

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Radiation Defrosting Technique

Oak Ridge National Laboratory Kashif Nawaz- Research Staff 865-241-0972 nawazk@ornl.gov

Project Summary

<u>Timeline</u>:

Start date: 10-01-2017 Planned end date: 09-30-2020 <u>Key Milestones</u> Evaluation of defrost/frost mitigation methods. Analysis of frost growth process on surfaces. Impact of radiation wave length on defrost.

Budget:

Total Project \$ to Date:

• DOE: \$115,000

Total Project \$:

• DOE: \$590,000

Key Partners:

Johnson Controls Inc. Hillphoenix University of Illinois at Urbana Champaign Isotherm Inc.

Project Outcome:

A novel, cost effective and energy-efficient approach to enhance the defrost process for cold climate heat pumps and commercial refrigeration systems utilizing radiations.

Team

BTRIC (ORNL)

Industrial partners

Challenge and Impact

Frost formation presents a challenge for both the heat pump and the refrigeration industry, and in both commercial and residential applications.

Frost buildup increases pressure drop (fan power) and decreases heat transfer, due to the reduced air flow area and thermal conductivity when compared to the base heat exchanger material.

The efficiency degradation due to frost growth, and the energy required to defrost, can account for 15-25% of the annual electric energy consumption by heat pumps.

The development of effective frost mitigation and defrost technology can lead to more than 200TBtu/year of U.S. primary energy savings.

A heat pump outdoor coil covered with frost

Frost growth/defrost process

Air conditions (frost growth rate, defrost energy)

Surface morphology (frost density, adhesion to surface, condensate drainage)

Fin geometry (frost growth rate, drainage behavior)

Evaluate the potential of radiation-based defrost (Microwaves, UV, visible) processes for deployment in cold climate heat pumps and commercial refrigeration.

- Radiation defrost can provide an novel approach with significantly lower energy requirements, the process can be accomplished continuously or intermittently.
- In order to evaluate the impact, its important to:
 - I. Characterize the frost growth on various surfaces
 - II. Analyze various radiation sources for appropriateness for proposed application (interaction with air, bare surface and surface with frost).

<u>TRL 2 \rightarrow TRL 5</u>

Progress - Overview of existing technology

Frost I	Mitigation	Techni	iques
----------------	------------	--------	-------

Upstream air treatment	 Reducing inlet air humidity Preheating inlet air Increasing inlet airflow rate
Heat exchanger modifications	 Adjusting fin and tube geometry Fin type selection Coating treatment on fin surface
System Modification	 Vapor-injection technique Two-stage technique Adding outside heating source Adjusting refrigerant distribution

Oil infused SLIPS can assist the condensate removal after defrost.

Variable louver angle/pitch fins can mitigate the adverse effect of frost growth better than those with uniform geometry.

Progress - Overview of existing technology

Method	System complexity	System stability	Frost mitigation	Scalability	Capital cost	Operational cost	
Preheating the air stream	High	High	High	Moderate	High	High	
Increasing air flow rate	High	High	Moderate	Moderate	High	High	
adjusting fin geometry	Low	High	Moderate	High	Moderate	Low	
Fin type selection	Low	High	Low	High	Moderate	Low	
Surface morphology for fin surface	Moderate	High	Moderate	Moderate	Moderate	Low	
Vapor injection technique	High	Low	Moderate	Low	High	Moderate	
Two stage technique	High	Low	Moderate	Low	High	Moderate	
Adding outside heat source	Moderate	Moderate	Moderate	Moderate	Moderate	High	
Adjusting refrigerant distribution	Low	High	Moderate	Moderate	High	Low	

Most of the existing frost mitigation methods have limited implications due to scalability, durability and cost issues.

Progress - Overview of existing technology

Defrost techniques						
Defrost by cycle interruption	 Compressor shutdown Electric heating Hot gas bypass Reverse cycle 					
External source based defrost	 Hot water spraying defrost Air jet defrost 					

Method	Compressor	Thermal	System	System	Defrost	Scalability	Efficiency
		source	complexity	stability	effect		degradation
Compressor	OFF	Ambient	Low	High	Low	High	Moderate
shutdown		air					
Electric heater	OFF	Electric	High	High	High	Moderate	High
		power					
Hot gas	ON	Electric	Moderate	Moderate	Moderate	Low	Moderate
bypass		power					
Reverse cycle	ON	Electric	High	Low	High	Low	High
		power					

Cycle interruption defrosts are the most commonly deployed methods to remove frost from the heat exchanger surface.

