Catastrophic OLED failure and pathways to address it

Chris Giebink

Electrical Engineering Department, Penn State University

Killer shorts

OLED panels that short catastrophically:

- Decrease manufacturing yield
- Increase warranty expenses
- Decrease customer satisfaction

Highly localized current flow \rightarrow heating & irreversible damage

Origin of shorts presently unknown

To solve this problem:

- Identify incipient shorts early & determine physical origin
- Model their evolution/growth toward catastrophe
- Predict failure & develop mitigation strategies

Residue of a short

Hot Spots & Bright Spots

Bright spot microscopy

- Bright spots associated with visible inhomogeneities
- Hot spots not easily visible in microscopy

Bright spot origin: ITO agglomerations

- Improved panel deconstruction
 - \rightarrow delamination

SEM image of bright spot

Bright spots are consistently ITO-rich

EDS elemental mapping

10un

Hot Spot Fine Structure

- Characteristic 'volcano' structure of hot spots
- Hot spots exhibit more Ohmic EL vs. voltage \rightarrow local shunts
- Hot spots often cluster

Hot spot link to shorts

• Dark spots emerge from original hot spots

Connecting to catastrophic failure

- Early connection to catastrophic short failure (fractal-like growth of shorts)
- Volcano analog of short growth

Emerging model of short growth

The need for OLED thermal stability

- Automotive applications
 - Hot cars --> 85°C +
- Solid-state lighting
 - Panels operate at elevated temperature
 - Thermal stability closely connected to catastrophic failure
 - Intrinsic OLED lifetime ~ $exp(-E_A/kT)$

OSRAM

Current status for small molecule OLEDs

- Elevated temperature causes:
 - Crystallization/morphological changes
 - Expansion
 - Melting and/or vaporization
- Existing strategies to improve thermal stability:

- TPD T_g~60°C

- Additives:
 - Co-deposition of high T_q small molecules
 - Co-deposition of inorganics (e.g. LiF)

D.E. Loy, et. al. Adv. Func. Mater. 12, 245 (2002)

The additive route: Teflon AF

 Co-evaporate Teflon AF w/ small molecules

1. Evaporation

OLED

molecules

Teflon AF chain fragments

2. Deposition

substrate

3. Re-polymerization

substrate

substrate

Evidence for polymer network

• Ellipsometry of Teflon/NPD films \rightarrow Dissolve out NPD

NPD+Teflon

NPD

Nanoporous Teflon network must exist

Dilute organic semiconductors

- Dilution in insulating matrix can improve trap-limited transport
 - Ν • $J \sim \left| \frac{1}{N_{f}} \right|$

а

Activation energy (eV)

0.45

0.40

0.35

0

Example: hole-only MEH-PPV / PVK 0

20

 10^{3}

0% MFH-PPV 125 nm

50% MFH-PPV 137 nm 25% MEH-PPV 121 nm

NPD + Teflon AF

- Hole-only devices: ITO/NPD (60 nm)/AI
 - T_g ~ 95°C
- Measured on and post-hot plate

NPD + Teflon AF

- Hole-only devices: ITO/NPD (60 nm)/AI
 - T_g ~ 95°C
- Measured on and post-hot plate

NPD + Teflon AF

- Hole-only devices: ITO/NPD (60 nm)/AI
 - T_g ~ 95°C
- Measured on and post-hot plate

Summary

Hole-only device (50 nm)	Voltage at 10 mA/cm ² (25°C)	"Shorted" Temp
Neat NPD	3.4 V	110°C
25% NPD/Teflon	2.2 V	250°C
50% NPD/Teflon	2.7 V	>260°C
80% NPD/Teflon	4.0 V	>260°C

Conclusions

OLED panel failure

- Bright spots & Hot spots
- Temp. selective EL imaging
- Hot spots >> short precursors
- Nano >> Micro >> Macroshort

Thermal stability via Teflon

- Co-evap w/ HTLs
- Repolym to nanoscale Teflon network
- Improves injection & bulk transport
- >100°C thermal stability increase

Acknowledgements

- Yufei Shen
- Hoyeon Kim
- Zelong Ding
- Jared Price
- John Hamer
- Michael Boroson
- Michael Buechel

Energy Efficiency & Renewable Energy

