabtec Corporation

Written Exam - AAR S-486-13

21. Brake Cylinder Leakage Test 3.14, after the brake pipe pressure has stabilized wait
a, One minute.
b. Two minutes.
c.)Three minutes
d. 90 seconds.
e. None of the above.
e. Notic of the above.
22. Test 3.14.2 allows no more than 1 psi increase or decrease in pressure variation from the noted in 3.14.1. If the brake cylinder pressure drops more than one psi the problem is ?
a. You did not wait long enough
b. You waited too long
(c) There is a leak in the brake cylinder or associated piping
d. The vent valve has failed
e. None of the above.
23. Which air brake valves (emergency portions) do not have an AAV valve? a. ABDW, ABDWS, ABDW-2. b. ABDX, ABDXR, ABDX-L, ABDXR-L. C. AB, ABD, ABDS d. DB-20, DB-20-L e. All of the above.
24. In the Slow Release Test 3.15, what is the maximum release time for a car with 108 ft of brake pipe? a. 45 seconds b. 55 seconds c. 60 seconds d.75 seconds e. 100 seconds
25. Test 3.18 Recheck of Piston Travel, piston travel must be within of length measured in Test 3.9.1? a. +/- 1 inch b. +/- 1/2 inch c. +/- 3/4 inch d. exactly the same e. whatever you get for a measurement is fine

© 2013 Wabtec Corporation

(5 of 6)

Written Exam - AAR S-486-13

performing the test i a. Change the b. Change the c. Move the tes move the hand d. Get a new te	set vice portion st device handle to position 2 to stop the reduction in pressure, then dle back to position 3. Perform this procedure once. est device, that one has failed e pipe pressure drop as far as it wants, it does not matter
performing the test i a. Change the b. Change the c. Move the tes move the hand d. Get a new te	st device handle to position 2 to stop the reduction in pressure, then dle back to position 3. Perform this procedure once. est device, that one has failed
performing the test i a. Change the b. Change the c. Move the tes move the hand	st device handle to position 2 to stop the reduction in pressure, then the back to position 3. Perform this procedure once.
performing the test i a. Change the e	
performing the test i	emergency portion
	is instructed to do what?
	Car Test when reducing the brake pipe pressure, if the brake pipe eafter the test device handle is placed in Position 3, the person
e. None of the a	above
d. Removed	ided does not matter
(b) Loaded posi	ition aded does not matter
a. Empty position	
	he Brake Cylinder Leakage Test 4.5 in the Special Tests, an empty car rake equipment must have the empty/load sensor in the
e. 20 psi	
d. zero psi	
c. 80 psi	
a, 50 psi b, 60 psi	
	on the test device gauge to make the brake applications.
28. When performing th	ne Slack Adjuster & Piston Travel Adjustment Test 4.1, you reduce brake
e. None of the a	above.
d.)No leakage i	
b. 2 psi. c. 1 psi.	
a. 3 psi.	
the brake cylinder pr	•
27. After removing the b	orake cylinder measurement gauge from the brake cylinder pressure he tap must be checked for leakage. How much leakage is allowed on
C. NORGOLUTE A	above.
ם ממוזה מתחוון ב	
d. 20 psi. e. None of the a	
©.)17 psi. d. 20 psi.	
b. 10 psi. C. 17 psi. d. 20 psi.	
a. 5 psi b. 10 psi. c. 17 psi. d. 20 psi.	lower than pressure noted in Test 3.9.4.

Page G.2-40 February 2, 2018

Practical Exam of Single Car Test Procedures per S-486-13

Name: KASBORA/LCURP	
Name: Company: KASMO RAILCHAP Date: 1-5-16 Mark: PASS	
The instructor must observe the person taking the test. Depending upon the type of car under test, ind	
in the space provided if the person taking the test passed each section of the test. If any part of an individual	l test
is not performed in accordance with applicable standards or the instructor/tester is not satisfied with the pro-	roce-
dure, indicate in the fail column. At the end of the test, the instructor/tester may add any notes that will qual	lify a
pass or fail situation. Note test 3.12.3.1 is not applicable for cars tested to AAR Specifications.	

TEST	RASS	FAIL
2.0 - SINGLE CAR TEST DEVICE	1	
 Is test device within date allowed by AAR standard. Air supply to minimum 90 psi, recommended 100 psi for testing. Test device within 15 degrees of vertical. Hose on test device no longer than 8 feet. 	m	
2.3 - DAILY TEST		
1. Blow out air supply before coupling to test device. 2. Device in high pressure. 3. Close 3/8" cock. 4. Handle to Position 2. 5. Close & open flowrator, ball rises and falls, does not stick. 6. Handle to Position 3. 7. Attach dummy coupling and brake cylinder gauge. 8. Handle to Position 1, pressure at 90 psi. 9. Set to Low Pressure, gauge reads 80 psi. 10. Brake cylinder measurement gauge within +/-3 psi of test device gauge. 11. Reset to High Pressure. 12. Charge to 90 psi, Position 3. 13. Time 1 minute, Leakage <1 psi or check with soap suds < 1" bubble in 5 seconds. 14. Open 3/8" cock, remove dummy coupling. 15. Apply coupling with .28 mm opening. 16. Close 3/8" cock, handle to Position 1. 17. Check flowrator. Ball floats between condemning line and top of tube. 18. Position 3, open flowrator and 3/8" cock. 19. Remove coupling, close 3/8" cock. 20. Leakage at BP end and rotary valve exhaust less than 1" bubble in 5 seconds.	and the second	
3.0 - TESTS - STANDARD FREIGHT BRAKE		
3.1 - Preliminary Procedures & Inspections	-	\vdash
 Wheels chocked, car protected from movement. Handbrake released, brake cylinder push rod returned into brake cylinder. Check shoes, brake levers, pins, rods, rigging for wear and does not bind or foul. Check dates on air hoses, if not changed, replace hose gaskets. Both angle cocks open. Apply brake cylinder measurement tap, if not installed. Apply brake cylinder measurement gauge to tap. Retainer valve in Direct Exhaust (EX). Loosen vent protector & elbow on vent valve if equipped. Completely drain reservoirs. Close branch pipe cut out cock. Set empty/load equipment to loaded position as required. 		

© 2013 Wabtec Corporation

(1 of 5)

Page G.2-41 February 2, 2018

TEST	PRS PRIV
3.2 - Connecting Device to Car	Nicola Maria
1. Confirm Daily Test completed.	
2. Supply line blown out.	
3. Test device reads 90 in HP, 80 in LP.	
4. 3/8" cock closed.	
5. Flowrator open.	
6. Close branch pipe cut out cock.	[,]
7. Reservoirs drained.	47 I
8. Couple test device to car air hose - prefer B end.	
9. Angle cocks open, handle in Position 1.	
10. Continuous blow at angle cock open end.	
11. Close angle cock, attach dummy, reopen.	'
3.3 - Brake Pipe Leakage Test	
1. Position 1, charge brake pipe to 90 psi.	
2. Close flowrator, top of flowrator ball below condemning line.	Ku 1
3. Open flowrator.	φ. σ
3.4 - Separate Brake Pipe Venting Devices - OPTIONAL-	
3.4.1 - Continuous Quick Service Test - OPTIONAL-	
1. Control valve cut out, charged to 90 psi, handle to Position 4.	
2. Pressure reduces on gauge, must not produce emergency.	
3. Intermittent exhaust at quick service vent. No exhaust = failure.	[m]
3. Handle to Position 1, recharge to 90 psi.	
3.4.2, 3.4.3 - Separate Vent Valve Test - OPTIONAL -	
1. A-1 Reduction Relay and < 85' of BP - plug B-1 Quick Service.	
2. Position 5, reduce BP to 50 psi then lap 3. BP pressure does not reduce to zero.	
3. Separate emergency vent valve, BP < 75' use Position 5, >75' use Position 6.	<i>l</i>
4. BP no lower than 40 psi, open 3/8" cock. BP pressure must reduce to zero.	/W/ I
5. Close 3/8" cock.	4 1
3.5 - System Leakage Test	
1. Handle in Position 1.	
2. Cut in control valve, charge to 90 psi.	
3. During charge, no venting at retainer, brake cylinder remains in release.	1/1/
4. Close flowrator, ball below condemning line.	(W) I
Soap reservoir pipes fittings and gaskets for leaks. No leakage allowed.	1
6. Open flowrator.	
3.6 - Hand Brake Inspection	
1. Lubricate handbrake - if required.	
2. HB released, piston pushrod into hollow rod.	
3. Apply handbrake, check bell crank position.	k 1/ 1
4. Use bar, all shoes all locations HB applies are tight. No binding or fouling.	/ IN/
5. Wabcopac/Nycopac trucks one shoe per beam tight.	W 1 1
6. Release handbrake, chain fully unwound.	
7. Chain unwound, bellcrank drops to lower limit, horizontal chain has slack.	
© 2012 Walter Commonsticus	

© 2013 Wabtec Corporation

(2 of 5)

Page G.2-42 February 2, 2018

TEST	RK55	FAIL
3.7 - Slack Adjuster Conditioning	È	4137411743
 Install block(s) between shoe(s) and wheel(s). Charge to 90 psi, make 15 psi reduction, immediately return to Position 1. Wait for cylinder to release. Make 30 psi reduction, Position 5, immediately return to Position 1. Wait for cylinder to release. Charge to 90 psi, Flowrator ball below top of tube. Open Flowrator. 	h	
3.8 - Service Stability Test		
 Vent valve plugged as applicable. VX bleed stem pulled, air blow noticed as applicable. Cars up to 75', 40 psi reduction in Position 5, @ 55 psi use Position 4, lap @ 50 psi. No Emergency. Use Position 2 to stop reduction as applicable. Cars > 75', 40 psi reduction in Position 6, @ 55 psi use Position 4, lap @ 50 psi. No Emergency. Use Position 2 to stop reduction as applicable. Bleed stem of VX valve reset as applicable. 	ji.	
3.9 - Piston Travel (W/Blocks), Rigging & BC Pressure		
 Measure & note piston travel per AAR Standards. Check brake levers for angularity. Determine all shoes firmly set against wheels, verify no fouling in linkage. Brake cylinder pressure must be higher than 50 psi, (except cars with Mod valves). Modulating valves and empty/load valves unable to set to loaded must develop minimum 25 psi BC pressure. Note brake cylinder pressure. 	Û	
3.10 - Emergency Test		l
 Cars with <100ft of BP, BP no lower than 40 psi, quickly open 3/8" cock. Cars with > 100 ft of BP, BP no lower than 40 psi, Position 4 open 3/8" cock. Must produce emergency application, BP to zero. BC pressure must be at least 5 psi higher than full service 3.9.5. 	W	
3.11 - Release Test after Emergency		
 Retainer handle to high pressure (HP) position. Close 3/8" cock, handle to Position 3, watch BP for 2 minutes. Open 3/8' cock, no air exhaust, close 3/8" cock. Handle to Position 1, charge BP to 28 psi, immediately return handle to Position 3. Bake pipe pressure must continue to rise. 	ŵ	
3.12 - Retaining Valve Test		
 Handle to Position 1, charge for <u>four minutes</u>. Brakes remain applied, BC pressure <u>must</u> be equal to or greater than 12 psi. Retainer to direct exhaust (EX), blow of air noted at retainer valve exhaust. 	W	
3.13 - Min. Application & Quick Service Limiting Valve		
 Position 1, charge to 90 psi, flowrator ball is below top of tube. Handle to Position 4, reduce to 87 psi, Position 3. Brakes must apply. BP drops below to 86 psi, use Position 2 then lap to stop as required - only once. Reducing valve to low pressure, device handle to Position 1. 	w	

© 2013 Wabtec Corporation

(3 of 5)

Page G.2-43 February 2, 2018

TEST	24.55	FAIL
3.14 - Brake Cylinder Leakage Test	ľ	
 Pressure stabilized @ 80 psi, wait 3 minutes. Note BC pressure. Brake cylinder pressure must be greater than 12 psi. Wait another minute, check BC pressure. No more than 1 psi increase or decrease is allowed. Close flowrator, observe ball stabilizes. Top of flowrator ball must stay below condemning line. Open flowrator by-pass cock. 	M	,
3.15 - Slow Release Test		
 BP pressure @ 80 psi, brakes applied, handle in Position 3. Reducing valve handle to high pressure, check BP length. Position 2, brakes must release within time specified by BP length, note exhaust @ retainer. Position 1, charge to 90 psi. Remove block(s) between shoe(s) and wheel(s). 	1	
3.16 - Slack Adjuster Conditioning (without blocks)		
1. Make 15 psi reduction, immediately return to Position 1. 2. Wait for cylinder to release. 3. Make 30 psi reduction, Position 5, immediately return to Position 1. 4. Wait for cylinder to release. 5. Charge to 90 psi, Flowrator ball below top of tube. Open flowrator.	W	
3.17- Accelerated Application Valve (AAV) Test		
Handle to Position 4, BP pressure reducing, note exhaust at emergency portion. No emergency application. Reduce BP to 60 psi, Position 3. No exhaust - failed emergency portion. BP continues to drop, use Position 2 then lap to stop as required - only once. BP reduction must stop.	m	
3.18 - Recheck of Piston Travel (W/O blocks, cars with auto slack adjusters)		
 If BP not at 60 psi, reduce to 60 psi in Position 5. Use Position 5, 4 and lap to reach 60 psi. Recheck piston travel. Piston travel must be within +/- 1/2" of travel noted in 3.9.1. May require to cycle slack adjuster with several applications. Last time BP to 90 psi flowrator ball below top of tube. Slack adjuster defective, finish test before replacing. 	En	
3.19 - Manual Release Valve Test		
1. Handle to Position 5, BP drops to zero. (remove strap on ELX-S as applicable) 2. Pull release rod for 3 seconds, brakes release. (check lockout button on ELX-S) 3. Verify release rod does not bind or foul 4. Brake cylinder piston must return to release. 5. Position 1, High Pressure position. 6. Brake cylinder piston must remain in release. 7. Car is empty and has empty/load go to 3.20 8. Position 1, charge to 80 psi. 9. Position 5, reduce BP to zero. 10. Brake must apply. Go to 3.21	\ \!\	/

© 2013 Wabtec Corporation

(4 of 5)

Page G.2-44 February 2, 2018

TEST	PASS	FAIL	
3.20 - Empty/Load Test	1		
1. Handle to Position 1. 2. Regulator valve in High Pressure. 3. Set empty/load valve to empty configuration. 4. Charge BP until flowrator ball is below top of tube. 5. Handle to Position 5, reduce BP to zero, <u>brakes must apply.</u> 6. Brake cylinder pressure must be 17 psi below full service in 3.9.5. 7. Soap empty/load device, reservoir and piping for leaks - <u>no leakage allowed.</u>	W		
3.21 - Disconnecting the Single Car Test Device	\top		
 Remove brake cylinder gauge, soap pressure tap - No leakage allowed. Any valve plugged, remove plug reapply vent protector. Separate emergency portion cut-in. Secure car from movement. Shut off air supply or Position 3 on test device. Drain car reservoirs. Empty/load reset to empty. Remove dummy coupling. 	m	/	
4.0 - SPECIAL TESTS - OPTIONAL			
4.1 - Slack Adjuster Test and Piston Travel Adjustment			
4.2 - Retaining Valve Test			
4.3 - Auxiliary Devices			
4.4 - Brake Cylinder Pressure Tap - Leakage Test			
4.5 - Brake Cylinder Leakage Test Using Gauge			
4.6 - Empty/Load Test			
Exceptions: 6000 TEST, WEED UP THE GOOD WORK			
Tested By: Signature			
Title: MEUN EMO MO WSTR Company: WASTEC			
© 2013 Wabtec Corporation	(1 111111)	-	

(5 of 5)

February 2, 2018 Page G.2-45

APPENDIX G-2.6 ATLAS RAILCAR NDE EXAMINATIONS AND TESTING

Page G.2-46 February 2, 2018

Appendix G-2.6.1 TUV Rheinland Industrial Solutions, Non-Destructive Testing Group Work Instruction No. PA-WI-08-005, Rev No. 1 Ultrasonic Testing to AWS D15.1 Railroad Welding Specification

WORK INSTRUCTION	NUMBER PA-WI-08-005
Title: Ultrasonic Testing	Rev. No. 1
to AWS D15.1 Railroad	Effective Date:
Welding Specification	March 17, 2008

REVISION RECORD

Revision 1 / March 17, 2008	Corrected 5.7.6.1 to refer to 7.3 / Added resolution calibration requirement to 7.5
Revision 0 February 19, 2008	New Issue

Originator:	Kound to Suchol	Date:	March 17, 2008
	Robert D. Nichol		
		_	

Page G.2-47 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 2 of 24

1.0 SCOPE

1.1 This written practice describes the techniques, calibration for use, acceptance standards, and documentation requirements for the ultrasonic testing of groove welds and the heat affected zone between the thicknesses of 5/16" and 8 inches.

