Novel Lighting Strategies for Optimizing Circadian Health and Alertness in Shiftworkers

Gena Glickman, PhD Center for Circadian Biology, University of California San Diego

Shiftwork

- 15 million individuals work outside regular 9-5 shift (U.S. Department of Labor)
- Increased risk of accident & injury (Folkard & Tucker, 2003)
- Myriad physiological & psychological consequences (Evans et al. 2013; Brown et al., 2009; Lawson et al., 2011)
- Compromised alertness, performance and health costs ~\$200 billion annually (Kerin & Aguirre, 2005)
- Limited practical solutions

What causes the harm?

Three interconnected processes interact in the shiftworker:

- Circadian misalignment
- Sleep deprivation
- Light at night

Circadian Rhythms and Disturbances

American College of Emergency Physicians[®] ADVANCING EMERGENCY CARE

Circadian Rhythms and Shift Work Policy Resource and Education Paper (PREP), 2010

- "the single most important reason given for premature attrition from the field"
- Lack of guidance:

"Shifts should be scheduled, whenever possible, in a manner consistent with circadian principles. For most settings, scheduling isolated night shifts or relatively long sequences of night shifts is recommended."

Lighting Countermeasures for Shiftworkers

• Facilitate circadian adjustment

• Increase alertness/performance on-shift

Increase sleep duration/quality

Elements Mediating the Effects of Light

• Timing

• Wavelength

Phase Response Curve

Spectral Sensitivity

Responses to "Blue-Attenuated" Light

- Van der Werken et al., 2014

Proposed Intervention for Night Shiftworkers

Combines two evidence-based lighting interventions to address two different light responses:

Circadian Phase Resetting, architectural

- maximize input during subjective day
- minimize input close to desired bedtime

Acute Alerting, individual

- light for alerting ONLY
- only when KSS ≥6 and/or increased reaction time on PVT (need based*)

Study Light Sources

Blue-enriched, architectural Alert ONLY, individual Blue-enriched **Relative Spectral Peak** Melanopsin Blue light hazard 530 580 550 600 650 700 750 450 500 Linh+ C /1 . ~~

80

Light Source	ССТ (К)	Melanopic lux (m- lux)	Photopic lux (lux)	m-lux/lux	CRI
LA sky at 2 PM	5107	1.12e+3	662	1.69	100
3500K fluorescent	3562	50.4	100	0.504	75.2
Blue-enriched	3483	93	100	0.931	84.26
Alert ONLY	TBD	~30	100	~0.30	>80

Shiftworker Intervention Protocol (N=30)

Measures

- Sleep and work diaries
- Continuous actigraphy
- Hormone profiles (melatonin and cortisol)
- Karolinska Sleepiness Scale (KSS)
- Psychomotor vigilance test (PVT)
- Subjective measures of health, quality of life, turnover communication

Conclusions

- Biological effects of light may be influenced via a variety of variables (timing, intensity, wavelength, photoperiod history)
- However, not all light responses are necessarily influenced in the same way
- Those disassociations may be utilized in the development of optimal treatment strategies
- Further, individualized and dynamic lighting environments have the potential to be particularly effective in populations with significant variability in circadian phase, such as shiftworkers

Our Team

UCSD Liz Harrison Emily Schmied Michael Gorman

BIOS Robert Soler Sean Wegart flux Michael Herf Lorna Herf

Department of Energy Brian Dotson Robert Davis Morgan Pattison