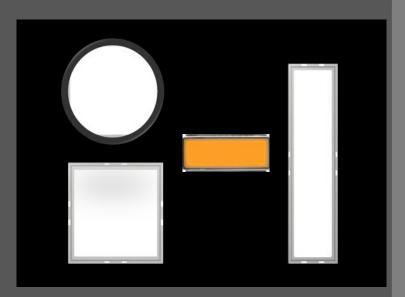
The Challenge of R2R Manufacturing of OLED Lighting for General Lighting Market

John Hamer, COO January 30, 2018 – DOE SSL R&E Workshop Nashville Tennessee

OLEDWorks introduction


- 2010: OLEDWorks established by former members of the Eastman Kodak Company OLED team
- 2014: Corning[®]/OLEDWorks exclusive JDA for bendable OLED lighting panels
- 2015: Acquisition of Philips OLED business
- State-of-the-Art Manufacturing in U.S. and Germany (20k m² capacity, scalable to 120k m²)
- World's highest brightness, longest lifetime, highest quality OLED lighting panels
- Quality: ISO 9001, ISO 14001, OHSAS 18001 certified, Full traceability via a factory MES system

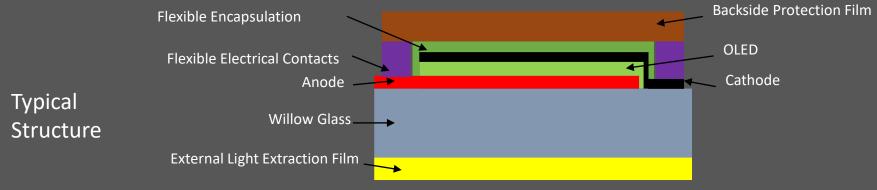
Jan 30, 2018

Brite portfolio

- High brightness white >8,000cd/m²
- New shape round
- Warm white and neutral white
- Improved efficacy 80lm/W
- Excellent light quality CRI >90, R9 >50
- Lifetime at high brightness >30,000 hours

Market introduction of a bendable OLED on thin glass

Jan 30, 2018


Corning[®] Willow[®] Glass (*0.1mm thick*) combines the best attributes of Glass and Film substrates

	Glass	Plastic Film		
Benefits	 High-Temp Processing Optical Performance Ultimate barrier Performance / Lifetime equal to rigid 	 Best fit for R2R Manufacturing process Ease of Installation and Use Full flexibility 		
Shortcomings	 Defects on surfaces and edges limit maximum stress and radius of curvature Bending/twisting in 2D results in breakage 	 Barrier properties Performance / Lifetime 		
Corning [*] Willow [*] Glass combines the best of Glass and Film				

Jan 30, 2018

Design Challenges of Flexible Glass OLED Structures

- Careful engineering and design required to make the OLED product robust to handling
- Selection of materials and thicknesses is critical to control stress and strain in each layer
- The design of the location of neutral axis during bending is important
- Protection of glass surfaces and glass edges is required to prevent damage which weaken the glass

Motivation for Curved and Bendable OLED Lighting

- OLED lighting is currently higher priced than LED, and needs to achieve higher sales volumes to significantly reduce costs.
- Unique selling points OLED lighting can be bendable, flexible, thinner, lighter than LED – allowing more creative designs.
- We target the large general lighting market offering a new value proposition above rigid OLED's and general applications in SSL which will further distinguish OLED lighting from conventional light sources.
- Well suited for new applications in automotive and the integration of OLED lighting in materials

Prototypes in testing

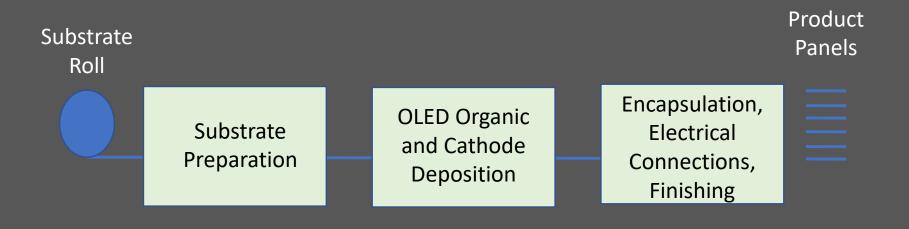
Depreciation

- Gen 5 OLED Lighting Machine \$125M Capital Cost – more including all equip.
- Depreciation is a very large part of the COGS – 25-35%
- Successful large-volume businesses have COGS near BOM cost
- Today's OLED coating speeds are in 5-10mm/sec range
- The table shows 30 sec TAC on Gen 6 (1.5x1.8m) = 60mm/sec ~6-12x current rates
- The problem is that the equipment is still not productive enough
- Higher throughput needed larger glass area (display model) or <u>higher</u> <u>transport speed</u>
- For more than 10x higher speed without particles → we need R2R processing