2.0 REFERENCE DOCUMENTS

2.1	AWS D 15.2-2007	Railroad Welding Specification for Cars and Locomotives
2.2	AWS D 1.1-2006	Structural Welding Code-Steel
2.3	NDTG-UT-2	NDTG Procedure: Ultrasonic Shear Wave Testing of Welds
2.4	NDTG-UTQC-1	NDTG Procedure: Evaluating Performance, UT Test Equipment
2.5	NDTG-CTP-1	Corporate Training Policy
2.6	ASNT SNT-TC-1A	Recommended Practice (Certification of NDT Personnel)

3.0 PERSONNEL

3.1 All ultrasonic testing personnel shall meet the minimum education and training requirements of the Non-Destructive Testing Group's Corporate Training Policy, NDTG-CTP-1. Personnel interpreting test results for acceptance or rejection shall be certified to Level II or III in the ultrasonic method. Level I personnel may perform testing, under direct supervision of a Level II or III technician.

4.0 GENERAL

- 4.1 The procedures and standards set forth shall govern the UT of groove welds and HAZs between the thicknesses of 5/16 inch and 8 inch [8 mm and 200 mm] inclusive.
- 4.2 The ultrasonic testing procedure and technique shall be in accordance with AWS D1.1

5.0 UT EQUIPMENT

- 5.1 Equipment Requirements
 - 5.1.1 The UT instrument shall be the pulse echo type suitable for use with transducers oscillating at frequencies between 1 and 6 megahertz. The display shall be an "A" scan rectified video trace.
- 5.2 Horizontal Linearity
 - 5.2.1 The horizontal linearity of the test instrument shall be qualified over the full sound path distance to be used in testing.
- 5.3 Requirements for Test Instruments

Page G.2-48 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 3 of 24

5.3.1 Test instruments shall include internal stabilization so that after warm-up, no variation in response greater than ± 1dB occurs with a supply voltage change of 15% nominal or, in the case of a battery, throughout the charge operation life. There shall be an alarm or meter to signal a drop in battery voltage prior to instrument shutoff due to battery exhaustion.

5.4 Calibration of Test Instruments

- 5.4.1 The test instrument shall have a calibrated gain control (attenuator) adjustable in discrete 1 or 2 dB steps over a range of at least 60dB. The accuracy of the attenuator settings shall be within plus or minus 1 dB.
- 5.4.2 Equipment Qualification Procedures
 - 5.4.2.1 Equipment will be certified per the requirements of NDTG-UTQC-1.
- 5.5 Display Range
 - 5.5.1 The dynamic range of the instrument's display shall be such that a difference of 1 dB of amplitude can be easily detected in the display.
- 5.6 Straight-Beam (Longitudinal Wave) Search Units
 - 5.6.1 Straight-beam (longitudinal wave) search unit transducers shall have an active area of not less than ½ square inches [323 square millimeters] or more than 1 square inch [645 square millimeters]. The transducer shall be round or square. Transducers hall be capable of resolving the three reflections as described when transducer is set in position "F" on the IIW block.
 - 5.6.2 The transducer frequency shall be 2.25 Mhz.
- 5.7 Angle-Beam Search Units
 - 5.7.1 Angle-beam search units shall consist of a transducer and an angle wedge.
 - 5.7.2 Frequency
 - 5.7.2.1 The transducer frequency shall be between 2 and 2.5 MHz, inclusive.
 - 5.7.3 Transducer dimensions.
 - 5.7.3.1.1 The transducer crystal shall be square or rectangular in shape and may vary form 5/8 inches to 1 inch [15 to 25 mm] width and from 5/8 to 13/16 inches [15 to 20 mm] in height. The maximum width to height ratio shall be 1.2 to 1.0, and the minimum width-to-height ratio shall be 1.0 to 1.0.

Page G.2-49 February 2, 2018

> WI-PA-08-00 Revision March 17, 200 Page 4 of 2

5.7.4 Angles

5.7.4.1 The search unit shall produce a sound beam in the material being tested within plus or minus 2° of one of the following proper angles: 70°, 60° or 45° as described in 7.4.2.2

5.7.5 Marking

5.7.5.1 Each search unit shall be marked to clearly indicate the frequency of the transducer, nominal angle of refraction and index point. (See 7.4.2.1)

5.7.6 Internal Reflections

5.7.6.1 Maximum allowable internal reflections from the search unit shall be as described in 7.3.

5.7.7 Edge Distance

5.7.7.1 The dimensions of the search unit shall be such that the distance from the leading edge of the search unit to the index point shall not exceed 1 inch [25 mm].

5.7.8 IIW Block

5.7.8.1 The qualification procedure using the IIW reference block shall be in conformance with NDTG-UTQC-1.

6.0 Reference Standards

6.1 IIW Standards

6.1.1 The international Institute of Welding (IIW) UT reference block, shall be the standard used for both distance and sensitivity calibration. Other portable blocks may be used, provided the reference level sensitivity for instrument/ search unit combination shall be adjusted to be the equivalent of that achieved with the IIW Block (see AWS D1.1 Figure X-1 for examples).

6.2 Prohibited Reflectors

6.2.1 The use of a "corner" reflector for calibration purpose shall be prohibited.

6.3 Resolution Requirements

6.3.1 The combination of search unit and instrument shall resolve three holes in the RC resolution reference test block shown in Figure 6.3. The search unit position is described in 7.4.2.5. The resolution shall be evaluated with the instrument

Page G.2-50 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 5 of 24

controls set at normal test settings and with indications from the holes brought to midscreen height. Resolution shall be sufficient to distinguish at least the peaks of indications from the three holes. Use of the RC resolution reference block for calibration shall be prohibited. Each combination of instrument search unit (shoe and transducer) shall be checked prior to this initial use. This equipment verification shall be done initially with each search unit and UT unit combination. The verification need not be done again provided documentation is maintained that records the following items:

- (1) UT machine's, make, model and serial number
- (2) Search unit's manufacturer, type, size, angle, and serial number
- (3) Date of verification and technician's name

7.0 Equipment Qualification

7.1 Horizontal Linearity

7.1.1 The horizontal linearity of the test instrument shall be requalified after each 40 hours of instrument use in each of the distance ranges that the instrument will be used. The qualification procedure shall be in conformance with NDTG-UTQC-1 and AWS D1.1. (see NDTG-UTQC-1 see Annex X in AWS D1.1 for alternative methods).

7.2 Gain Control

7.2.1 The instrument's gain control (attenuator) shall meet the requirements of 5.4 shall be checked for correct calibration at two month intervals in conformance with NDTG-UTQC-1. Alternative methods may be used for calibrated gain control (attenuator) qualification if proven at least equivalent with NDTG-UTQC-1.

7.3 Internal Reflections

7.3.1 Maximum internal reflections from each search unit shall be verified at a maximum time interval of 40 hours of instrument use in conformance with 6.30.3 of AWS D.1.1

7.4 Calibration of Angle-Bean Search Units

7.4.1 With the use of an approved calibration block, each angle-beam of an approved calibration block, each angle-beam search unit shall be checked after each eight hours of use to determine that the contact face is flat, that the sound entry point is correct, and that the beam angle is within the allowed plus or minus 2° tolerance in conformance with 7.4.2.1.1 and 7.4.2.2.1. Search units, which do not meet these requirements, shall be corrected or replaced.

7.4.2 Shear Wave Mode (Transverse)

Page G.2-51 February 2, 2018

WI-PA-08-00 Revision March 17, 200 Page 6 of 2

7.4.2.1 Index Point

- 7.4.2.1.1 The transducer sound entry point (index point) shall be located or checked by the following procedure:
 - (1) The transducer shall be set in position D on the IIW book
 - (2) The transducer shall be moved until the signal form the

radius is maximized. The point on the transducer, which aligns with the radius line on the calibration block, is the point of sound entry. (see Annex X in AWS D1.1 for alternative methods).

7.4.2.2 Angle

- 7.4.2.2.1 The transducer sound-path angle shall be checked or determined by one of the following procedures:
 - (1) The transducer shall be set in position B on IIW block for angles 40° through 60°, or in position C on IIW block for angles 60° through 70° (see Figure 7.4.1).
 - (2) For the selected angle, the transducer shall be moved back and forth over the line indicative of the transducer angle until the signal form the radius is maximized. The sound entry point on the transducer shall be compared with the angle mark on the calibration block (tolerance ± 2°) (see Annex X in AWS D1.1 for alternative methods).

7.4.2.3 Distance Calibration Procedure

7.4.2.3.1 The transducer shall be set in position D on the IIW block (any angle). The instrument shall then be adjusted to attain indications at 4 inch [100 mm on a metric block] and 8 inch [200 mm on a metric block] or 9 inches [225 mm on a metric block] on the display, 4 inches [100 mm] and 9 inches [230 mm] on Type 1 block; or 4 inches [100 mm] and 8 inches [200 mm] on a Type 2 block (see Annex X in AWS D1.1 for alternative method).

7.4.2.4 Amplitude or Sensitivity Calibration Procedure

7.4.2.4.1 The transducer shall be set in position A on the IIW block (any angle). The maximized signal shall then be adjusted form the 0.060 inch [1.59 mm] hole to attain a horizontal reference-line height indication (see Annex X, of AWS D1.1 for alternative method).

Page G.2-52 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 7 of 24

7.4.2.5 Resolution:

7.4.2.5.1 (1) The transducer shall be set on resolution block RC position

Q for 70° angle, position R for 60° angle, or position S for 45° angle.

(3) Transducer and instrument shall resolve the three test holes, at least to the extent of distinguishing the peaks of the indications from the three holes.

7.4.2.6 Approach Distance of Search Unit

7.4.2.6.1 The minimum allowable distance between the toe of the search unit and the edge of IIW block shall be as follows:

For 70° transducer, X = 2 inches [50 mm]

For 60° transducer X = 1-7/16 inches [37 mm]

For 45° transducer X = 1inch [25 mm]

- 7.5 Calibration of Straight Beam Search Units:
 - 7.5.1 Recognized standards, such as the IIW or DSC blocks may be utilized to verify the horizontal and vertical linearity and to establish distance calibration. For thinner materials, a step wedge may be used to establish distance reflectors over a known range. For test pieces of greater length, special reference standards of a known length may be used to achieve a back reflection on the CRT that will be representative of the length of the part to be tested. In all instances, a minimum of the initial pulse and one back reflection shall be present on the CRT screen. Calibration standards shall have parallel surfaces to assure proper sound transmission and reception.
 - 7.5.2 Sensitivity shall be established by maximizing a reflector on the CRT at 50 to 80% of the full screen height (FSH), at a distance which is the same or greater than the thickness or length of the item to be examined. This may be adjusted from the actual back reflection of the test piece once distance calibration has been completed, to compensate for differences in the surface conditions or acoustical differences in the test material.

Page G.2-53 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 8 of 24

- 7.5.3 Resolution Requirement. The combination of search unit and instrument shall resolve three holes or notches. The resolution shall be sufficient to distinguish at least the peaks of indications from the three holes or notches. This will be completed prior to calibration.
- 7.5.4 Calibration standards shall be of the same material type as the items to be examined and with smooth parallel surfaces.
- 7.5.5 Calibration should be checked periodically and shall be checked any time there is a change to the equipment, a change of operators, a shutdown of the power source, or any time there is reason to suspect an equipment malfunction.

8.0 Calibration for Testing

- 8.1 Position of Reject Control
 - 8.1.1 All calibrations and tests shall be made with the reject (clipping or suppression) control turned off. Use of the reject (clipping or suppression) control may alter the amplitude linearity of the instrument and invalidate test results.
- 8.2 Technique
 - 8.2.1 Calibration for sensitivity and horizontal sweep (distance) shall be made by the UT operator just prior to and at the location of testing of each weld.
- 8.3 Recalibration
 - 8.3.1 Recalibration shall be made after a change of operators, each 30 minute maximum time interval, or when the electrical circuitry is disturbed in any way which includes the following:
 - (1) Transducer change
 - (2) Battery change
 - (3) Electrical outlet change
 - (4) Coaxial cable change
 - (5) Power outage (failure)
 - 8.3.2 Recalibration verification shall be performed after completing the inspection to verify valid calibration.
 - 8.3.2.1 Should the end of test calibration prove to be invalid, all tested area since the last valid calibration verification shall be re-tested.
- 8.4 Straight-Beam Testing of Base Metal
 - 8.4.1 Sweep

Page G.2-54 February 2, 2018

> WI-PA-08-007 Revision 7 March 17, 2008 Page 9 of 24

8.4.1.1 The horizontal sweep shall be adjusted for distance calibration to present the equivalent of at least two plate thicknesses on the display.

8.4.2 Sensitivity

8.4.2.1 The sensitivity shall be adjusted at a location free of indications so that the first back reflection from the far side of the plate will be 50% to 75% of full screen height.

8.5 Calibration for Angle-Beam Testing

8.5.1 Calibration for angle-beam testing shall be performed as follows (see Annex X of 1 in AWS D1.1 for alterative methods).

8.5.2 Horizontal Sweep

8.5.2.1 The horizontal sweep shall be adjusted to represent the actual sound-path distance by using the IIW block or alternative blocks as described in 6.1. The distance calibration shall be made using either, the 5 inches [122 mm] scale, or 10 inches [250 mm] scale on display, whichever is appropriate. If, however the joint configuration or thickness prevents full examination of the weld at either of these settings, the distance calibration shall be made using 15 inches or 20 inches [400 mm or 500 mm] scale is required. The search unit position is described in 7.4.2.3.

8.5.2.2 Zero Reference Level

8.5.2.2.1 The zero reference level sensitivity used for discontinuity evaluation ("b" on the ultrasonic test report, NDTG form AWS shall be attained by adjusting the calibrated gain control (attenuator) of the discontinuity detector, meeting the requirements of 5.0, so that a maximized horizontal trace deflection (adjusted to horizontal reference line height with calibrated gain control [attenuator]) results on the display, in conformance with 7.4.2.4.

9.0 Testing Procedures

9.1 "X" Line

9.1.1 An "X" line for discontinuity location shall be marked on the test face of the weldment in a direction parallel to the weld axis. The location distance perpendicular to the weld axis shall be based on the dimensional figures on the detail drawing and usually falls on the centerline of the butt joint welds, and always falls on the near face of the connecting member of T and corner joint welds (the face opposite Face C).

Page G.2-55 February 2, 2018

WI-PA-08-001 Revision I March 17, 2008 Page 10 of 24

9.2 "Y" Line

- 9.2.1 A "Y" accompanied with a weld identification number shall be clearly marked on the base metal adjacent to the weld that is subject to UT. This marking is used for the following purpose:
 - (1) Weld identification
 - (2) Identification of Face A
 - (3) Distance measurements and direction (+ or -) from the "X" line.
 - (4) Location measurements from weld ends or edges.

