

Understanding and mitigating droop in nitride LEDs

Emmanouil (Manos) Kioupakis

Materials Science and Engineering, University of Michigan

Challenges with nitride LEDs

1. Droop: lower efficiency at high power

- 2. Green gap: lower efficiency for longer λ
- 3. Polarization fields separate electrons and holes
- 4. Composition fluctuations localize carriers

Can theory help?

Wu et al., Appl. Phys. Lett. 101, 083505 (2012)

Calculations of *functional* properties

Rondinelli and Kioupakis, Annu. Rev. Mater. Res. 45, 491 (2015)

Auger recombination calculations

Too small: Experiment: $10^{-31} - 10^{-30} \text{ cm}^6 \text{s}^{-1}$ Hader et al., *Appl. Phys. Lett.* **92**, 261103 (2008).

But what about higher-order indirect Auger?

Indirect Auger dominates in InGaN

Exp: $C = 10^{-31} - 10^{-30} \text{ cm}^{6}\text{s}^{-1}$

Kioupakis, Rinke, Delaney, and Van de Walle, *Appl. Phys. Lett.*, **98** 161107 (2011) Kioupakis, Steiauf, Rinke, Delaney, and Van De Walle, *Phys. Rev. B* **92**, 035207 (2015).

Polarization fields and droop

Green-gap problem: efficiency droop increases with increasing polarization fields, lower efficiency for LEDs at longer wavelengths

Kioupakis, Yan, and Van de Walle, Appl. Phys. Lett. 101, 231107 (2012)

Fluctuations aggravate droop and green gap

Alloy composition fluctuations *decrease* the efficiency at high power and at longer wavelengths

Christina Jones et al., Appl. Phys. Lett. 111, 113501 (2017)

How to improve the efficiency?

- Auger + polarization + localization = droop + green gap.
- Unfortunately intrinsic to InGaN
- Improvements:
 - Zincblende InGaN: no polarization fields
 - But: requires new substrates
 - Grow more quantum wells (reduce carrier density)
 - But: poor carrier transport
 - Grow a single thick quantum well (reduce carrier density)
 - But: InGaN mismatched to GaN, dislocations if too thick
 - Alternative: Make the quantum wells *thinner*

Atomically thin GaN for deep UV LEDs

- Grown by Jena and Xing at Cornell.
- Deep UV with atomically thin GaN in AlN.
- 40% IQE for deep UV emission at 219 nm

SM Islam *et al.*, Deep-UV emission at 219 nm from ultrathin MBE GaN / AlN quantum heterostructures. *Appl. Phys. Lett.* **111**, 091104 (2017).

How to improve the efficiency?

- Auger + polarization + localization = droop + green gap.
- Unfortunately intrinsic to InGaN
- Improvements:
 - Zincblende InGaN: no polarization fields
 - But: requires new substrates
 - Grow more quantum wells (reduce carrier density)
 - But: poor carrier transport
 - Grow a single thick quantum well (reduce carrier density)
 - But: InGaN mismatched to GaN, dislocations if too thick
 - Alternative: Make the quantum wells *thinner*

BInGaN: matched to GaN, visible gap

- BInGaN alloys with a 2:3 B:In ratio are approximately lattice matched to GaN.
- Their gaps (direct) span the entire visible range.
- Increase thickness \rightarrow reduce Auger.

L. Williams and E. Kioupakis, BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs, *Applied Physics Letters* **111**, 211107 (2017).

Perspectives for future work

- Improved emitter materials:
 - Ultrathin quantum wells
 - Boron-containing InGa(AI)N
- Collaborations with predictive theory
 - Emitters materials
 - Phosphor design
 - Thermal transport
 - Defects
 - Growth kinetics

