

Department of Electrical & Computer Engineering

Plenoptic Sensor Development for Color-Tunable Lighting

Payman Zarkesh-Ha

Associate Professor Department of Electrical & Computer Engineering University of New Mexico Albuquerque, NM

Collaborators: Steve R. J. Brueck and Alexander Neumann

Topic of Interest: Sensors

- Sensors are needed for color tunable LED systems with control feedback.
- Overall goal: deliver high quality lighting to improve human health and productivity.

Need High Resolution Color Sensor

Existing off-the-shelf RGB color sensors are not capable for advanced multi-LED color tunable light fixtures.

High Resolution Color Sensor

Sensors Requirements

- ❑ Sensor requirements:
 - High Resolution (<20nm in wavelength)
 - o Low Cost (<0.08 \$/sqft)</p>
 - Additional Functionality (light-field sensing)
- Plenoptic sensor:
 - o Intensity
 - Wavelength
 - o Angle
 - o polarization

Our Approach: Guided-Mode Resonance Filter

- Superior color selectivity and angular detection
- > Achievable optical gain (2D lensing)
- Small and fast detector
- > Additional electrical gain with APD
- Possible waveguide optical processing

First Integrated Waveguide on Silicon Detector

[1] A. Neumann, J. Ghasemi, S. Nezhadbadeh, X. Nie, P. Zarkesh-Ha and S.R.J. Brueck, CMOS-compatible plenoptic detector for LED lighting applications , Opt. Express 23, 23208 (2015).

[2] J. Ghasemi, A. Neumann, S. Nezhadbadeh, X. Nie, P. Zarkesh-Ha, and S. J Brueck "A CMOS-Compatible Plenoptic Sensor for Smart Lighting Applications," CLEO (2015).

Experiments: Superior Angular Selectivity

J. Ghasemi, A. Neumann, S. Nezhadbadeh, X. Nie, P. Zarkesh-Ha, and S. J Brueck "A CMOS-Compatible Plenoptic Sensor for Smart Lighting Applications," CLEO (2015).

Integrated Waveguide with Double Detector

Progress Toward a Sensor Integration

Selective Grating

Packaging Devices

Guided Mode Filter Design Consideration

$$\sin\theta_C\pm\frac{\lambda}{d}=\pm n_{Guide}$$

Plenoptic Sensor: Example 1

Plenoptic Sensor: Example 2

2018 DOE SSL Workshop, Nashville, TN

Latest Experimental Results with LED

Conversion to Wavelength (Spectrometer)

Next Step: Arrays of Plenoptic Sensors

Successful Fabrication of Chirp Gratin

2018 DOE SSL Workshop, Nashville, TN

More Applications for Plenoptic Sensor

Use angular selectivity of plenoptic sensor instead of wavelength selectivity.

- Combine with ToF system to determine the angle of the reflected light.
- □ Can be used for occupant counting and tracking.

People Counting with Plenoptic ToF Sensor

- □ Fixed wavelength (IR) varying angle of reflected light.
- \Box High resolution in altitude (θ).
- **Lower resolution in azimuth (** ϕ **).**
- **u** Use multiple gratings and detectors to define (θ, ϕ) .
- □ Add TOF information to uniquely define position in 3D space.

2018 DOE SSL Workshop, Nashville, TN

Conclusions

- Sensors are essential components in future LED systems that require feedback control.
- Existing off-the-shelf color sensors are not suitable for advanced multi-color LED lighting systems.
- Plenoptic sensor can deliver light-field information (angle and wavelength) with high resolution needed for high quality LED lighting.
- Fixed angle spectral sensor (no moving parts spectrometer).
- Fixed wavelength Multiplexed TOF sensor for people counting.