9.3 Cleanliness

9.3.1 All surfaces to which a search unit is applied shall be free of weld spatter, dirt, grease, oil (other than that used as a couplant), paint, and loose scale and shall have a contour allowing intimate coupling.

9.4 Couplants

9.4.1 A couplant material shall be used between the search unit and the test material. The couplant shall be either glycerin or cellulose gum and water mixture of a suitable consistency. A wetting agent may be added if needed. Light machine oil may be used for couplant on calibration blocks.

9.5 Extent of Testing

9.5.1 The entire base metal through which ultrasound must travel to test the weld shall be tested for laminar reflectors using a straight-beam search unit conforming to the requirements of 5.6 and calibrated in conformance with 8.4. If any area of base metal exhibits total loss of back reflection or an indication equal to or greater than the original back reflection height is located in a position that will interfere with the normal weld scanning procedure, its size location, and depth from the A face shall be determined and reported on the UT report, and an alternate weld scanning procedure shall be used.

9.5.2 Reflector Size

- 9.5.2.1 If part of a weld is inaccessible to testing in conformance with the requirements of Table 6.7, due to laminar content recorded in conformance with 9.5.1 the testing shall be conducted using one or more of the following alternative procedures as necessary to attain full weld coverage:
 - (1) Weld surface(s) shall be ground flush.
 - (2) Testing form Faces A and B shall be performed.
 - (3) Other search unit angles shall be used.

Page G.2-56 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 11 of 24

9.6 Testing of Welds

9.6.1 Welds shall be tested using and angle beam search unit conforming to the requirements of 5.7 with the instrument calibrated in conformance with 8.5 using the angle as shown in Table 6.7. Following calibration and during testing, the only instrument adjustment allowed is the sensitivity level adjustment with the calibrated gain control (attenuator). The reject (clipping or suppression) control shall be turned off. Sensitivity shall be increased from the reference level for weld scanning in conformance with Table 6.2 of this procedure or AWS D15.2-2007, Table 17.2.

9.6.2 Scanning

9.6.2.1 The testing angle and scanning procedure shall be in conformance with those show in Table 6.7.

9.6.3 Butt Joint

9.6.3.1 All butt joint welds shall be tested from each side of the weld axis. Corner and T-joint welds shall be primarily tested form one side of the weld axis only. All welds shall be tested using the applicable scanning pattern or pattern shown in Figure 9.6 as necessary to detect both longitudinal and transverse discontinuities. It is intended that, as a minimum, all welds be tested by passing sound through the entire volume of the weld and the HAZ in two crossing directions, wherever practical.

9.6.4 Maximum Indication

9.6.4.1 When a discontinuity indication appears on the screen, the maximum attainable indication from the discontinuity shall be adjusted to produce a horizontal reference level trace deflection on the display. This adjustment shall be made with the calibrated gain control (attenuator), and the instrument reading in decibels shall be used as the "Indication Level, a," for calculating the "Indication Rating, d," as shown on the test report (NDTG form AWS form No.0004 or equivalent).

9.6.5 Attenuation Factor

9.6.5.1 The "Attenuation Factor, c," on the test report shall be attained by subtracting 1 inch [25 mm] from the sound-path distance and multiplying the remainder by 2. This factor shall be rounded out to the nearest dB value. Fractional values less than ½ dB shall be reduced to the lower dB level and those of 1/2 dB or greater increased to the higher level.

Page G.2-57 February 2, 2018

WI-PA-08-00 Revision March 17, 2000 Page 12 of 2

9.6.6 Indication Rating

9.6.6.1 The "Indication Rating, d," in the UT report, (NDTG form AWS form No.0004 or equivalent), represents the algebraic difference in decibels between the indication level and the reference level with correction for attenuation as indicated in the following expressions:

Instruments with gain in dB: a-b-c = d Instruments with attenuation in dB b-a-c = d

9.7 Length of Discontinuities

9.7.1 The length of discontinuities shall be determined in conformance with procedure described in 10.2.

9.8 Basis for Acceptance or Rejection

9.8.1 Each weld discontinuity shall be accepted or rejected on the basis of its indication rating and its length, in conformance with Table 6.2 for statically loaded structures or AWS D15.1-2007, Table 17.2. Only those discontinuities, which are rejectable, need be recorded on the test report.

9.9 Identification of Reject Area

9.9.1 Each rejectable discontinuity shall be indicated on the weld by a mark directly over the discontinuity for its entire length. The depth from the surface and indication rating shall be noted on nearby base metal.

9.10 Repairs

9.10.1 Welds found unacceptable by UT shall be repaired by methods allowed by AWS D1.1 (see 5.26)

9.11 Retest Reports

9.11.1 Evaluation of retested repaired weld areas shall be tabulated on a new line on the report form. If the original report form is used, and R1, R2, ... Rn shall prefix the weld number. If additional reports are used the Rn will suffix the weld no. shall prefix the report number.

9.12 Steel Backing

9.12.1 UT of CJP groove welds with steel backing shall be performed with a UT technique that recognizes potential reflectors created by the base metal-backing

Page G.2-58 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 13 of 24

interface. (see Commentary C6.26.12 of AWS D1.1 for additional guidance scanning groove welds containing steel backing).

10.0 Discontinuity Size Evaluation Procedures

- 10.1 Each discontinuity shall be accepted or rejected on a basis of it's indication rating and it's length in accordance with this written practice and AWS D15.1-2007, Table 17.2
- 10.2 Straight-Beam (Longitudinal) Testing
 - 10.1.1 The size of lamellar discontinuities is not always easily determined, especially those that are smaller than the transducer size. When the discontinuity is larger than the transducer, a full loss of back reflection will occur and a 6dB loss of amplitude and measurement to the centerline of the transducer s usually reliable for determining discontinuity edges. However, the approximate size evaluation of those reflectors, which are smaller than the transducer, shall be made by beginning outside of the discontinuity with equipment calibrated in conformance with 8.4 and moving the transducer toward the area of discontinuity until an indication on the display begins to form. The leading edge of the search unit at this point is indicative of the edge of the discontinuity.
- 10.2 Angle-Beam (Shear) Testing
 - 10.2.1 The following procedure shall be used to determined lengths of indications, which have dB ratings more serious than for a Class D indication. The length of such indication shall be determined by measuring the distance between the transducer centerline locations where the indication rating amplitude drops 50% (6 dB) below the rating for the applicable "discontinuity length" on the test report. Where warranted by discontinuity amplitude, thus procedure shall be repeated to determine the length of Class A. B, and C discontinuities.

11.0 Scanning Patterns

- 11.1 Longitudinal Discontinuities
 - 11.1.1 Scanning Movement A.
 - 11.1.1.1 Rotation angle a = 10°
 - 11.1.2 Scanning Movement B.
 - 11.1.2.1 Scanning distance b shall be such that the section of weld being tested is covered.
 - 11.1.3 Scanning Movement C.

Page G.2-59 February 2, 2018

WI-PA-08-001 Revision I March 17, 2008 Page 14 of 24

11.1.3.1 Progression distance c shall be approximately one-half the transducer width.

*Note: movement A, B, and C may be combined into one scanning pattern.

- 11.2 Transverse Discontinuities
 - 11.2.1 Ground Welds
 - 11.2.1.1 Scanning pattern D shall be used when welds are ground flush.
 - 11.2.2 Unground Welds
 - 11.2.2.1 Scanning pattern E shall be used when the welds reinforcement is not ground flush. Scanning angle $e = 15^{\circ}$ maximum.

*Note: The scanning pattern shall cover the full weld section.

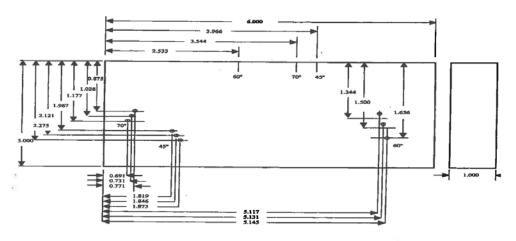
- 11.3 ESW or EGW Welds (Additional Scanning Pattern)
 - 11.3.1 Scanning Pattern E Search unit rotation angle e between 45° and 60°.

*Note: The scanning pattern shall cover the full weld section.

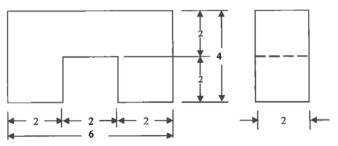
12.0 Preparation and Disposition of Reports

- 12.1 Content of Reports.
 - 12.1.1 A report form, which clearly identifies the work and the area of inspection, shall be completed by the UT <u>operator</u> at the time of inspection. The report form for welds that are acceptable need only contain sufficient information to identify the weld, the <u>operator</u> (signature), and the acceptability of the weld. An example of such a form is NDTG AWS Form NDTG-0004 or equivalent.
- 12.2 Prior Inspection Reports
 - 12.2.1 Before a weld subject to UT by the Contractor for the Owner is accepted, all report forms pertaining to the weld, including any that show unacceptable quality prior to repair, shall be submitted to the Inspector.
- 12.3 Completed Reports
 - 12.3.1 A full set of completed report forms of welds subject to UT by the Contractor for the Owner, including any that show unacceptable quality prior to repair, shall be delivered to the Owner upon completion of the work. The Contractor's obligation to retain UT reports shall cease (1) upon delivery of this full set to the

Page G.2-60 February 2, 2018


WI-PA-08-001 Revision I March 17, 2008 Page 15 of 24

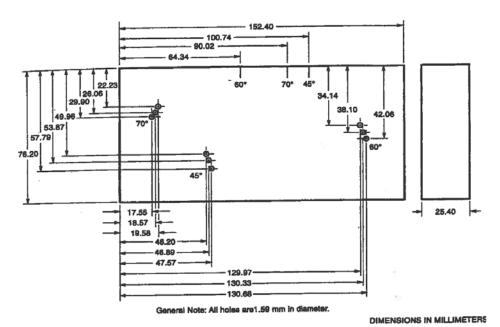
Owner, or (5) years after completion of the Contractor's work, provided that the Owner is given prior written notice.


13.0 Marking

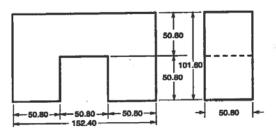
- 13.1 Each rejectable discontinuity shall be indicated on the weld by a mark directly over the discontinuity for it's entire length. The depth from the surface and the type of the discontinuity shall be noted nearby on base metal.
- 13.2 Upon completion and acceptance of each weld tested the level II technician shall mark each weld with a white paint stick. The marking shall be as close to the weld as possible. The acceptance marking shall be as follows:

UT Accepted NDTG – (inspector's initials) (Date)

RC - RESOLUTION REFERENCE BLOCK

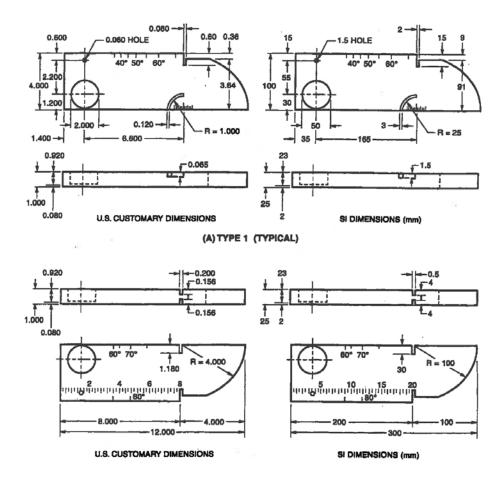


TYPE - DISTANCE AND SENSITIVITY REFERENCE BLOCK


Page G.2-61 February 2, 2018

WI-PA-08-00 Revision March 17, 2000 Page 16 of 24

Figure 6.3 - Qualification Blocks (see 6.3)


RC - RESOLUTION REFERENCE BLOCK

TYPE - DISTANCE AND SENSITIVITY REFERENCE BLOCK

Page G.2-62 February 2, 2018

WI-PA-08-001 Revision I March 17, 2008 Page 17 of 24

General Notes:

- The dimensional tolerance between all surfaces involved in referencing or calibrating shall be within ± .005 in.
 [0.13 mm] of detailed dimension.
- The surface finish of all surfaces to which sound is applied or reflected form shall have a maximum of 125 μin. [3 μm] r.m.s.
- All materials shall be ASTM A 36 or acoustically equivalent.
- All holes shall have a smooth internal finish and shall be drilled 90° to the material surface.
- Degree lines and identification markings shall be indented into the material surface so that permanent orientation can be maintained.
- Other approved reference blocks with slightly different dimensions or distance calibration slots are permissible (see Annex X).
- These notes shall apply to all sketches in Figures 6.22 and 6.23.

Page G.2-63 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 18 of 24

E F F U

Figure 7.4 – International Institute of Welding (IIW) UT Reference Blocks

rigure /.4.1- 1 ransqueer rosmons (1 ypical)

RESOLUTION BLOCK

DS BLOCK

Page G.2-64 February 2, 2018

Revision 1 March 17, 2008 Page 19 of 24

				7	Table 6.2	2						
	UT Acce	ptance-Rejecti	on Criteria	(Statically J	oaded Non	tubular Cor	nections) (see 6.13.1 of	AWS D1.1	•		
			Weld T	hickness1 in	in. [mm] and	l Search Uni	t Angle					
Discontinuity Severity	5/16 through 3/4 [8-20]	>3/4 through 1-1/2 [20-38]	> 1	-1/2 through [38-65]	2-1/2	>	2-1/2 throug [65-100]			> 4 through [100-200]		
Class	70°	70°	70° 70°	70°	60°	45°	70°	60°	45°	70°	60°	45°
Class A	+5 &	+2 &	-2 &	+1 &	+3 &	-5 &	-2 &	0 &	-7 &	-4 &	-1 &	
CIBSS A	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	lower	
	+6	+3	-1	+2	+4	-4	-1	+1	-6	-3	0	
Class B			0	+3	+5	-3	0	+2	-5	-2	+1	
	+7	+4	+1	+4	+6	-2 to	+1	+3	-4 to	-1 to	+2	
Class C			+2	+5	+7	+2	+2	+4	+2	+2	+3	
	+8	+5	+3	+6	+8	+3	+3	+5	+3	+3	+4	
Class D	& up	& up	& up	& up	& up	& up	& up	& up	& up	& up	& up	

General Notes:

- Class B and C discontinuities shall be separated by a least 2L, L being the length of the longer discontinuity, except that when two or more such discontinuities are not separated by a least 2L, but the combined length of discontinuities and their separation distance is equal to or less than the maximum allowable length under the provisions of Class B or C, the discontinuity shall be considered a single acceptable discontinuity.

 Class B and C discontinuities shall not begin at a distance less than 2L from weld ends carrying primary tensile stress, L being the discontinuity length.
- length.
- Discontinuities detected at "scanning level" in the root face area of CIP double groove weld joints shall be evaluated using an indicating rating 4 dB more sensitive than described in 6.26.6.5 when such welds are designated as "tension welds" on the drawing (subtract 4 dB from the indication rating "d"). This shall not apply if the weld joint is backgouged to sound metal to remove the root face and MT used to verify that the root face has been
- ESW or EGWs: discontinuities detected at "scanning level" which exceed 2 in [50 mm] in length shall be suspected as being piping porosity and shall be further evaluated with radiography.

 For indications that remain on the display as the search unit is moved, refer 6.13.1.

Weld thickness shall be defined as the nominal thickness of the thinner of the two parts being joined.

Class A (large discontinuities)

Any indication in this category shall be rejected (regardless of length).

Class B (medium discontinuities)

Any indication in this category having a length greater than 3/4 in. [20 mm] shall be rejected.

Class C (small discontinuities)

Any indication in this category having a length greater than 2 in. [50 mm] shall be rejected.