Table 5.4 Cost Targets for Panels Produced by Traditional Methods					
	2016	2018	2020	2025	
Substrate Area (m²)	0.2	1.2	1.2	2.7	
Capital Cost (\$M)	50	125	125	200	
Cycle Time (minutes)	3	2	1	0.5	
Capacity (1000 m²/yr)	17	175	350	2,400	
Depreciation (\$/m²)	600	140	70	35	
Organic Materials (\$/m²)	150	100	50	15	
Inorganic Materials (\$/m²)	200	140	100	30	
Labor (\$/m²)	100	25	15	5	
Other Fixed Costs (\$/m ²)	50	15	10	5	
Total (unyielded) (\$/m²)	1,100	420	245	90	
Yield of Good Product (%)	70	80	85	90	
Total Cost (\$/m²)	1,570	525	290	100	
Deprec % of COGS	38%	27%	24%	35%	

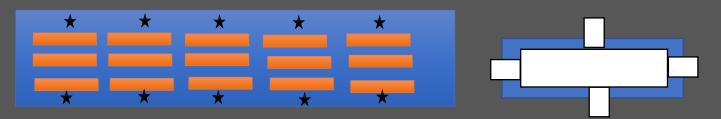
From – "Solid-State Lighting 2017 Suggested Research Topics Supplement: Technology and Market Context" by US DOE EERE, September 2017", page 113

Enabling OLED Lighting to Compete in General Lighting

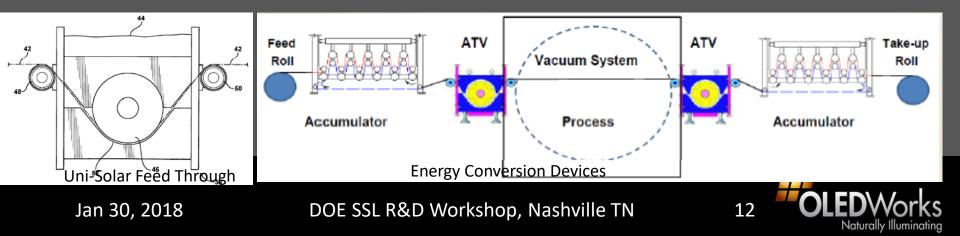

- For OLED lighting to compete in general lighting, the Cost of Goods Sold (COGS) must be \$100/m2.
 - I think it must be lower than this to realize the potential volumes.
- Example of Roll to Roll operation:
 - Kodak made photographic film at 200'/min (1,000mm/sec)
 - Film making required approx 25 liquid layers deposited in 3 coating stations
 - Kodak could never have made film at low-cost if it were done by sheet-to-sheet.

Simple Single Panel Fixture with Brite 2 OLED Panel

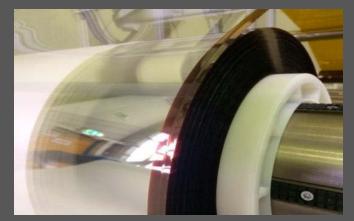
Industrial challenges of R2R OLED manufacturing



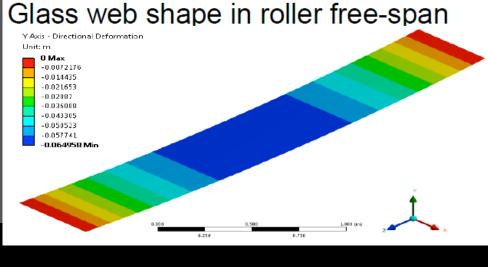
Jan 30, 2018


1. Masking – we must eliminate the need for masking

- 2 masks are used today:
 - Organic masks to prevent OLED organic from depositing the seal area and cathode contact area
 - Cathode masks to prevent the cathode from depositing across to the anode contact area.
- Typical spec:
 - Product size (typical 250 mm * 70mm), tolerance of ±0.5 mm (trend to improve)
 - No front touch
- OLEDWorks has a DOE project to develop a technology solution
 - We have a poster on this project in the poster session.



