DoE SSL R&D Workshop January 29-31, 2018 Nashville, TN

peter@palomakiconsuting.com

www.PalomakiConsulting.com

www.linkedin.com/in/ppalomaki

@nanopalomaki

Quantum Dot Downconverters for SSL

PETER PALOMAKI

PALOMAKI CONSULTING

What are Quantum Dots?

A quick refresher

- Quantum confined semiconducting nanocrystals
 - Made of inorganic semiconductor material
 - Commonly "grown" using colloidal synthetic chemistry
 - Electron and hole confinement results in unique optical properties
- Highly efficient (and *tunable*) downconverter
 - Absorbs high energy photons (UV-blue)
 - Emits lower energy photos (Vis-IR)

QUANTUM DOTS

Quantum Dot structure

Inorganic Core/Shell with organic ligand

Khalil Ebrahim Jasim (2015). Quantum Dots Solar Cells, Solar Cells - New Approaches and Reviews

- Shell confines electron/hole pair to the core
 - efficient radiative recombination = high quantum efficiency
- Shell helps to eliminates imperfections at the CdSe surface
- Ligands dictate interaction with environment VERY IMPORTANT

Colloidal QD History

We've come a long way...

Figure 3. Colloidal qdot research timeline illustrating evolution of nanostructure and luminescence performance. (A) Liquid colloidal quantum dots first described.² (B) High-temperature synthesis of qdots with narrow size distributions and size-dependent photoluminescence.¹¹ (C) Core/shell CdSe/ZnS qdots with 50% luminous efficiency.¹² (D) Multi-shell architecture CdSe/CdS/Cd_{1-x}Zn_xS/ZnS.³² (E) Atomically thin nanoplatelets with narrow luminescence.³⁷ (F) "Giant" shell CdSe/CdS qdot.³⁰ (G) Shelling of nanoplatelets produces narrow band luminescence with 80% luminous efficiency.³⁸ (H) Graded alloy CdSe/CdSe_{1-x}S_x/CdS with high luminous efficiency of bi-excitons.³⁷ (I) Gram-scale synthesis of spherical quantum well CdS/CdSe/CdS with low internal defects and thick shell provides near-unity luminous quantum efficiency from the ensemble.³³ Owen & Brus, *J. Am. Chem. Soc.*, **2017**, *139* (32), pp 10939–10943

Commercial history and current market

Display market has driven most advancements – lifetime achieved through encapsulation

QD benefits for lighting

FWHM - Tunable Spectrum - Small Size - Rapid Decay

QD benefits for lighting

FWHM - Tunable Spectrum - Small Size - Rapid Decay

Red down-converter comparison

SLA vs PFS/KSF vs QDs

	Target (DoE 2025)	Sr[LiAl ₃ N ₄]:Eu ²⁺ (1)	K₂SiF₀:Mn⁴+ (2,3) ◯	CdSe QD	InP QD (5)
FWHM (nm)	30	50	<4 (5 peaks)	<30	40
_{max} (nm)	615-635	650	613, 631, 636, 648	Tunable	Tunable
QE at 25C (%)	95	76	>90	>90	~70
Thermal Quench (150/25 C, %)	96	95	95	50-90	<50
Stokes shift (nm)		88	>150	Tunable (~20-100) ⁴	~25 nm
Stability on LED	Excellent	Good	Good	Fair	Poor

Relative white light LER as the (a) FWHM linewidth of the red phosphor increases, for a given red center wavelength of $\lambda = 614$ nm, and (b) red center wavelength increases, for a given FWHM linewidth of $\Delta \lambda = 7$ nm. In both cases, the blue and green linewidths were fixed at 20 nm and 50 nm FWHM, but their center wavelengths were allowed to vary so as to optimize LER while maintaining Ra = 80 and R9 > 0. The 95% efficiency points are indicated: FWHM of 35 nm and center wavelength of 623.5 nm. DoE SSL Roadmap 2016 Stokes shift engineering of CdSe QDs (a problem for InP)

Recent success on-chip

Stable red QD on mid-power LED

- CdSe (red) with on-chip focus for lighting or display
- Demonstration of long lasting QD on chip solution
- Not commercially available (yet) Released!

Modeling of red QD/green phosphor LED. 4000k, R9 > 50, CRI > 90

Table 2.	External Testing Results of a QD Based LED and
a pcLED	Module on Printed Circuit Board

Sample	Current (mA)	CCT (K)	CRI	R9	Luminous Flux (lm)	Efficacy (lm/W)
QD based pcLED module A	225	2966	89	52	497	160
Phosphor	225	3061	89	45	439	142
based pcLED module B	258	3057	89	44	495	137

Photonics Research 5 (2) April 2017

"The LED stability with 20 W/cm² of incident blue light and QD temperatures over 110°C have passed 3000 h and continue to show no degradation."