Class D (minor discontinuities)

Any indication in this category shall be accepted regardless of length or location in the weld.

Scanning Leve	ls
Sound path ² in in. [mm]	Above Zero Reference, dB
through 2-1/2 [65 mm]	14
>2-1/2 through 5 [65-125 mm]	19
>5 through 15 [125-250 mm]	29
>10 through 15 [250-380 mm]	39

2. This column refers to sound path distances; NOT material thickness.

Page G.2-65 February 2, 2018

Revision I March 17, 2008 Page 20 of 24

Class A (large discontinuities)

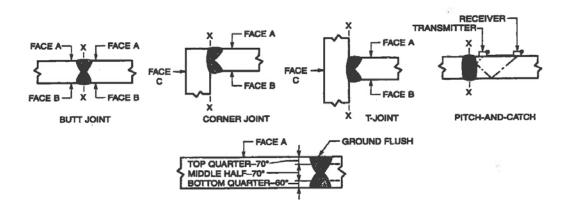
Any indication in this category shall be rejected (regardless of length).

Class B (medium discontinuities) Any indication in this category having a length greater than % in. [20 mm] shall be rejected.

Class C (small discontinuities)

Any indication in this category having a length greater than 2 in. [50 mm] in the middle half or ¾ in [20 mm] length in the top or bottom quarter of weld thickness shall be rejected.

Class D (minor discontinuities)


Any indication in this category shall be accepted regardless of length or location in the weld.

Scanning Levels					
Sound path ² in in. [mm]	Above Zero Reference, dB				
through 2-1/2 [65 mm]	20				
>2-1/2 through 5 [65-125 mm]	25				
>5 through 15 [125-250 mm]	35				
>10 through 15 [250-380 mm]	45				

Note:

2. This column refers to sound path distances; NOT material thickness.

							F	Tab Testin Procedu		gle								
							Materi	al Thi	cknes	s in. [n	ım]							
Weld Type	t	5 [8] o 1/2 8]	E	-1/2 38] to 4 [45]	[4 t	3/42 [5] [6]	>2-1/2 t 3-1/2		[9 1 4-	-1/2 [0] [0] [0] 1/2 [10]	[]	-1/2 10] to 130]	6-	[130] o 1/2 60]	[10 t	1/2 60] o [80]	>7 [t 8 [2	0
	,	ŧ		*		*		b		*		*		*		ŧ	,	(c
Butt	1	0	1	F	1G or 4	F	IG or 5	F	6 or 7	F	8 or 10	F	9 or 11	F	12 or 13	F	12	1
T-	1	0	1	F or XF	4	F or XF	5	F or XF	7	F or XF	10	F or XF	11	F or XF	13	F or XF		
Corner	1	0	1	F or XF	1G or 4	F or XF	1G or 5	F or XF	6 or 7	F or XF	8 or 10	F or XF	9 or 11	F or XF	13 or 14	or XF		

Page G.2-66 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 21 of 24

		Table 6.7 (Continued)
Legend:		
X	 Check 	c from Face "C".
G	Grind	weld face flush.
0	- Not re	equired.
A Face		ace of the material from which the initial scanning is done (on T – and corner, follow above sketches).
B Face	- Орро	site the "A" face (same plate).
C Face		ace opposite the weld on the connection member or a T – or corner joint
*	the w	red only where display reference height indication of discontinuity is noted at eld metal-base metal interface while searching at scanning level with primary dures selected from first column.
**	 Use 1 	5 in. [400 mm] or 20 in. [500 mm] screen distance calibration.
P	 Pitch middl specificontrol norma units 	and catch shall be conducted for further discontinuity evaluation in only the half of the material thickness with only 45° or 70° transducers of equal fication. Both facing the weld. (Transducers must be held in a fixture to ol positioning – see sketch.) Amplitude calibration for pitch and catch is ally made by calibration a single search unit. When switching to dual search for pitch and catch inspection, there should be assurance that this calibration not change as a result of instrument variables.
F	70°, 6	metal – base metal interface indications shall be further evaluated with either 10°, or 45° transducer- whichever sound path is nearest to being perpendicular suspected fusion surface.

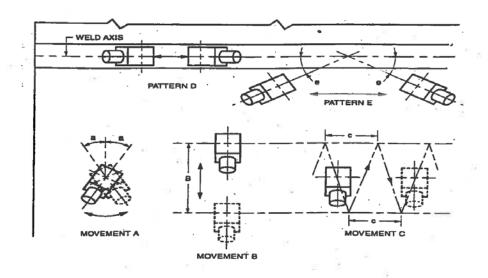
General Notes:

- Where possible, all examinations shall be made from Face A and n Leg 1, unless otherwise specified in this table.
- Root areas of single groove weld joints which have backing not requiring removal by contract, shall be tested in Leg 1, where possible, with Face A being that opposite the backing. (Grinding of the weld face or testing from additional weld faces may be necessary to permit complete scanning of the weld root.)

- scanning of the weld root.)
 Examingtion in Leg II or III shall be made only to satisfy provisions of this table or when necessary to test weld areas made inaccessible by an unground weld surface, or interference with other portions of the weldment, or to meet the requirements of 6.26.6.2.

 A maximum of Leg III shall be used only where thickness or geometry prevents scanning of complete weld areas and HAZs in Leg I or Leg II.

 On tension welds in cyclically loaded structures, the top quarter of thickness shall be tested with the final leg of sound progressing from Face B toward Face A, the bottom quarter of thickness shall be tested with the final leg of sound progressing Face A toward Face B; i.e., the top quarter of thickness shall be tested either from Face A in Leg II or from Face B in Leg I at the contractor's option, unless otherwise specified in the contractor.
- The weld face indicated shall be ground flush before using procedure 1G, 6, 8, 9, 12, 14 or 15. Face A for both connected member shall be in the same plane.


(See Legend on next page)

Page G.2-67 February 2, 2018

WI-PA-08-001 Revision 1 March 17, 2008 Page 22 of 24

	Procedur	e Legend	
	Area of We	d Thickness	
No.	Top Quarter	Middle Half	Bottom Quarter
1	70°	70°	70°
2	60°	60°	60°
3	45°	45°	45°
4	60°	70°	70°
5	45°	70°	70°
6	70°G A	70°	60°
7	60°B	70°	60°
8	70°G A	60°	60°
9	70°G A	60°	45°
10	60° B	60°	60°
11	45° B	70**	45°
12	70°G A	45°	70° G B
13	45° B	45°	45°
14	70°G A	45°	45°
15	70°G A	70°A B	70° G B

Figure 9.6 Plan View of UT Scanning Patterns

Page G.2-68 February 2, 2018

General Notes:

- Testing patterns are all symmetrical around the weld axis with the exception of pattern D, which shall be conducted directly over the weld axis.
- Testing from both sides of the weld axis shall be made wherever mechanically possible.

			<u>F</u>	REPOI	RT OF	CULTR		NIC INS	PECI	ION						
TESTED FOR:								DJECT:								
								NO.:								
DATE:								ORT N	0.:						-	
Client Order No.							Leng	gth:				asonio al No.	Unit:			
Test Method Standar	d:						Thic	kness:			Loc	ation:				
Acceptance Standard	:															
								I	Decibe	ls**			D	iscont	inuity	
			No.	_						-					Dista	ance
	Code	ode	Procedure Legend No.	Indication Number	Transducer Angle	ace		Indication	Reference	Attenuation	Indication		Angular Distance h)	Depth From "A"		
Weld Identification	Meets Code	Fails Code	Proced	Indicati	Transd	From Face	Leg *	a	b	С	d	Length	Angula h)	Depth	From	From
							_	<u> </u>								
		<u> </u>			-	-	<u> </u>	 								
·			-		-			 		-		_				
		-		_				 								
							L.									
		_	-	<u> </u>	-			-		-				_		
		-	 		-		 -			-						
								_ · ·								
		<u> </u>			<u> </u>		-									
						-	\vdash			-					<u> </u>	
Couplant:									Free	quency	/:					
Calibration Blocks:									Sur	face C	onditi	on:				
Technician:		Leve	el: II	Inter	preter	:		Level:	_				Gain in – b – c		in DB	nuation $-c = d$

February 2, 2018 Page G.2-69

						WI-PA-08-001 Revision 1 March 17, 2008 Page 24 of 24
				T		
This report shall not be r	reproduced except in full with	hout the written approv	al of the la	borato	ry.	
Reviewed by:						
Date:						
Is this test within the sco	pe of the A2LA certification	? <u>X</u> YES NO)			
Levised Form NDTG-0004 August 20, 2003						

Page G.2-70 February 2, 2018

Appendix G-2.6.2 TUV Rheinland Industrial Solutions Procedure TRIS NDE-VT-4, Rev No. 0

Visual Inspection Technical Publications T9074-AS-GIB 010/271

PROCEDURE	TRIS NDE-VT-4	↑ TÜV Rheinland®
	INSPECTION LICATION T9074-AS-GIB 010/271	Industrial Solutions
Revision Number: 0	Issue Date: March 11, 2013	Page: 1 of 21

Prepared by:

Randy Riegler

Corporate Level III

Reviewed and Approved by:

Claude D. Davis Technical Director NDE Level III

Revision	Date	Description
0	March 11, 2013	Initial Issue

3

Printed: March 11, 2013 Approved Documents Valid 2 Days

Page G.2-71 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 2 of 21

TABLE OF CONTENTS

1.0	Scope
2.0	General
3.0	Personnel
4.0	Weld Attributes
5.0	General Inspection Requirements
6.0	Evaluation and Reporting
7.0	Acceptance Criteria MIL-STD-2035A (SH)
8.0	Evaluation of Welds and Base Metal per MIL-STD-1689A
9.0	Acceptance Criteria MIL-STD-1689A

Printed: March 11, 2013 Approved Documents Valid 2 Days

Verify as current revision when invalid.

This document is issued in strict confidence and shall not be reproduced, copied, or otherwise used without the expressed written consent of TRIS

Page G.2-72 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 3 of 21

VISUAL INSPECTIONS NDE-VT-4

1.0 SCOPE

The general intent of the procedure is to meet or exceed the requirements established in T9074-AS-GIB-010/271. The visual inspection process is to determine that all welds and adjacent base materials be inspected as required to comply with applicable procedures, drawings, and fabrication documents. The visual inspection process shall include visual inspection for discontinuities, fit –up, and dimensional requirements in welds, and base metals. Visual inspection shall be performed prior to other nondestructive methods.

2.0 GENERAL

- 2.1 Type of Welds to be inspected
 - a. Full penetration welds
 - b. Attachment welds
 - c. Consumable insert welds
 - d. Seal welds
 - e. Hardfacing welds
 - f. Non-structural welds
 - g. Partial penetration welds, fillet welds and backing ring welds

2.2 Measuring devices

- a. Scales
- b. Fillet weld gauges
- c. Feeler gauges
- d. Calipers
- e. Micrometers
- f. Templates
- g. Other calibrated measuring devices, as necessary to disposition welds

2.3 Inspection methods

- a. Visual no magnification
- b. Visual 5 to 10 times magnification (see 5.2)
- Lighting should be sufficient to perform proper evaluation roughly 50 foot-candles (see 5.3)

2.4 Weld attributes to be inspected:

- a. Weld preps fit-up and dimensional
- b. Each Layer dimensional
- c. Base material 1/2 inch each side of welded joint
- d. Discontinuities as listed in section 4.0 as applicable

Printed: March 13, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid

Page G.2-73 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 4 of 21

- 2.5 Record requirements Visual inspection results will be reported to the customer on the appropriate inspection report. This report shall as a minimum contain the following:
 - a. Description and unique identification of item inspected
 - b. Approved procedure identification
 - c. Acceptance standard used
 - d. Date of inspection
 - e. Signature of inspectors
 - f. Disposition (accept/reject) of the item inspected

3.0 PERSONNEL

- 3.1 All visual inspections shall be conducted by personnel certified in accordance with TRIS NDE-PQ-1, as modified by Technical Publication T904-AS-GIB-010/271.
- 3.2 Visual examination personnel shall have an annual visual examination to assure natural or corrected near distance acuity such that they are capable of reading standard J-1 letters on standard Jaeger test type charts for near vision or equivalent methods.
- 3.3 The final visual inspection procedure and/or any subsequent revisions must be approved by a cognizant Level III prior to implementation of the procedure.

4.0 WELD ATTRIBUTES

- 4.1 Arc Strike: Any localized heat affected zone or change in the contour of the surface of the finished weld or adjacent base metal resulting from an arc or heat generated by the passage of electrical energy between the surface of the finished weld or base metal and a current surface, such as welding electrodes, magnetic particle inspections prods, etc.
- **4.2 Burn –Through:** A void or open hole extending into a backing ring or strip, fused root, or adjacent metal. The adjacent metal may be either base metal.
- 4.3 Crack or Tear: A linear rupture or metal under stress.
- 4.4 Crater Pit: An approximately circular surface condition extending into the weld in an irregular manner such as from the inside diameter surface of a fused root insert.
- 4.5 Incomplete Fusion: Lack of complete fusion of some portion of the metal in a weld joint with adjacent metal. The adjacent metal may be either base metal or previously deposited weld metal, or consumable insert.
- 4.6 Melt Through: A convex or concave irregularity on the surface of a backing ring or strip, fused root, or adjacent base metal resulting from fusion completely through a localized region but without development of a void or open hole.
- 4.7 Oxidation: A condition resulting from partial or complete lack of inert gas shielding of a surface which is heated during welding resulting in formation of oxide on the surface. This condition may range from slight oxidation through the formation of a tightly adhering black film to the extreme of a very rough surface having a crystalline appearance.

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid

Page G.2-74 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 5 of 21

- 4.8 Porosity: Gas pockets or voids in a weld or casting.
- **4.9** Root Surface Concavity: A depression on the root surface of a weld, which may be due to gravity, internal purge or shrinkage.
- 4.10 Root Surface Convexity: Reinforcement on the root surface of a weld.
- 4.11 Root Surface Center Line Crease or Shrinkage: An intermittent or continuous peripheral centerline concavity formed on the root surface.
- 4.12 Slag: Non-metallic solid material entrapped between beads of weld metal or between weld metal and base metal in casting.
- 4.13 Undercut: A groove melted into the base metal at the toe of the weld and left unfilled by weld metal.
- 4.14 Root Undercut: A groove in the internal surface of a base metal or backing ring or strip along the edge of the roof of the weld.
- 4.15 Weld Spatter: Material particles which deposit on the surface of the weld or adjacent base metal during welding and which do not form a part of the weld.
- **4.16 Linear Indication:** Indication greater than 1/16" long, revealed NDT inspections whose length is equal to or greater than three times it's width.
- 4.17 Non-Linear or Rounded Indications: Indication revealed by NDT inspections whose length is less than three times its width.
- **4.18 Build Up:** Buildup is a surfacing variation which surfacing metal is deposited to restore base material or weld surface dimensions.
- 4.19 Buttering: Buttering is a surface variation that deposits surfacing metal on one or more surfaces to provide compatible weld metal for the subsequent completion of the weld.
- 4.20 Cladding: Cladding is a surfacing variation that deposits or applies surfacing materials, usually to improve corrosion or heat resistance.
- 4.21 Wormhole Porosity: Wormhole porosity refers to gas inclusions having an elongated form known as "wormholes" or "pipes" usually oriented almost perpendicular to the weld surface.
- **4.22** Re-Entrant Angle: A re-entrant angle is one, which the angle formed between the base plate and weld, at the weld edge, is less than 90 degrees.
- 4.23 Back Gouge: A back gouge consists of the preparation of the backside of the root layer or full penetration welds to the extent necessary to permit proper deposition of weld metal from the second side.
- 4.24 Completed Weld: Welding is completed when preheat is removed and the material has cooled to ambient temperature and the weld has been visually accepted and is ready for other NDT inspections.
- **4.25 Weld Contour:** Weld contour is the surface profile of a weld in the as-deposited condition or after preparation to meet workmanship or NDT requirements.

