LED Science and Technology Advancements DOE SSL R&D Workshop January 29-31, Nashville, Tennessee

Werner Goetz 1/29/2018

Outline

- Introduction
 - LED applications
 - Dominant LED architectures
 - Key LED metrics and progress
 - Remaining technology challenges
- Update on technology advancements
 - Droop in InGaN based LEDs
 - Green gap
 - Amber and red LEDs
 - Quantum Dots
- Technology impact on LED products (examples)
 - 90 CRI LEDs with QDs
 - High Luminance LEDs
 - Integrated, compact spot module
- Conclusions

Application Focus

Breadth of SSL applications requires a range of LED capabilities

High Luminance Colors High Efficacy Indoor Area Lighting Outdoor/Stadium Spotlights Architectural HD CoB **High Power** Color Mid/Low Power **High Power** CSP **High Power** CSP High Bay & Low Bay Downlights Specialty Horticulture Color P COB High Power **High Power MP** Color Mid Power CSP MP **High Power**

©2018 Lumileds Holding B.V. | February 5, 2018

Relevant LED Architectures

Fundamental LED architectures and key characteristics

Emitter Type	Emitter image	Luminance	Efficacy	Directionality	Luminance	Source Size	Luminance Uniformity	Color over Angle	Color over Source
Domed High Power			++	++	++	++	++	++	++
Directional CSP			+	+++	+++	+++	+++	+++	+++
Non- directional CSP			++	+	+	++	++	++	++
Mid Power Low Power			+++	+++	+	++	+	+++	+
Chip on Board			++	+++	+	+	+	+++	+

LED Metrics

Critical LED metrics: Luminous efficacy and Luminance

Increasing Luminance

- Higher drive current: Reduction of IQE and QED
- Smaller source size: Reduction of PE

dS source size

LED Progress

Substantial efficacy improvements

In addition, improvements in:

- "Quality of light"
 - High CRI available
 - Uniform CoS and CoA
 - Controlled radiation patterns
 - Glare control
- Lumen maintenance
- Color stability
- Cost reduction (\$/Im)

Key Focus Areas for LED Technology Development

There is still a lot to do ...

Further efficacy improvement

- Epi and die development
- Narrow band phosphors and QDs

Efficacy at high drive current for high luminance applications

- Droop reduction
- Converter saturation
- Efficient packages with small source size

Improve InGaN green and AlInGaP amber and red

Droop

"Droop" in InGaN based LEDs

Decrease in LED efficacy with increasing drive current

Epi droop: non-radiative recombination in active layers at high current density

Phosphor droop: photothermal saturation of quantum efficiency of phosphor materials (esp. red)

The efficiency of a "white" LED

converting electrical power to light

Origin of "Epi Droop"

Dominant mechanism: Auger recombination

Key processes to consider:

- Carrier density in the QWs
 - Auger recombination increases with increasing carrier density
 - > Reduce carrier density by improving electron and hole transport to spread carriers more evenly
- Radiative vs Auger recombination in QWs
 - Auger recombination increases as QW width decreases
 - > Design of active region structure to improve radiative recombination rate
- Materials quality
 - The number and type of defects in the material has significant impact on performance (peak efficiency)
 - > If thick QWs can be growth with good materials quality, the onset of efficiency droop can be pushed out

Green Gap

Green Gap

InGaN LED efficiency drops approaching green WL

Data from various manufacturers included

InGaN

- EQE vs WL peaks at 425 nm (>70%)
- Royal blue (440nm) >65%
- EQE ~2x lower for green

AlInGaP

- Band structure fundamentally limits EQE at shorter WL
- Inherent temperature dependency worse than InGaN

Efficacy of Direct Green Emitting LEDs

Green LEDs in "droop" regime at lower current densities

Contributing factors for lower efficiency in "Green Gap":

- Lower IQE (or peak EQE):
 - Worse carrier overlap (larger polarization induced electric fields, which increase with increasing bias in c-plane)
 - Material quality challenges with higher indium in QW (lattice mismatch, miscibility gap, etc....)
- Worse efficiency Droop:
 - Greater energy barriers to carrier transport, which increases carrier density on p-side QWs \rightarrow higher Auger
 - Worse electron-hole overlap reduces radiative rate, which increases carrier density in QWs \rightarrow higher Auger

Amber and red AllnGaP LEDs

Efficiency of Direct Emitting AllnGaP LEDs

Reduced efficiency for amber LEDs and limited hot/cold factor

IQE is flux limiting for amber

- IQE drops steeply when the Al% approaches 53%, because the bandgap transitions from direct to indirect
- IQE and H/C factor is ~ 30%

Light extraction is flux limiting for red

- IQE is ~80-90%, thus the light extraction efficiency is the limiting factor for flux
- Phosphide refractive index is high, resulting in light trapping inside the LED die

AllnGaP Epi Structure

Key issues facing AlInGaP Technology

- Point defects originating from the growth substrate degrade active region
- Small Band offsets
- Carrier overflow significant for short WL devices
- Indirect band gap nature when wavelength gets close to amber

Quantum Dots

Quantifying the Benefits of Narrow Band Phosphors

Simulated FWHM Dependence for LE at 3000K and 90CRI

		Gaussian Green FWHM (nm)							
		30	50	70	90	110			
1 (nm)	30		117%	118%	116%	113%			
FWHN	50		114%	113%	111%	109%			
ian Red	70	110%	109%	107%	106%	105%			
Gauss	90	105%	104%	102%	101%	100%			

LE gains normalized to 90nm Red and 110nm Green FWHM

Technology impact on LED products (examples)

QD LEDs

CRI 90 MP LEDs with QDs narrow gap to CRI 80

- Efficacy gap to comparable CRI 80 LED reduced to ~7% (2700K, CRI 80)
- Red QDs in on-chip configuration released in LUXEON 3535L HE Plus mid-power LED
- LED meets required reliability criteria

High-Luminance LEDs

High-drive CSP technology enables "bright" sources for highly directional applications

- Luminance of >75 Mnit from compact, Lambertian light source
- Enable small form factor luminaires with narrow beam angle and high punch
- · Precise delivery of light where it is needed to drive energy savings

Compact Modular Light engine

High luminance LEDs enable small form-factor light engine

Enable upgrade-ability of light engine by:

- Tightly packing CSPs to allow for flexible high eténdue sources
- Choosing power and control partitioning to allow for standard interfaces
- Placing minimal electronics and intelligence on board with CSP array

Conclusions

LED technology advancements have resulted in substantial improvements

- LED efficacy: MP LEDs achieve ~200 lm/W and HP LEDs achieve 150 lm/W at their respective typical operating conditions
- High drive current density operation: Compact sources with high luminance are becoming available delivering up to 100Mnits with controlled forward directed beams
- Quality of light: Narrow band red phosphors and QDs enable CRI 90+ LEDs with efficacy close to CRI 80 LEDs (~7% gap with QDs)
- **Direct color LEDs:** Quantum efficiency of direct emitting green and amber LEDs continues to improve. Green InGaN LEDs with EQE >35% at operating conditions are now commercially available and have the potential for significant further advancement

Retail

Buildings

Outdoor **Spaces**

Human-centric Horticulture

Embedded lighting