Works well in midpower LED package, not in high power (yet)

Challenges

(Opportunities)

And some examples

Opportunity #1: Alternatives to CdSe

Description: Explore new, high-efficiency wavelength conversion materials for the purposes of creating warm white LEDs, with a particular emphasis on improving spectral efficiency with high color quality and improved thermal stability and longevity to enable use of materials in high-brightness LED packages. Downconverters that are non-toxic and do not contain scarce materials are encouraged. 1

	Target ¹	CdSe	InP	Perovskite	CuInSeS	ZnSe:M	Si	III-N (visible)
Colors	G+ R	Both	Both	Both	Both	Both	R only	
Quantum Yield (%)	95%	>90%	65-90%	>70%	>70%	<50%	50%	
FWHM (nm)	30 nm	25-30	38-50	15-40	>90	>60	>50	
450 nm Abs	Excellent	Good	Good	Good	Poor	Poor	Poor	
Air/blue light stability	Excellent	Good	Moderate	Poor	Good	?	Poor?	
Scalable	Yes	Yes	Yes	Yes	Yes	Yes	?	
14		High Performance, tunable abs	No Cd, moderate performance	Simple to make, no Cd, very narrow	No Cd, inexpensive, large stokes shift	No Cd, familiar chemistry	No Cd, stable, abundant	Stable? Continuous alloying possible?
-		Cd	Pyrophoric precursor, high cost, availability of Indium	Contains Pb, poor stability, no shell, small stokes shift	Broad emission, poor blue abs	Broad emission, poor blue abs	Indirect bandgap, poor blue abs, broad emission	Hard to make colloidally with good PL

**An incomplete list of potential visible QD emitters

1) DoE SSL 2017 Suggested Research Topics

© 2017 PALOMAKI CONSULTING, LLC

11

Opportunity #2: Improve efficiency

Reduce non-radiative recombination

- Often at surfaces/interfaces
- Graded alloy shells
- Custom ligand chemistry to keep surface atoms intact
- Reduce interaction of e⁻/h⁺ wavefunction with surface (improve confinement)

Nanoscale, 2013, 5, 7724–7745

QE loss at temp

- Thermally assisted trapping
- QD design and interfaces have major impact exactly how is not well-understood

 E_t

Anger

ecee.colorado.edu

trap-assisted

recombination recombination recombination

band-to-band

Photonics Research 5 (2) April 2017

© 2018 PALOMAKI CONSULTING, LLC

12

Opportunity #3: Reduce FWHM

Needed for all non-Cd QDs (except perovskites)

Opportunity #4: Stability

Without macroscopic encapsulation

QDs on LEDs

- It's not a pipe dream anymore
- Display industry has driven most QD progress (required encapsulation)

Reasons QDs are great for SSL

Research opportunities/areas for improvement

High CRI & Tunable Spectrum Narrow FWHM Small Size Rapid PL Decay

11

Eliminate Cd Improve Efficiency Reduce FWHM (for non-Cd) Improve Stability

Questions

DoE 2025 targets

Where is work required for QDs to reach targets?

Easy Moderate

Hard

Table 5 Downconverters

Downconverters

Description: Explore new, high-efficiency wavelength conversion materials for the purposes of creating warm white LEDs, with a particular emphasis on improving spectral efficiency with high color quality and improved thermal stability and longevity to enable use of materials in high-brightness LED packages. Downconverters that are non-toxic and do not contain scarce materials are encouraged.

Metrics	2016 Status	Interim 2020 Targets	2025 Targets
Quantum yield (QY) at 25°C across the visible spectrum	98% (Green) 90% (Red)	99% (Green) 95% (Red)	99% (Green) 95% (Red)
Thermal stability - Relative QY at 150°C vs. 25°C	90%	95%	96%
Spectral FWHM	100 nm (Red/Green)	30 nm (Red) 70 nm (Green)	30 nm (across visible spectrum)
Color shift over time (when integrated into po- LED)	Δu'v' < 0.007 at 6,000 hours	Δu'v' < 0.002 over life	Δu'v' < 0.002 over life
Flux density saturation – Relative QY at 1 W/mm ² (optical flux) vs. peak QY		95%	96%

Suggested Research Directions

1. QE temperature stability (all materials)

- Fundamental study required
- Function of composition/thickness?
 - Function of crystallinity?
 - What other factors impact?

3. Stability (all materials)

- Encapsulation
 - QD Design
- Mechanism of degradation

2. Improve optical properties for non-Cd systems

- Innovations in shell design to induce larger stokes shift/increase blue abs
- Reduce FWHM by synthetic improvements approach atomistic control

4. Improved synthetic methods for III-N QDs

- A largely untapped area
- · Potential for emission across the visible
 - Potential for more stable QDs

© 2018 PALOMAKI CONSULTING, LLC

http://mcaroba.dyndns.org/wiki/index.php/Group-III_nitrides