Note: See Figures 1, 2, 3 and 4 for typical dimensional fit-up attributes.

Printed: March 11, 2013 Approved Documents Valid 2 Days Verify as current revision when invalid.

Page G.2-75 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 6 of 21

5.0 GENERAL INSPECTION REQUIREMENTS

- 5.1 The inspector's eyes must be within 24 inches and not more than 30 degrees to the surface area to be examined.
- 5.2 Visual inspection need not be performed employing magnification, unless otherwise specified in the applicable fabrication document. When a reference standard is required and magnification, such as a borescope or magnifying glass is employed, evaluation and acceptance shall be based upon comparison with a reference standard where both magnified and unmagnified appearance can be determined.
- 5.3 The weld under examination shall be illuminated if necessary with a flashlight or other auxiliary lighting for proper evaluation.
- 5.4 To prove the examination procedure a fine line 1/32" or less in width or some other artificial flaw located on the surface or similar surface to that to be examined shall be discernible. The line or artificial flaw should be in the least discernible location on the area examined to prove the procedure.

6.0 EVALUATION AND REPORTING

Visual inspection results will be reported to the customer on the appropriate visual inspection form. Evaluation of items inspected in accordance with this procedure is performed in accordance with customer requirements and referenced specification.

7.0 ACCEPTANCE CRITERIA MIL-STD-2035A (SH)

Visual inspection shall be performed prior to other required nondestructive tests. Welds, castings, and wrought materials shall meet the requirements of the applicable fabrication document or material specifications, and, unless otherwise specified, the following standards shall apply:

- 7.1 Welds: And grinding or other mechanical operation performed on welds shall be performed so that the thickness of the weld and its adjacent base metal are not reduced below the minimum design thickness or the minimum drawing thickness, whichever is greater.
- 7.2 Shape of the weld face: Welds shall be free of sharp irregularities between weld beads and shall blend smoothly and gradually into the base metal at the weld edges without exceeding the undercut or re-entrant angle limits of this procedure. Irregularities in contour from localized burring, grinding, and similar mechanical operations are acceptable provided that they comply with the other requirements of this procedure.
- 7.3 Fillet: Fillet and fillet reinforced welds with an essentially flat contour are considered as meeting the minimum throat thickness, provided the minimum specified leg sizes have been met.
- 7.4 Root Contour: Full penetration welds made from one side, consumable insert, or nonpermanent backing ring pipe welds shall meet the root contour requirements of Table I.

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.

Page G.2-76 February 2, 2018

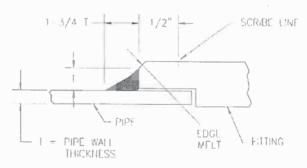

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 7 of 21

TABLE I - Root Contour limits. 1

Condition	Material size (nominal)	Maximum (inch)
Convexity	Pipe less than 2 inches in diameter and other shapes less than 5/32 thick.	1/16 2
Convexity	Pipe 2 inches and over in diameter and other shapes 5/32 inch and over in thickness	3/32 3
Convexity	Pipe less than 2 inches in diameter and other shapes less than 5/32 thick	1/32
Convexity	Pipe 2 inches and over in diameter and other shapes 5/32 inch and over in thickness	1/16

¹Except for centerline shrinkage or wrinkling, the contour of the root shall have a uniform radius and shall blend smoothly into the base metal. No concavity of contour is permitted unless the resulting thickness of weld metal is not less than the minimum thickness of the adjacent base metal.

7.5 Fillet weld size, piping only: Fillet weld size, excluding seal welds, shall not be less t T x 1-3/4T unless otherwise specified by drawing. See drawing below.

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.

Page G.2-77 February 2, 2018

²For copper-nickel and nickel-copper materials, the root convexity of consumable insert fabricated welds may exceed this amount, provided that: for pipe nominal sizes less than 2 inches, the maximum height of convexity shall not exceed 3/32 inch and the total length of all such areas shall not exceed 1 inch; for pipe nominal sizes 2 inches and greater, the maximum height of convexity shall not exceed 1/8 inch and the total length of all such areas shall not exceed 25 percent of the inside circumference of the pipe.

³ In the event of joint offset, root surface concavity or convexity shall be measured from a line connecting the two points at which the weld meets the base material.

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 8 of 21

- 7.6 Fillet weld size, other than piping: Fillet and fillet reinforced welds shall not be less than the drawing specified size. Weld sizes greater than required by the drawing are acceptable provided that they comply with the other requirements of this procedure.
- 7.7 Butt welds: Butt weld surfaces shall not be below the adjacent base material surfaces, except for the localized weld surface areas and weld toes (un-ground or corrected by grinding) that do not exceed the limitations for undercut of paragraph 7.21. Unless otherwise specified in the fabrication document, the final thickness of weld reinforcement on either weld face shall be as shown in table II.

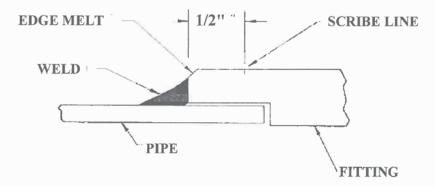
TABLE II - Weld Reinforcements

Class	Base Metal Thickness (inch)	Maximum Reinforcement (inch)
1	Up to 1/4, inclusive	1/16
	Over ¼ to 1	3/32
	Over 1 to 2	1/8
	Over 2	5/32
2 and 3	Up to ½, inclusive	3/32
	Over 1/2	5/32

7.8 Joint Offset: Unless otherwise specified in the fabrication document or by the applicable specification, the maximum permissible offset for all welded joints shall be as shown in table III.

TABLE III - Maximum Permissible Offset

Base Metal Thickness	Maximum Offset
1/4 inch and less	25 percent of joint thickness
Over 1/4 inch to 3/4 inch	25 percent of joint thickness but not to exceed 1/8 inch
Over 3/4 inch to 1 1/2 inch	3/16 inch
Over 1 ½ inch	12 ½ percent of joint thickness, but not to exceed ¼ inch.


- 7.9 Cracks: Weld joints and base material shall be free of cracks.
- 7.10 Burn-through: Weld joints and base material shall be free of burn-through.
- 7.11 Incomplete fusion: Weld joints and base material shall be free of incomplete fusion.

Printed: March 11, 2013 Approved Documents Valid 2 Days

Page G.2-78 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 9 of 21

- 7.12 Melt through: Melt-through and repaired burn-through areas are acceptable provided the areas do not contain cracks, crevices, excessive oxidation, or globules, and provided the root convexity and concavity limits are not exceeded.
- 7.13 Crater Pits: Crater pits are considered acceptable provided the area contains no cracks, the root concavity and convexity limits are not exceeded, and the minimum weld thickness requirement is met.
- 7.14 Oxidation: Welds and adjacent base metal shall be free of oxide scale accompanied by a wrinkled or crystalline surface appearance. Tightly adhering, iridescent temper films shall be considered acceptable.
- 7.15 Porosity: Individual pores cannot exceed 3/32 inch diameter or length. Pores the sum of whose diameters exceed 1/8 inch in any 2 inch length of weld are unacceptable. (Do not count pores 1/32 inch or less diameter.)
- 7.16 Edge melt: Pipe fitting edge-melt is acceptable provided the scribe line established as a reference for verifying fillet size is evident as show below:

7.17 Arc strikes: For applications covered by a fabrication document, in which treatment of arc strikes is detailed, arc strikes shall be removed and re-inspected as required therein. For other applications, arc strike removal sites within the allowances specified below are acceptable provided minimum thickness requirements (see paragraph 7.1) are met and all heat affected zones are removed.

Class 1. Welds and adjacent base metal must be free of arc strikes. Where arc strikes are removed, the resulting cavities shall not exceed 1/64 inch in depth or 10 percent of the adjacent base metal thickness, whichever is less, and shall blend smoothly into the base metal.

Printed: March 11, 2013 Approved Documents Valid 2 Days

Verify as current revision when invalid.

This document is issued in strict confidence and shall not be reproduced, copied, or otherwise used without the expressed written consent of TRIS

Page G.2-79 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 10 of 21

Class 2 and 3. Welds and adjacent material must be free of arc strikes. Where arc strikes are removed, the resulting cavities shall not exceed 1/32 inch in depth or 10 percent of the adjacent base metal thickness, whichever is less, and shall blend smoothly into the base metal.

7.18 Gouges, grind marks and surface roughness: Localized discontinuities within the specified below are acceptable provided that minimum thickness requirements (see paragraph 7.1) are met, and the bottom of the depression is visible and rounded or free of notches. The length of the discontinuity shall be limited to 12 inches maximum except for piping and pressure vessels where the maximum length shall be 12 inches or ¼ of the circumference, whichever is less.

Class 1. Welds and adjacent base metal shall be free of localized discontinuities which exceed a depth of 1/64 inch or 10 percent of the adjacent base metal thickness, which-ever is less.

Class 2 and 3. Welds and adjacent base metal shall be free of localized discontinuities, which exceed a depth of 1/32 inch on materials less than ½ inch in thickness and 1/16 inch on materials ½ inch and thicker.

7.19 Weld Spatter

Class 1. Welds and adjacent base material shall be free of weld spatter.

Class 2 and 3. Weld spatter which can be removed with a hand wire brush is rejectable. Tightly adhering spatter 1/8 inch or less in diameter or length is acceptable except for the following circumstances, wherein the inspection area shall be free of spatter: if PT, UT, or RT is required; on internal surfaces on closed systems; and on surfaces which are to be wetted.

7.20 Slag

Class 1. Welds and adjacent base material shall be free of slag.

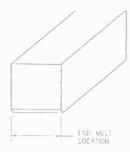
Class 2 and 3. Tightly adhering slag, that which cannot be removed by a slag pick or hand wire brush, is permissible unless the weld requires MT, PT, RT, or UT. If MT, UT, or RT is required, slag or scale 1/8 inch or less is allowed provided it does not interfere with test interpretation. If PT is required, the weld shall be free of slag. NOTE: Slag shall not interfere with the evaluation of other visible attributes. Additionally, background surfaces shall be free of slag prior to depositing subsequent passes.

7.21 Undercut

Class 1. The maximum depth of undercut measured from the unground adjacent base metal surface shall not exceed 1/64 inch or 10 percent of the minimum thickness (see paragraph 7.1), whichever is less.

Class 2 and 3. The maximum undercut shall be 1/32 inch or 10 percent of the minimum thickness (see paragraph 7.1), whichever is less. For base metal thickness ½ inch or greater, undercut up to 1/16 inch is allowed if the accumulated length of undercut exceeding 1/32 inch does not exceed 15 percent of the joint length or 12 inches in any 36 inch length of weld, whichever is less.

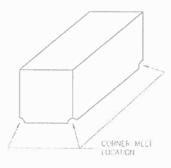
Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.


Page G.2-80 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 11 of 21

7.22 End-melt: When undercut exists at the ends of attachment welds (see below), the following undercut requirements apply. Note that the plan requirement for weld size shall be maintained after grinding or machining.

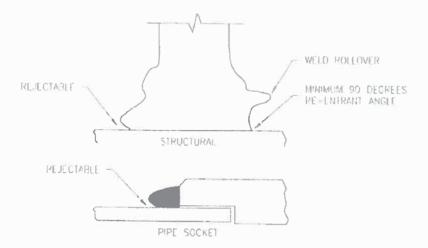
Class 1. Maximum depth, measured from the un-ground adjacent base metal surface, shall not exceed 1/64 inch or 10 percent of the adjacent base metal's nominal thickness, whichever is less


Class 2 and 3. For welds across the end of a 1/4 inch thick or less member, the maximum aswelded end-melt is 1/16 inch. If end -melt is greater than 1/16 inch and less than or equal to 3/32 inch, it may be repaired by mechanical means to a maximum depth of 3/32 inch.

7.23 Corner-melt: When undercut exists at the corner of attachment welds (see below), the following undercut requirements apply. Note that the plan requirement for weld size shall be maintained after grinding or machining.

Class 1. Maximum depth, measured from the un-ground adjacent base metal surface, shall not exceed 1/64 inch or 10 percent of the adjacent base material's nominal thickness, whichever is less.

Class 2 and 3. For welds at the corner of attachment welds, the maximum as-welded cornermelt is 1/16 inch. If the corner-melt is greater than 1/16 inch and less than or equal to 3/32 inch, it may be repaired b mechanical means to a maximum depth of 3/32 inch.



Printed: March 11, 2013 Approved Documents Valid 2 Days

Page G.2-81 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 12 of 21

7.24 Re-entrant angle: The angle formed between the base plate and the toe of the weld and the angle formed between adjacent beads of weld must be 90 degrees or greater. Weld rollover near the base material is acceptable provided the weld is completely fused and the final re-entrant angle to the base material is a minimum of 90 degrees as shown below.

- 7.25 Paint: Welds shall be essentially free of paint, except that indications of paint 1/8 inch and smaller are acceptable after normal removal operations. If PT is required, the inspection area shall be free of paint.
- 7.26 Castings: Casting surfaces shall meet the requirements of the applicable material specification.
- 7.27 Wrought materials (pipes, bars, plates, forgings, and extrusions): Wrought material shall be visually inspected in accordance with the applicable material specification.
- 7.28 Bronze propellers: Visual inspection acceptance standards for bronze propeller shall be in accordance with Table IV.

Printed: March 11, 2013 Approved Documents Valid 2 Days Verify as current revision when invalid.

Page G.2-82 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 13 of 21

TABLE IV - Acceptance standards for inspection of bronze propellers 9

		Maximum	Discontinuity Acceptance Standards		
Location of discontinuities	Type of discontinuities ² discontinuit size (inches)		6 x 6 Area o concentration Maximum No.	6,7 spacing between	Allowable areas of concentration
		CAST	INGS		
A band located around the periphery of each blade on both the pressure and suction faces with a width equal to 10 percent of the width of the blade measured at the 0.6 radius, but not to exceed	Non-linear	1/8	20	D	5 percent of propeller surface
6 inches; and an area measured from (and including) the hub fillet to 0.4 radius on the pressure face only.	Linear	1/8	6	4D	area with distribution limited by a maximum of 5 percent for each blade surface.
The remaining	Non-linear	1/8	20	D	
surfaces of the blades	Linear	1/4	8	4D	
Hub outside diameter (OD)	Non-linear	1/4	15	D	
	Linear	3/8	6	4D or 1 inch, whichever is less	
		WELDN	MENTS		
All surfaces	Non-linear Linear	1/16 0	12	4D	5 percent of total weld area

¹Liquid penetrant inspection shall be performed as an aid to visual inspection in locating discontinuities. Only discontinuity size shall be used as a basis for rejection.

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.

Page G.2-83 February 2, 2018

² A linear discontinuities one in which the length is greater than or equal to three times the width.

³ Any linear discontinuity over 1/16 inch in length located within a peripheral band 1 inch wide; and whose major dimension is oriented normal to the blade edge, shall be repaired.

⁴ Maximum spacing is the distance separating two adjacent discontinuities in terms of the major dimensions of the larger discontinuity (D). Aligned non-linear discontinuities shall consist of four or more discontinuities in a line. Aligned linear discontinuities shall consist of two or more discontinuities whose major dimensions are oriented in a line. However, when the total length of the aligned discontinuities does not exceed the maximum length permitted for a single discontinuity, these aligned discontinuities shall be considered one discontinuity, and shall not be cause for rejection.

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 14 of 21

⁹For used propellers not originally inspected to the requirements of this standard, the allowable number of discontinuities in each area of concentration may be increased by 15 percent for each blade surface, and the minimum spacing between adjacent aligned linear discontinuities may be reduced to 2D provided that: (a) the discontinuities do not exceed the limits of any other requirements of this procedure, and (b) the discontinuities have shown no deleterious effects in service.