Progress - Radiation defrost process

(Preliminary analysis)

Indoor conditions: 50° F, 75% RH Operation time (frost growth): 6 hrs. Defrost time: 40 minutes (with UV); 60 minutes (without UV) Radiation flux=200 W/m² Condensate container weight: *Pre-defrost: 1.075 lb.*

Post-defrost: 2.175 lb.

Condensate collected: 1.100 lb.

en wil die der die die volge in Schenikker wie die die

· 如何主义的人的任何自己自己的问题。

SCHAMPER FRANK AND SCHOOL

INTERNITY - UNIGATED IN CONTRACTOR

and a standard the standard standard

weeten of all all that the burning the

一世世纪行往的规定并且

e a contratt () (Billion

Open loop wind tunnel placed in controlled environmental chamber for forced convection experiments

Experiments classification

- Frost growth process
- Natural/forced convection defrost process
- Radiation assisted natural/forced convection defrost process

Parameters of interest

- Frost density, thermophysical properties (conductivity, specific heat, latent heat), Radiation properties (absorptivity, emissivity)
- Energy required for defrost process
- Time required for defrost process

Peltier cooler based apparatus placed in controlled environmental chamber for natural convection experiments

Frost growth on extended surface

Extended surface

Natural convection 40°F (DB), 38°F (WB) Baseplate temperature 12°F **Defrost on extended surface**

(Treated vs. untreated surfaces)

Boehmite process to alter surface morphology

Definition of contact angle

Treatment type	Contact angle (°)	Frost density (kg/m ³)
Bare aluminum	50.90	495
Bare copper	75.20	355
Acid etching-aluminum	37.70	560
Acid etching-copper	64.50	450
Boehmite process-aluminum	90.50	255
Boehmite process-copper	94.40	305
Saline coating-aluminum	88.40	310
Saline coating-copper	75.80	365

Progress - Radiation defrost (CFD analysis) (Preliminary analysis)

Progress - Radiation defrost (Experiments) (Preliminary analysis)

Indoor conditions: 42°F (BD), 37°F (WB) Baseplate temperature 12°F Face velocity: 1 m/s Operation time (frost growth): 1.5 hrs. Defrost time: 10 minutes (Forced convection only) Defrost time: 6 minutes (Forced convection and UV radiations) Radiation flux: 200 W/m²

Work in Progress and Future Tasks

Work in progress

- 1. Frost growth characterization and defrost under forced convectionimpact of fin profile, air conditions and flow rate.
- 2. Development of frost growth model based on surface contact angle, surface temperature, air conditions.
- 3. Characterization of radiations (wave length, intensity, flux etc.).
- 4. Radiation (UV) assisted defrost characterization under natural/forced convection.

Future tasks

- 1. Radiation (Microwaves) assisted defrost characterization under natural/forced convection.
- 2. Radiation (Visible) assisted defrost characterization under natural/forced convection.
- 3. Development of performance model for radiation defrost.

Thank You

Oak Ridge National Laboratory Kashif Nawaz- Research Staff 865-241-0972 nawazk@ornl.gov

REFERENCE SLIDES

Budget Details									
FY 2018 (current)		FY 20 (plar	019 – nned)	FY 20 (plan)20 – ined)				
DOE	Cost- share	DOE	Cost-share	DOE	Cost-share				
350,000		120,000		120,000					

Project Plan and Schedule

Project Schedule												
Project Start: 10-01-2017		Completed Work										
Projected End: 09-30-2020	Active Task (in progress work)											
		Mile	stone	/Deliv	verab	le (Or	iginal	ly Pla	nned)		
		Milestone/Deliverable (Actual)										
		FY2	2018			FY2	2019			FY2	020	
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Preliminary defrost experiments				·								
Critical review of existing SOA												
Characterization of frost (natural/forced)												
Characterization of defrost (natural/forced)												
Characterization of radiation defrost (UV)												
Characterization of radiation defrost (Microwaves/visible)												
Implementation on a heat exchnager												
Development of performance model												
Risk mitigation												
Development of commercialization plan												