- 2. Web handing the at start and end of the line choices:
 - a. Feeding web into vacuum with only front side contact
 - Splices must pass through the feed-through
 - b. Making splices in vacuum can't stop the web, therefore need to spice on fly, no front side contact therefore no storage elevator for web in vacuum.


- 3. Other issues in web handling at start and end of vacuum section:
 - Drying of the web before start
 - Rollup of web without damage to substrate, OLED, or encapsulation

Corning Glass, Sue Lewis, Proflex Conf, Nov 2017

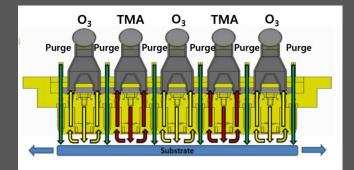
- 4. Handling web in deposition section of vacuum coater ~40 layers, 40m?
 - Tension in web, preventing tear-offs in machine transport on support belt?
 - Perhaps develop depo down with particle control or technology for insensitivity to particles (prevent shorting and defects in encapsulation)

Corning Glass, Sue Lewis, Proflex Conf, Nov 2017

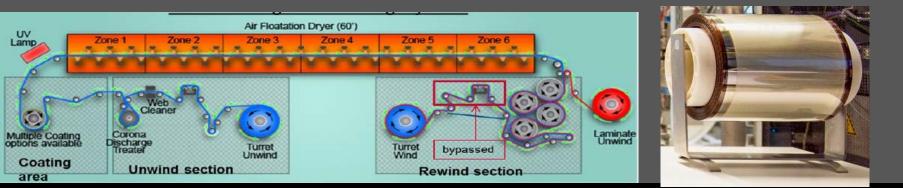
Jan 30, 2018

5. High-Rate Evaporation

- Evaporate without decomposition
 - Novel vapor generation like from aerosols (Mike Long of Aixtron)
 - Methods to limit time that materials are at elevated temperature (replenishment/feeding methods)
- Stable machine operation methods to monitor and control vapor generation rate – Pirani, optical methods
- 6. High Rate Condensation
 - Look at changes to morphology, smoothness in film at very high rates
 - Redesign of particular molecules that limit machine speed.



Sunic 1.3m wide organic evaporation nozzles



7. High speed R2R encapsulation

- In line or off line?
- Roll to Roll or cut sheet?
 - Spatial ALD?
- 8. High speed R2R substrate preparation patterned with anode, insulator, and internal light extraction

INVENIA Spatial ALD

60 m thin glass coating and drying machine – Sue Lewis, Corning

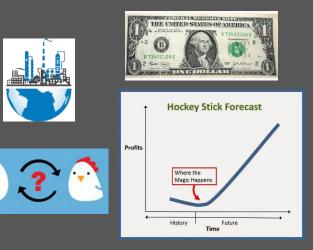
Jan 30, 2018

Proposal - US Development of R2R Technology for Low-Cost OLED Lighting Production

- Goal Retain OLED lighting manufacturing in USA by technology advantage that gives a cost advantage.
 - Fraunhofer in Germany has built a pilot machine for VTE OLED
 - LG has constructed a Gen 5 Sheet-to-Sheet machine for OLED lighting in Gumi
 - China is proposing additional several similar machines.
 - Konica Minolta has built a R2R machine for OLED lighting (not in production yet)

Fraunhofer FEP

Discussion Points:


- We propose that the US focus on developing the R2R manufacturing technology to leapfrog to lower-cost manufacturing, and use it for production in the USA.
- Now is the time to develop the required technologies
- We could leverage existing R2R pilot facilities in the US

Summary

- The market introduction of bendable products will start this year
- General Lighting is a commodity business and requires commodity pricing
- I predict that OLED lighting will be made R2R within 10 years
 - Commodity pricing requires mature world class mass manufacturing @ lowest cost
 - Chicken and egg (Cost down vs. volume ramp up)
- OLED lighting can achieve the commodity pricing goals through R2R process development and production. We should keep OLED lighting production in the US.

Thank you

Jan 30, 2018