8.0 EVALUATION OF WELDS AND BASE METAL PER MIL-STD-1698A

- 8.1 Welds: VT inspection of welds shall be done after slag removal and with the weld in the final surface condition. Surfaces which have been cleaned and painted with one coat of primer are considered suitable for inspection.
- 8.2 Base Material: The surfaces to be inspected shall be in a clean condition (free of scale). Surfaces which have been cleaned and painted with one coat of primer of primer considered suitable for inspection.

9.0 ACCEPTANCE CRITERIA MIL-STD-1689A

- 9.1 Discontinuities that exceed the limits specified herein shall be rejected. Unless otherwise specified, the inspection zone shall include the weld face and ½ inch of adjacent base material.
- 9.2 Cleanliness: Welds inspected for final acceptance shall be free of slag, paint and weld metal spatter in excess of 1/8 inch length or diameter.
- 9.3 Weld Surface Uniformity: The weld surface shall be free of sharp irregularities deeper than 1/16 inch between beads and shall fair into the base material at the weld edges without undercut or overlap (rollover) in excess of the requirements of this standard. Surface roughness, burn through, melt through, oxidation and crater pits shall not exceed the acceptance criteria of MIL-STD-2035A (SH).

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.

Page G.2-84 February 2, 2018

⁵ When the major dimension of clustered discontinuities does not exceed the maximum size permitted for a single discontinuity, these clustered discontinuities shall be considered as one discontinuity and shall not be cause for rejection. Scattered discontinuities, separated from the cluster by 1/8 inch or more, shall not be considered part of the cluster.

⁶Randomly dispersed casting discontinuities whose major dimensions are 1/16 inch or less shall not be counted in determining total number of discontinuities within an area of concentration.

⁷More than six discontinuities whose major dimensions are greater than 3/32 inch, in any 6 by 6 inch area of the propeller surface constitute an area of concentration. Each area of concentration shall be separated from an adjacent area of concentration by a minimum of 18 inches.

⁸The total number of non-linear discontinuities may be increased to the combined total, or part thereof, represented by the absence of linear discontinuities.

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 15 of 21

- 9.4 Shape of Fillet Weld Face: Fillet and fillet reinforced welds shall be essentially flat (minus 1/16 inch to plus 3/16 inch of a line drawn toe to toe). Weld concavity is acceptable provided the minimum throat thickness is at least equal to the minimum specified leg multiplied by 0.7 (see figure 4). Excessive roughness at weld edges and re-entrant angles less than 90 degrees, as shown in Figure 4, shall be corrected.
- 9.5 Arc Strikes: Arc strikes up to and including 1/32 inch depth are acceptable without repair. Arc strikes in excess of 1/32 inch in depth shall be rejected.
- 9.6 Cracks: Cracks shall be removed.
- 9.7 Porosity: Only pores greater than 1/32 inch in diameter shall be evaluated. No single pore shall be greater than 3/32 inch in length or diameter. The sum of pore diameters in any 2 inch weld length shall not exceed 3/16 inch. Porosity requirements for fillet welds on primer-coated surfaces shall in accordance with 9.7.1.
 - 9.7.1 Fillet Welds on Primer Coated Surfaces: Fillet welds deposited on primer coated surfaces shall not exhibit porosity or wormholes in excess of the following:
 - (a) Single-pass fillet welds: One indication 1/32 inch or greater in any 6 inch length exclusive of weld crater porosity.
 - (b) Multi-pass fillet welds: Class 1, Figure 4 medium, shall apply for gouged surfaces. If VT inspection of the first pass deposited is performed in lieu of gouging, the acceptance standard for the first pass shall be as defined in (a) above.
- 9.8 Undercut, End Melt, and Corner Melt: Undercut, end melt, and corner melt shall not exceed the limitations detailed in Table V. The depth of undercut or grinding shall be measured from the un-ground base material adjacent to the weld.

Printed: March 11, 2013 Approved Documents Valid 2 Days Verify as current revision when invalid.

Page G.2-85 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 16 of 21

Table V - Undercut, End Melt and Corner Melt

Submarin	ie pressure hull sti	ructure and surface ship prim	ary hull s	tructure
Condition	Base metal thickness	Maximum depth as-welded condition Inch	Maximum depth/length after grinding, Inch	
	Inch		Depth	Length Restriction
	Under 1/2	1/32	1/32	None
Undercut	½ and over	1/32	1/32	None
	½ and over	1/32	1/16	1
End Melt ²	1/4 and under	1/16	3/32	Only at ends of a member
Corner Melt	All	1/16	3/32	Only at corners of a member
		Other Structures		-
	Under ½	1/16	1/16	None
Undercut	½ and over	1/16	1/16	None
	½ and over	1/16	3/32	1
End melt ²	1/4 and under	3/32	1/8	Only at ends of a member
Corner melt	All	3/32	Only at corners of a member	

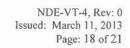
¹ The accumulated length does not exceed either 15 percent of the joint length or 12 inches in any 36 inch length of welding, whichever is less.

9.9 Weld Size:

9.9.1 Groove Tee and Fillet Welds: Groove tee fillet reinforced welds shall be at least equal to the size specified on the drawing (except as allowed by 9.11). When fillet size must be increased as a result of excessive gap between members at the time of fit-up, the fillet size shall be increased as required by MIL-STD-1689, Paragraph 14.3. Weld size in excess of that required is acceptable provided the contour requirements of 9.4 are satisfied.

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.

Page G.2-86 February 2, 2018


² For base metal thicknesses greater than ¼ inch, undercut requirements apply.

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 17 of 21

- 9.9.2 Butt-Welds: Butt weld surfaces shall not be below the adjacent plate surfaces, except localized weld surface indication areas and weld toes, un-ground or corrected by grinding, that do not exceed the depth limitations for undercut of 9.8. The as-deposited surfaces at the weld edge shall be satisfactory, provided they do not form a re-entrant angle less than 90 degrees with the base plate due to excessive convexity or roll-over. Butt welds ground for hydrodynamic purposes shall not extend more than 1/16 inch above the adjacent plate surfaces. Otherwise, butt weld reinforcement shall not require a maximum height limitation provided the surface condition is uniform. In the case of butt welds joining plates of unequal thickness, the weld shall taper gradually, approximately four to one, from the beveled edge of the thicker plate surface to the thinner plate. No point of the finished tapered butt weld surface shall be below a line from the edges of the weld joint preparation except for allowable undercut. Otherwise, butt weld reinforcement shall not require a maximum height limitation provided all other requirements of this section are met.
- 9.10 Seal-Off and Wrap-Around Welding: Fillet and fillet reinforced partial penetration welds shall be sealed off with weld at end(s) of members (flat bars, angles, channels, and tees) to form a closed loop where surfaces are to be wetted. Members which will not be wetted shall be sealed off when practical. When specified by a weld all-around symbol, the minimum weld reinforcement size shall be maintained (wrap around) at the end(s) of attached members. When the member is located per tolerances and the full size fillet weld (wrap around) is not obtainable, the maximum size obtainable shall be considered acceptable provided the above seal-off requirement in wetted areas is maintained.
- 9.11 Contour Grinding: When required, contour ground welds shall comply with the requirements of MIL-STD-1689, Paragraph 14.2. Contour grinding of fillet or partial penetration welds shall not be performed unless required by the ship specifications or drawings, or MIL-STD-1689, Paragraph 14.4; in which cases the fillet size requirements shall be maintained after contouring.
- 9.12 Nicks, Gouges, and Other Fabrication Scars: Nicks, gouges, and other fabrication scars in the weld inspection zone shall not exceed 1/32 inches in depth and 12 inches in length of materials less than ½ inch thick; and 1/16 inch in depth and 12 inches in length for materials equal to or greater than ½ inch thick.
- 9.13 VT Inspection for Edge Laminations
 - 9.13.1 Surface Ships: Continuous laminations 8 inches or less in any 24 inch length, or discontinuous laminations in a straight line whose total length is 12 inches or less in any 24 inch length and with no single continuous laminations greater than 6 inches are acceptable. Edge laminations which exceed these limitations shall be repaired or the affected plate area replaced. Any laminations disclosed on exposed plate edges will not be covered by welding.
 - 9.13.2 Submarines: Edge laminations visually detected in submarine plating shall be MT inspected.
- 9.14 Circularity and Frame Dimensional Tolerances: Submarine hill circularity and frame dimensions shall meet the requirements specified in MIL-STD-1688.

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.

Page G.2-87 February 2, 2018

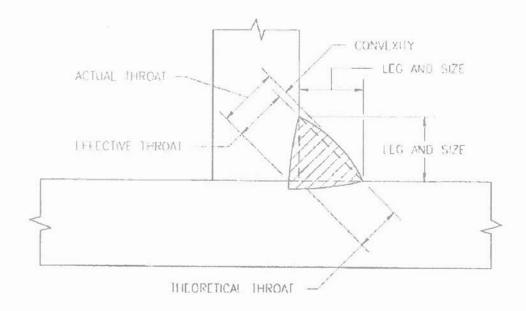
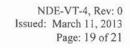



Figure 1. Convex Fillet Weld

Printed: March 11, 2013 Approved Documents Valid 2 Days Verify as current revision when invalid

Page G.2-88 February 2, 2018

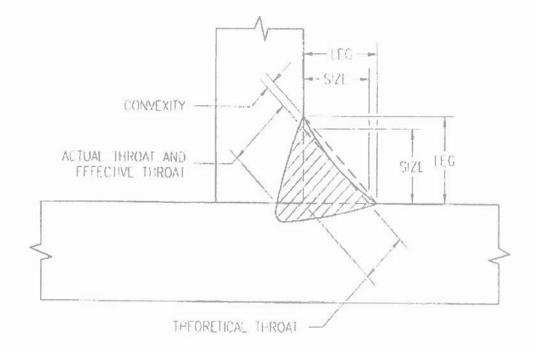
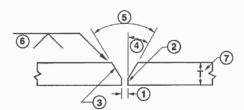



Figure 2. Concave Fillet Weld

Printed: March 11, 2013 Approved Documents Valid 2 Days
Verify as current revision when invalid.

Page G.2-89 February 2, 2018

NDE-VT-4, Rev: 0 Issued: March 11, 2013 Page: 20 of 21

1. ROOT OPENING:

A separation at the joint root between the workpieces.

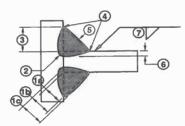
2. ROOT FACE:

That portion of the groove face adjacent to the joint root.

3. GROOVE FACE:

The surface of a joint member included in the groove.

4. BEVEL ANGLE:


The angle formed between the prepared edge of a member and a plane perpendicular to the surface of the member.

5. GROOVE ANGLE:

The total included angle of the groove between workpieces.

6. GROOVE WELD SIZE: The joint penetration of a groove weld.

7. PLATE THICKNESS (T): Thickness of the base metals to be welded.

FILLET WELD THROAT
 a. THEORETICAL THROAT:

The distance from the beginning of the joint root perpendicular to the hypotenuse of the Largest right triangle that can be inscribed within the cross section of a fillet weld. This dimension is based on the assumption that the root opening is equal to zero.

b. EFFECTIVE THROAT:

The minimum distance minus any convexity between the weld root and the face of a fillet weld.

c. ACTUAL THROAT:

The shortest distance between the weld root and the face of the fillet weld.

The points, shown in a cross section, at which the root surface intersects the base metal surfaces. 2. WELD ROOT:

3. FILLET WELD LEG:

The distance from the joint root to the toe of the fillet weld.

4. WELD TOE:

The junction of the weld face and the base metal.

5. WELD FACE:

The exposed surface of a weld on the side from which welding was done.

The distance that fusion extends into the base metal or previous bead from the surface melted during welding. 6. DEPTH OF FUSION:

7. FILLET WELD SIZE:

For equal leg fillet welds, the lengths of the largest isosceles right triangle that can be inscribed within the fillet weld cross section. For unequal leg fillet welds, the leg lengths of the largest right triangle that can be inscribed with the fillet weld cross section.

Figure 3 Details of a Groove and Fillet Weld

Printed: March 11, 2013 Approved Documents Valid 2 Days Verify as current revision when invalid.

Page G.2-90 February 2, 2018

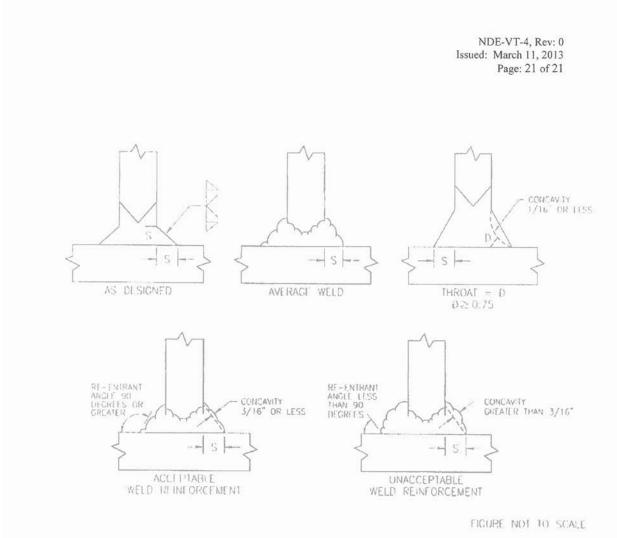


Figure 4. Typical Contour for Fillet Groove Tee Welds and Fillet Welds.

Printed: March 11, 2013 Approved Documents Valid 2 Days Verify as current revision when invalid.

Page G.2-91 February 2, 2018

Appendix G-2.6.3 TUV Rheinland Industrial Solutions, Non-Destructive Testing Group, Work Instruction No. WI-08-001, Rev No. 1 Liquid Penetrant Examination

Non - Destructive Testing Group	. WORK INSTRUCTION	Number: WI-08-001
Quality by Integrity and Knowledge	Title: Liquid Penetrant Examination	Rev. No. 1 Effective Date: March 17, 2008

REVISION RECORD

	Revised 16.0 (Acceptance Standards)
January 21, 2008	New Issue

	The state of the s

Approved By:	Robert D. Nichol, Level III	Date:	3/17/2008

Page G.2-92 February 2, 2018

March 17, 2008 Page 2 of 12 WI-08-001 Revision: 1

SCOPE

1.1 This procedure specifies the methods, equipment, materials, personnel qualifications and acceptance standards for liquid penetrant examination of ferrous and nonferrous, nonporous materials, castings, forgings, weldments and other approved materials using portable penetrant inspection methods.

2.0 PERSONNEL

- 2.1 Personnel performing liquid Penetrant examinations shall be qualified and certified in accordance with NDTG-CTP-1 for the Qualification and Certification of Personnel.
- 2.2 Only those personnel Certified as a Liquid Penetrant Level II or Level III shall interpret indications for acceptance or rejection.

3.0 REFERENCES

3.1 WI-08-001 CONFORMS TO THE FOLLOWING REFERENCES

NDTG-PT-01	Liquid Penetrant Examination, Portable Applications
ASTM-E-1208	Fluorescent Liquid Penetrant Examination using the Lipophilic Post Emulsification Process.
ASTM-E-1209	Standard Test Method for Fluorescent Liquid Penetrant Examination using the Water-Washable Process.
ASTM-E-1316	Terminology for Non-Destructive Testing.
ASTM-E-1210	Standard Test Method for Fluorescent Liquid Penetrant Examination using the Hydrophilic Post-Emulsification Process.
ASTM-E-1417	Standard Practice for Liquid Penetrant Examination.
ASTM-E-165	Standard Test Method for Liquid Penetrant Examination.
ASME Section V	Liquid Penetrant Examination.
AWS D1.1	Structural Welding Code Steel.
AWS D1.2	Structural Welding Code Aluminum
AWS D1.5	Bridge Welding Code.

Page G.2-93 February 2, 2018

March 17, 2008 Page 3 of 12 WI-08-001 Revision: 1

AWS D1.6 NDTG-PTQC-1 Structural Welding Code Stainless Steel Quality Control of Penetrant Materials

3.2 All references will be of the latest revision.

4.0 GENERAL REQUIREMENTS

- 4.1 In order to perform liquid penetrant examination to this instruction, it will be necessary for the client to provide the following information:
 - **4.1.1** Identity of the pieces to be inspected. This information should include project or contract designation, the component or piece mark, the weld joint, with respect to location on the component or piece, and the site.
 - 4.1.2 Designate the extent of the examination; this should include the state of welding during which the examination is to be performed, as cast, finished, etc. This will include whether complete or spot examination is to be performed. Complete examination shall mean 100% coverage of all areas to be examined.
 - 4.1.3 When inspecting welds, the examination shall include ½" of base metal, adjacent to the edges of the weld, for the entire length of the weld.
 - 4.1.4 When spot welding is designated, the number, location and size of spots will be clearly specified by the client.
 - **4.1.5** The Acceptance Standard to be used.
 - 4.1.6 When applicable, the marking system required.
 - **4.1.7** The client is to be responsible for any required surface conditioning unless otherwise specified by the contracts,
- 4.2 All components are to be processed in accordance with customer's requirements and specifications.

5.0 PENETRANT MATERIAL

- 5.1 Methods used for liquid penetrant examination may be Type I, flourescent or Type II, color contrast (visible) Penetrants.
 - 5.1.1 Fluorescent penetrant examination shall not follow a color contrast penetrant examination.

Page G.2-94 February 2, 2018

March 17, 2008 Page 4 of 12 WI-08-001 Revision: 1

- **5.1.2** Type II penetrants (Visible Dye) shall not be used for final acceptance examination of aerospace products.
- 5.2 Classification: Penetrant examination processes and materials are classified in accordance with the material classification contained in QPL-AMS-2644. Penetrant systems covered by this practice shall be of the following types, methods, and sensitivity levels:
 - 5.2.1 Type:
 - **5.2.1.1** Type I Fluorescent Dye.
 - 5.2.1.2 Type II Visible Dye.
 - 5.2.2 Method:
 - 5.2.2.1 Method A Water Washable.
 - 5.2.2.2 Method C Solvent-Removable.
 - 5.2.3 Sensitivity These levels apply to Type I penetrant systems only. Type II penetrant systems have only a single sensitivity and it is not represented by levels listed below:
 - 5.2.3.1 Sensitivity Level ½ Very Low.
 - 5.2.3.2 Sensitivity Level 1 Low.
 - 5.2.3.3 Sensitivity Level 2 Medium.
 - 5.2.3.4 Sensitivity Level 3 High.
 - 5.2.3.5 Sensitivity Level 4 Ultrahigh.
 - 5.2.4 Developers shall be of the following forms:
 - 5.2.4.1 Form d Nonaqueous for Type I Fluorescent Penetrant.
 - 5.2.4.2 Form e Nonaqueous for Type II visible dye.
 - 5.2.4.3 Form f Specific Application.
 - 5.2.5 Solvent Removers shall be of the following classes:
 - 5.2.5.1 Class 1 Halogenated.

Page G.2-95 February 2, 2018

Atlas Railcar Phase 2 Final Report Report No.: DE-NE0008390

March 17, 2008 Page 5 of 12 WI-08-001 Revision: 1

- 5.2.5.2 Class 2 Nonhalogenated.
- 5.2.5.3 Class 3 Specific Application.
- 5.3 Penetrant materials shall be used only in the conditions recommended by the penetrant manufacturer.
 - 5.3.1 Penetrant materials include all penetrants, solvent, or cleaning agents, cleaner / removers and developers used with this examination procedure.
- 5.4 Penetrant material utilized in this procedure shall meet the requirements of MIL-I-25135 or QPI-AMS-2644. Purchased penetrant materials must be certified from the manufacturer to meet the above reference documents.
 - 5.4.1 Examination of Nickel base alloys: All materials shall be certified by the manufacturer for sulfur content to be less than 1% of the residue by weight.
 - 5.4.2 Examination of Austenitic stainless steel and titanium: All materials shall be certified by the manufacturer to contain less than 1% chlorine or fluorine by weight.

6.0 QUALITY CONTROL OF MATERIALS

- 6.1 Penetrant System Materials that are dispensed from aerosol cans have no material Quality Control checks.
- 6.2 The shelf life expiration will be verified prior to issue and use of penetrant materials dispensed from aerosol cans.
- 6.3 Materials that are dispensed from bulk storage containers (example: 1 gallon cans, 5 or 55 gallon drums) will be discarded at the end of each day. These materials will be subject to all quality control checks as specified in NDTG-PTQC-1 if they are not discarded.

7.0 SURFACE PREPERATION AND PRE-CLEANING

7.1 Surface Preparation - Surfaces may be liquid penetrant examined in the as welded, as cast, as rolled or as forged condition provided that the surface condition will not interfere with the interpretation of the examination. All weld contours shall blend into the base metals. All weld beads shall be ground free of excessive bumps, valleys, crevices, and undercut. Hand wire brushing of austenitic steels or nickel base alloys shall be done with a stainless steel wire brush not presently used on any carbon or low alloy steel. Surfaces to be examined shall not be subjected to any operation which may tend to peen the

Page G.2-96 February 2, 2018

March 17, 2008 Page 6 of 12 WI-08-001 Revision: 1

surface and mask defects, such as blasting with shot, dull sand, needle gunning,

- 7.2 Precleaning Prior to penetrant examination, the surface to be examined, and all adjacent areas within at least one-inch shall be dry and free of any dirt, grease, lint, scale, welding flux, weld spatter, oil, or other extraneous matter that could obscure surface openings or otherwise interfere with the examination. Typical cleaning agents, which may be used are detergents, organic solvents, descaling solutions, paint removers, and cleaners. Vapor degreasing and ultrasonic cleaning methods may also be used. After cleaning, drying of the surface to be examined shall be accomplished by normal evaporation or within a circulating hot air oven. The air temperature shall not exceed 125°F. A minimum of five (5) minutes drying time, after all visible traces of the cleaning solvent or agent has been removed adequate time shall be allowed to assure that all traces have evaporated from the test surface.
- 7.3 Parts processed in the Laboratory in accordance with this procedure are to be visually inspected to determine the cleanliness of the part. This inspection will be notated on the Lab Routing Card. Parts that are not acceptable for pre-inspection cleaning will not be processed. The customer should be notified and arrangements made for proper pre-cleaning of the parts.
- 7.4 As a standard practice, the temperature of the penetrant and the surface of the part to be processed shall not be below 50°F. nor above 120°F. throughout the examination period. Other temperatures may be used, provided that the procedure is qualified as described in paragraph 7.0.

8.0 PENETRANT APPLICATION

- 8.1 Penetrant Application After the part has been cleaned, dried, and is within the specified temperature range, the penetrant shall be applied to the surface to be examined, so that the entire part, or area under examination is completely covered with penetrant.
- 8.2 Modes of Application Penetrant may be applied by spraying, dipping, brushing or other method to provide coverage as required. Typically when processing parts in accordance with this procedure, penetrant will be applied by brushing, swabbing, or spraying.
- 8.3 Penetrant Dwell Times After application, allow excess penetrant to drain from the part (care should be taken to prevent pools of penetrant from forming on the part), while allowing for proper dwell time (see Table 1). The length of time the penetrant must remain on the part to allow proper penetration should be as recommended by the penetrant manufacturer. Recommended dwell times are specified in Table 1.

Page G.2-97 February 2, 2018

March 17, 2008 Page 7 of 12 WI-08-001 Revision: 1

Porosity Lack on, Cracks forms)		•
on, Cracks 5	j*	10
cks (all forms)		
	0 1	10
sion Porosity, racks	*]	10
racks 5	* 1	10
racks 5	* 1	10
	* 1	10
	s, Porosity 5	s, Porosity 5*

9.0 EXCESS PENETRANT REMOVAL

- 9.1 Excess Penetrant Removal After the penetrant time has elapsed, excess penetrant is removed from the test surface. Inadequate removal will leave a background, which can interfere with subsequent interpretations of discontinuities. Care is to be exercised to limit removal of penetrant from any discontinuity to as little as possible.
- 9.2 Water Washable Penetrant With water washable penetrant the excess shall be removed by spraying with water. Standard water line pressure shall not exceed 40 PSI and water temperature shall be between 50°F. 100°F. After rinsing, drain water from the component and utilize repositioning, suction, blotting with a clean absorbent material.
- 9.3 Solvent Removable Penetrants Excess penetrant is removed by first wiping the surface thoroughly with a clean, dry cloth or absorbent paper. The remaining excess penetrant is removed by wiping the surface with a clean cloth or absorbent paper, slightly moistened with the approved solvent cleaner. To minimize removal of penetrant from discontinuities, care shall be taken to avoid the use of excess solvent. In no case shall the examination surface be flushed with solvent following application of the penetrant and prior to developing.

Page G.2-98 February 2, 2018

March 17, 2008 Page 8 of 12 WI-08-001 Revision: 1

10.0 DRYING

- 10.1 Water Washable Method shall be dried by normal evaporation, or with circulating hot air. Air temperature shall not exceed 125°F. A minimum of five (5) minutes drying time, after all visible traces of surface moisture have been removed, shall be allowed to ensure that all traces of surface moisture have evaporated from the examination surface.
- 10.2 Solvent Removal Method Following the solvent removal method, drying shall be accomplished by allowing a minimum of five (5) minutes for normal evaporation and a maximum of ten (10) minutes.

11.0 DEVELOPER

- 11.1 The developer shall be applied as soon as possible after the surface penetrant has been removed and drying time elapsed. The interval shall not exceed ten (10) minutes.
- 11.2 Non-aqueous Wet Developers are applied as suspensions of developer particles in a non-aqueous solvent carrier and are ready for use as supplied in an aerosol can. They are applied to the test surface by spraying after the excess penetrant has been removed. This developer provides a blotting action as well as a contrasting background.
 - 11.2.1 The test surface must be thoroughly dried prior to application of the developer.
 - 11.2.2 Application of this developer is by spraying only.
 - 11.2.3 A light, even coat of developer shall be applied to the test surface. Caution should be taken to not apply an excessive amount of developer. If excessive developer is applied the test surface shall be cleaned and the test re-processed.

12.0 EXAMINATION

12.1 Visible light intensity – Visible light shall be used when examining with visible dye penetrants. The intensity of the visible light at the work surface area undergoing examination using visible dye penetrants should be a minimum of 100 ft. Candles (1000 lux). For field inspection, using visible dye penetrants, light intensities may be as low as 50 ft. Candles, when agreed by the contracting agency.

Page G.2-99 February 2, 2018

March 17, 2008 Page 9 of 12 WI-08-001 Revision: 1

- 12.2 Visible Ambient Light for Fluorescent Systems The intensity of ambient visible light in a darkened room should not exceed 2 ft. Candles (20 lux) at the work surface area.
- 12.3 Black (Ultraviolet) Light Allow the black light to warm-up for a minimum of 10 minutes prior to its use or measurement of intensity. The black light intensity shall be measured at least once at the beginning of each shift. And after bulb replacement for output. Black light reflectors and filter shall be checked for cleanliness and integrity. The minimum acceptable intensity is 1000 microwatts per cm² at the work surface area when using a black light meter.
- 12..4 Dark Area Eye Adaptation It is recommended the inspector be in the darkened area for at least one (1) minute prior to examining parts using black light. If the examiner wears glasses they shall not be photosensitive.

13.0 EVALUATION

- 13.1 Evaluation of Results Examination surfaces inspected, using liquid penetrant examination techniques shall be evaluated and accepted or rejected in accordance with applicable acceptance standards.
 - 13.1.1 With visible dye penetrants the developer forms an even white coating. Discontinuities are indicated by a bleeding out of the penetrant, which is normally of a deep red color staining the developer. Indications with a light pink color staining the developer indicate excessive cleaning. Inadequate cleaning may leave an excessive background, making interpretation difficult. Adequate light intensity, either natural or artificial is required to ensure no loss of sensitivity in the examination.
 - 13.1.2 Mechanical discontinuities at the surface will be indicated by bleeding out of the penetrant; however, localized surface imperfections such as machining marks or surface conditions may produce similar indications, which are non-relevant to the detection of unacceptable discontinuities.
 - 13.1.3 Any indication which is believed to be non-relevant shall be re-examined to verify whether or not actual defects are present. Surface conditions may preclude the re-examination. Non-relevant indications and broad areas of pigmentation which would mask indications of defects are unacceptable.
- 13.2 Bleed Back Evaluation Bleed back evaluation is not permitted when performing examinations in accordance with this work instruction.
- 13.3 Relevant indications are those, which result from mechanical discontinuities.

Page G.2-100 February 2, 2018

March 17, 2008 Page 10 of 12 WI-08-001 Revision: 1

- a. Linear indications are those indications in which the length is more than three (3) times the width.
- b. Rounded indications are indications, which are circular or elliptical with the length less than three (3) times the width.
- 13.4 After a defect is thought to have been removed and prior to making repairs, the area shall be re-examined to ensure that the defect has been eliminated.
- 13.5 After the repairs have been made, the repaired area shall be re-examined by the liquid penetrant method and by all other methods of examination that were originally required for the affected area.
- 13.6 Final Cleaning When the examination is concluded, the penetrant materials shall be removed as soon as possible using an approved solvent or cleaner, which may be sprayed directly onto the examination surface. The surface shall be wiped with a paper towel or a clean rag.
- 13.7 Marking If the contract specifies its own marking requirement, the contract specification will take precedence. If ASTM-E-1417 is specified, marking will be in accordance with appendix "A".

14.0 QUALIFICATION OF PROCEDURES FOR NON-STANDARD TEMPERATURES

- 14.1 When it is impractical to conduct a liquid penetrant examination within the temperature range of 50°F. to 120°F., the examination procedure at the proposed temperature must be qualified. This is accomplished by using liquid penetrant comparator blocks, examining on block at the proposed temperature, and the other block at a temperature in a normal range of 50°F. to 120°F. The blocks will be of a construction as outlined in ASME Section V, Article 6.
 - 14.1.1 The blocks shall be marked "A" and "B".
 - 14.1.2 If it is desired to qualify a liquid penetrant examination procedure at a temperature less than 50°F., the proposed procedures shall be applied to block "B" after the block and all materials have been cooled to the proposed examination temperature. The block "A" shall then be processed at a temperature of 50°F. to 120°F., and examined in a manner which has been demonstrated to be suitable for use in this temperature range. The indications of cracks shall be compared for blocks "A" and "B". If the indications obtained under the proposed conditions are essentially as those obtained under the examination at 50°F. to 120°F. the proposed procedure may be considered qualified for use.

Page G.2-101 February 2, 2018

March 17, 2008 Page 11 of 12 WI-08-001 Revision: 1

- **14.1.3** If the proposed temperature for the examination is above 120°F, the blocks shall be examined and compared as described in Paragraph 7.1.1.3, but at the higher temperature sought for qualification.
- 14.1.4 As an alternate to paragraphs 7.1.1.1 and 7.1.1.2, when using visible dye penetrants, it is permissible to use a single comparator block for the standard nonstandard temperatures and to make the comparison by photography. Identical photographic techniques shall be used to make the comparison photographs. The block shall be thoroughly cleaned between the two processing steps.

15.0 REPORTING RESULTS

- 15.1 Examination Records Each penetrant examination shall be documented using the attached form. (Attachment A). The penetrant examination report form must be completed in it's entirety and detail the specific test parameters.
- 15.2 Recording of Indications The requirement and method of recording indications will be determined by the client. When the client specifies marking requirements, the location of all rejectable indications may be marked on the part and permanent records of the locations, direction, and frequency of indications may be made by one of the following method:
 - **15.2.1** Written Description By recording the location, length, direction, and number of indications by a detailed sketch.

16.0 ACCEPTANCE STANDARDS

- 16.1 Acceptance standards shall be in accordance with AWS D15.1, section 17.2
 - **16.1.1** The client shall have final authority and responsibility for interpretation and acceptance of all liquid penetrant examination results.

Appendix A

Page G.2-102 February 2, 2018

March 17, 2008 Page 12 of 12 WI-08-001 Revision: 1

A 1.0 MARKING

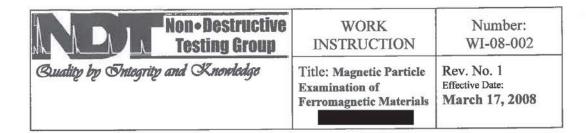
A1.1 Unless otherwise specified, each component that has been penetrant inspected and accepted in accordance to contractual agreement shall be marked as specified by the customer and be detailed on the work order. Marking shall be applied in a manner and location that is harmless to the component or its intended function.

Attachment A

Liquid Penetrant Examination Worksheet

Page G.2-103 February 2, 2018

LIQUID PENETRANT INSPECTION WORKSHEET


4.11							-	Report #: P.O. #: Work Order Project:	#:
Date: Description: NDTG Procedure:							Cond	Production Stage: In Progress	PT Matérial Identification: Mfg.
Test Method Standard: Acceptance Standard: Product Form:				1	Perce	ent o	100 %	Final Other For Welds: Root Pass Intermediate Final	
Type of Material:							I T		(Indicate type number and batch number for each item used)
Product / Weld Identification	Accept	Reject	Linear	Rounded	Cracks	Undercut	Other	fect Location or Remarks	Technique: Fluorescent Visible Dye Water Washable Post Emulsified Solvent Removed UV Meter No. WL Meter No. Meter Calibration Due Date Black Light Intensity White Light Intensity
Technician:						1		evel:	
Reviewed By:									Date:

Quality by Integrity and Knowledge

NDTG-0002-W September 17, 2003 ddk

Page G.2-104 February 2, 2018

Appendix G-2.6.4 TUV Rheinland Industrial Solutions, Non-Destructive Testing Group, Work Instruction No. WI-08-002, Rev No. 1 Magnetic Particle Examination of Ferromagnetic Materials

REVISION RECORD

Revision 1 / March 17, 2008	Corrected paragraph numbering / revised 16.0 (Acceptance Criteria)
Revision 0 / January 22, 2008	New Issue
1.	
9	
(Jali	L
Approved By:	t S. Uzchol Date: 3/17, 2008
R	obert D. Nichol, Level III

Page G.2-105 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 2 of 9

1.0 SCOPE

- 1.1 This work instruction covers the general requirements for magnetic particle examination of ferromagnetic materials using portable yoke or prod equipment. The magnetic particle examination method is used to detect cracks, laps, seams, inclusions, and other discontinuities on or near the surface of ferromagnetic materials. Magnetic particle examination may be applied to raw material, billets, finished and semi-finished materials, welds, and in-service parts. Magnetic particle examination is not applicable to non-ferromagnetic metals and alloys such as austenitic or Ferritic stainless steels (200-300-400 grade).
- 1.2 Materials suitable for Magnetic Particle Inspection in accordance with ASTM E-1444 are found in Appendix B of this procedure.

2.0 GENERAL REQUIREMENTS

- 2.1 In order to perform a magnetic particle examination of ferromagnetic materials to this procedure, the client should provide the following information.
 - 2.1.1 Identify the material to be examined. This information should include project or contract designation, P.O. number, drawing number, the component serial number, and part number.
 - 2.1.2 Designate the extent of examination.
 - 2.1.2.1 Complete examination shall mean 100% coverage of accessible areas.
 - 2.1.2.2 When partial examination is designated, the number, location, and size of area will be clearly specified by the client.
 - **2.1.2.3** When the sample examination is designated, the client shall identify the number of items to be magnetic particle examined.
 - 2.1.3 The acceptance standards/criteria to be used.
 - 2.1.4 When applicable, the marking system required.
 - 2.1.5 When magnetic particle testing is performed for a manufacturer or contractor, prior to being presented to the inspector for acceptance, the part shall be examined and interpreted by the manufacturer or contractor as complying with the referencing code section. The interpretation and disposition of the material examined shall be recorded on an appropriate report form.
 - 2.1.6 The client is to be responsible for any required surface preparation unless otherwise specified by the contract.

Page G.2-106 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 3 of 9

3.0 REFERENCE DOCUMENTS

3.1 WI-08-002 CONFORMS TO THE FOLLOWING REFERENCES

NDTG-MT-2 Magnetic Particle Examination, Field Applications

MIL-STD-2175 Castings, classification, and inspection of.

AMS-30410- Magnetic particles wet method, oil vehicle.

DOD-F-87935- Fluid, magnetic particle inspection, suspension medium.

NAS-410 NDT, personnel qualification and certifications.

MIL-STD-1949-A Inspection, Magnetic Particle Inspection.

MIL-STD-1907 Inspection, Liquid Penetrant, and Magnetic Particle

soundness requirements for materials, parts, and weldments.

NDTG-CTP-1 Corporate Training Policy.

NDTG-MTQC-3 Q.C. Magnetic Particle material and equipment.

ASTM-E-1444 Standard practice for Magnetic Particle Examination.

ASME Section V American Society of Mechanical Engineers 2004 through

2005 with Addenda Boiler and Pressure Vessel Code -

Non-Destructive Examination.

NAVSEA -T9074-AS-GIB-010/271

Requirements for Non-Destructive Testing Methods.

AWS-D1.1 Structural Welding Code

AWS-D1.5 Structural Welding Code Bridges

3.2 All references will be of the latest revision

4.0 DEFINITIONS

- 4.1 *Prods:* Hand held electrodes through which a magnetizing current is applied resulting in a distorted circular field.
- 4.2 Yoke: A "U" shaped magnet that induces a magnetic field in the area of a part that lies between its poles. Yokes may be permanent magnets or either alternating current

Page G.2-107 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 4 of 9

or direct current electro magnets.

5.0 MATERIAL

- 5.1 Magnetic Particle Methods: The particle used shall be finely divided ferromagnetic material, which have been treated to import visibility against the background of the surfaces under inspection.
- 5.2 Dry Particles: Dry particles shall meet the requirements of AMS 3040 or AMS 3044.
- 5.3 Wet Particles: Wet particles shall meet the requirements of AMS 3041 or AMS 3045.

6.0 PERSONNEL

- 6.1 Personnel performing magnetic particle examination to this procedure shall be qualified and certified in accordance with Non-Destructive Testing Group, Inc.'s "Corporate Training Policy" (NDTG-CTP-1).
 - **6.6.1** Personnel performing inspectors shall be prohibited from wearing photo chromatic lenses.
 - 6.6.2 Only those personnel Certified as a Magnetic Particle Level II or Level III shall interpret indications for acceptance or rejection.

7.0 QUALITY CONTROL

7.1 Quality Control of materials and equipment not referenced in this procedure are located in NDTG-MTQC-1 "Quality Control of Material and Equipment – Magnetic Particle Method"

7.2 QUALITY CONTROL TESTS AND FREQUENCY

TABLE 1					
EOUIPMENT	MTQC-1	Type of Check	Property checked	Frequency	E-1444
Prods Ammeter Accuracy	17.0	Operational Check	Ammeter Gauge	6 months	N/A
Equipment - Yoke Dead Weight	18.0	Operational Check	Weight Lift test	6 months	7.3.4

7.3 PROD AMMETER CHECK

7.3.1 The Ammeter of the equipment shall be checked by a calibrated ammeter traceable to NIST in series with the output circuit at three (3) output levels. In comparing the three (3) readings, a deviation shall not exceed plus (+) or minus (-) ten (10) percent of full current when half wave rectified alternating current is used. If half wave direct current is used, ammeter reading shall be doubled. Attach cables to either side of the calibrated shunt meter and record results in the appropriate department log.

Page G.2-108 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 5 of 9

7.4 YOKE DEAD WEIGHT TEST

- **7.4.1** The magnetizing force of the yoke can be determined by its lifting power on steel plates.
- 7.4.2 Alternating Current (AC) yokes shall have the lifting force of at least ten (10) pounds with a 2 inch 6 inch spacing between legs.
- 7.4.3 Direct Current (DC) shall have the lifting force of at least fifty (50) pounds with a 4 inch 6 inch spacing between legs.

8.0 PRE-INSPECTION CLEANLINESS

- 8.1 Pre-inspection Demagnetization: The part(s) shall be demagnetized before inspection if prior operations have produced a residual magnetic field, which will interfere with the inspection.
- 8.2 Surface Preparation: The surface of the part to be inspected shall be essentially smooth, clean, dry, and free of oil, scale, machining marks, or other contaminants, which might interfere with the efficiency of the inspection.
- 8.3 Coatings: Magnetic particle inspection shall not be performed with coatings in place that could prevent the detection of surface defects. Such coatings include metallic paint or chrome plate greater than .003 inch in thickness or ferromagnetic coatings such as electroplated nickel greater than .001 inch in thickness. If coatings are thicker than these limits, it must be demonstrated that minimum allowable defects can be detected through the maximum coating thickness applied. When coatings are non-conductive, they must be removed where electrical contact is to be made.

9.0 LIGHTING AND EXAMINATION AREA

- 9.1 Light Intensity for Examination: Visible light shall be used when examining with non-fluorescent particles. Fluorescent particles must be used in a darkened room under a black (ultraviolet) light.
 - 9.1.1 Visible Light Intensity: The intensity of the visible light at the work surface area undergoing examination using non-fluorescent particles should be a minimum of 100 ft. candies (1000 lux.) For field inspection, using non-fluorescent particles, visible light intensities as low as 50 fc (500 lux.) may be used when agreed on by the contracting agency. The intensity of ambient visible light in a darkened room, using fluorescent particles, should not exceed 2 fc (20 lux) at the work surface area.
 - **9.1.2** Special Visible Internal Light source: When examinations of internal surfaces must be performed using special visible light sources, the image produced

Page G.2-109 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 6 of 9

must have sufficient resolution to effectively evaluate the required discontinuities.

9.2 Black Ultraviolet Light

- **9.2.1** Black Light Warm Up Allow the black light to warm for a minimum of 5 minutes prior to its use or measurement of the intensity.
- 9.2.2 Black Light Intensity Black light intensity shall be checked at least once a day and after bulb replacement, for output. Black light reflectors and filter shall be checked daily for cleanliness and integrity. The minimum acceptable intensity is 1000 μw/cm² at 15 inches or the work surface area; whichever is greater, when using a suitable black light meter.
- 9.2.3 Dark Area Eye Adaptation The inspector be in the darkened area for at least3 minutes prior to examining parts using black light.

10.0 MAGNETIZATION METHODS

10.1 Longitudinal Magnetization Using Yokes: Longitudinal magnetization is often accomplished by passing current through a coil encircling the part, or section of the part. This produces a magnetic field parallel to the axis of the coil.

11.0 PARTICLE APPLICATION

- 11.1 Continuous Method: In the dry continuous method, magnetic particles are applied to the part while the magnetizing force is present. In the wet continuous method the magnetizing current shall be applied immediately after diverting suspension from the part.
- 11.2 Residual Magnetization Method: Residual magnetization method is not permitted in accordance with this written instruction.
- current shall be initiated prior to the application of the magnetic particles to the test surface under test and terminated after powder application has been completed and any access blown off. The duration of the magnetizing current shall be at least ½ second and short enough to prevent any damage to the part due to overheating. Dry powder shall be applied in a manner such that a light, uniform dust-like coating settles on the surface of the test part while the part is being magnetized. Specially designed powder blowers shall introduce the particle into the air in such a manner that they reach the part surface in a uniform cloud with a minimum force. After the powder is applied and before the magnetizing force is removed, excess powder shall be removed by means of a dry air current with sufficient force to remove the excess particles, but not to disturb particle held by a leakage field that is indicative of a

Page G.2-110 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 7 of 9

discontinuity. Dry particle method shall not be used to inspect aerospace components without specific approval of the contracting agency.

12.0 MAGNETIC FIELD ADEQUANCY AND DIRECTION

- 12.1 The applied magnetic field shall have sufficient strength to produce satisfactory indications, but not so strong that it causes the masking of relevant indications. The field strength will be verified by using one or more of the following methods. Results will be recorded on the appropriate record.
- 12.2 Pie shaped magnetic field strength indicator shall be positioned on the surface to be examined with the copper-plated side away from the inspected surface. If a clearly defined line of particles is not formed, the magnetizing technique shall be changed as needed. The field will be proven to be adequate in two directions at 90° to each other. The pie type indicators are best used with dry particle process.

13.0 REPORTING RESULTS

- 13.1 Examination Records: Each magnetic particle examination shall be documented on Magnetic Particle Inspection Test Report. (Attachment A)
- 13.2 Recording of indications: The location of all rejectable indications shall be marked on the part and permanent records of the locations, direction, and frequency of indications may be made by one or more of the following methods:
 - 13.2.1 Written Description: By recording the location, length, direction, and number of indications by a detailed sketch.
 - 13.2.2 Transparent Tape: For dry particle indications, by applying transparent adhesive backed tape to which the indications will adhere and place it on an approved form along with information giving it's location on the part.
 - 13.2.3 *Photography:* Photographing the indication themselves and including the pictures with the report.

14.0 POST INSPECTION

- 14.1 Demagnetization and Cleaning: Demagnetization will be performed if specified by the client.
- 14.3 Post Inspection Cleaning: Unless otherwise specified by the contracting agency, cleaning shall be by use of suitable solvent, air blower, or other means. Parts shall be inspected to ensure that the cleaning procedure has removed magnetic particle residues, since such residue could have an adverse effect on the intended use of the part.

Page G.2-111 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 8 of 9

15.0 MARKING SYSTEM

15.1 Marking of Inspected Parts: After the examination is completed the parts will be marked accepted or rejected per the customer's requirements

16.0 ACCEPTANCE

- 16.1 Acceptance standards shall be in accordance with AWS D15.1, section 17.2
- 16.2 The client shall have final authority and responsibility for interpretation and acceptance of all liquid penetrant examination results.

Attachment A

Page G.2-112 February 2, 2018

March 17, 2008 NDTG-MT-2 Revision: 1 Page 9 of 9

Magnetic Particle Inspection Worksheet

Page G.2-113 February 2, 2018

MAGNETIC PARTICLE INSPECTION WORKSHEET

Tested For: Attention:									eport #: Page of of
Address:									/ork Order #:
Date: Description:					_				
NDTG Procedure:	_	_							tion Stage: For Welds: rogress Root Pass
Surface Condition:	-	_				_		Fina Oth	
Test Method Standard: Acceptance Standard: Type of Material:									Equipment Identification: Model #: Serial #: Cal. Due Date:
Product / Weld Identification	Accept	Reject	Linear	Rounded	Cracks	Undercut	Other	Defect Location or Remarks	Technique: Wet Method: Dry Method: Fluorescent:
									Visible: Consumable Batch #: Coil / Cabins: Head Shot: Prod Method: Yoke Method:
									Current AC: DC: Amperage: UV Meter #: Quantity Tested 100%: Random: %
									Set Up / Location Sketch:
The UV intensity was verified	at the	prese	cribed	inter	vals:		,	es No NA	
Reviewed By:	ordano	e wit	h acce	thout	indust	ritten Q i	conse ualit	well as the test methods referen of Non-Destructive Testing Gro by Integrity and Knowled	lge

Page G.2-114 February 2, 2018