OLEDs for Lighting: How to Make Bright, Long-lived and Efficient Devices

Stephen Forrest

Departments of Physics, EECS and Materials Science and Engineering University of Michigan Ann Arbor, MI 48109

Work Supported by SSL Program, EERE

OLEDs: Major Remaining Challenges

- Big picture issues
 - The importance of materials: small molecule vs. polymer
 - The importance of purity (see above)
- Getting the Light Out
- Blue Lifetime
- Cost & Yield
 - Patterning & Deposition
 - Throughput

Efficiency and Operational Lifetime of OLEDs & PHOLEDs

Phosphorescent dopants

Color	CIE	LE (cd/A)	t ₅₀ (hrs)
Red	[0.64, 0.36]	30	900,000
Green	[0.31, 0.63]	85	400,000
Blue	[0.14, 0.12]	High	100's

Fluorescent dopants

Color	CIE	LE (cd/A)	t ₅₀ (hrs)
Red	[0.67, 0.33]	11	160,000
Green	[0.31, 0.63]	37	200,000
Blue	[0.14, 0.12]	9.9	11,000

Intrinsic Lifetime of OLEDs

Molecular Degradation Is Energy Driven

- Lifetime of OLEDs: R>G>B
- Implication: Device death is energy driven

Bond	BE(eV)	Bond	BE(eV)
C-C	3.64	N-N	1.69
C-H	4.28	N-O	2.08
C-O	3.71	N-H	4.05
C-N	3.04	0-0	1.51
C-F	5.03	H-H	4.52

Energy Scale Red light: ~ 2 eV Green light: ~2.3 eV Blue light: ~ 2.9 eV

Bond cleavage Broken bonds → Defects!

But there doesn't seem to be enough energy to destroy the molecules....Or is there?

When Excited States Collide...

Triplet energy (~2.9 eV) + polaron (~3.3 eV) = hot polaron (\geq 6 eV)

N. Giebink, et al., J. Appl. Phys., 103, 044509 (2008).

WOLED vs. SOLED Lifetime Comparison

Panel 15 cm x 15 cm 82% fill factor	Single Unit WOLED*	2 Unit WSOLED	
Luminance [cd/m²]	3,000	3,000	
Efficacy [lm/W]	49	48	
CRI	83	86	
Luminous Emittance [lm/m ²]	7,740	7,740	
Voltage [V]	4.3	7.4	
1931 CIE	(0.471, 0.413)	(0.454, 0.426)	
Duv	0.000	0.006	
CCT [K]	2,580	2,908	
Temperature [°C]	27.2	26.2	
LT ₇₀ [hrs]	4,000	13,000	

SOLED : ~ $3x LT_{70}$ improvement vs. single unit WOLED with similar color and power efficacy

P. Levermore et al, **SID Digest**, 2011

Reducing Exciton Density to Increase Lifetime

Spreading the recombination zone: Dopant/Host Grading

10 X Blue PHOLED Lifetime Improvement

Y. Zhang, et al., Nature Comm. 5, 5008 (2014)

First significant increase in blue PHOLED lifetime since their invention in 2000... But still not good enough for lighting and displays.

Hot excited state management

Managed blue PHOLEDs

J. Lee, et al. Nat. Comm. (2017)

Plenty of Energy Levels to Resonate

Excited state energy (eV)

Lifetime Improvements and TTA Model

Greatest improvement in lifetime when manager at position of highest exciton density (S3)

• Fractional increase in lifetime decreases with time

Greater at T90 than T80 mtextsformanager depletion

Performance Summary

Device	J ₀ [mA/cm ²]	EQE [%]	V ₀ [V]	CIE [†]	LT90 [hr]	T80 [hr]	ΔV(T90) [V]	ΔV(T80) [V]
CONV	6.7±0.1	8.0±0.1	6.6±0.0	[0.15, 0.28]	27 ± 4	93 ± 9	0.3 ± 0.1	$\textbf{0.4}\pm\textbf{0.1}$
GRAD	5.7±0.1	8.9±0.1	8.0±0.0	[0.16, 0.30]	47 ± 1	173 ± 3	0.6 ± 0.1	0.9 ± 0.1
MO	5.5±0.1	9.4±0.1	9.2±0.0	[0.16, 0.30]	71 ± 1	226 ± 9	0.9 ± 0.1	1.2 ± 0.1
M1	5.4±0.1	9.5±0.1	8.8±0.1	[0.16, 0.29]	99 ± 3	260 ± 15	1.2 ± 0.1	1.6 ± 0.1
M2	5.4±0.1	9.3±0.0	8.9±0.1	[0.16, 0.31]	103 ± 0	285 ± 8	0.7 ± 0.1	1.0 ± 0.1
М3	5.3±0.1	9.6±0.0	9.0±0.1	[0.16, 0.30]	141 ± 11 (5.2X) (3.0X)	334 ± 5 (3.5X) (1.9X)	1.1 ± 0.1	1.5 ± 0.2
M4	5.2±0.1	9.6±0.2	8.6±0.0	[0.16, 0.31]	126 ± 7	294 ± 16	1.0 ± 0.1	1.3 ± 0.1
M5	5.1±0.1	9.9±0.1	8.6±0.0	[0.16, 0.31]	119 ± 6	306 ± 3	0.9 ± 0.1	1.2 ± 0.1

J. Lee, et al. Nat. Comm. in press (2017)

Does Leakage into Adjacent Layers Contribute to Luminance Loss?

- Insert fl and ph sensor layers in adjacent layers
- Monitor change in sensor luminescence with time
- Determine contribution to total luminance change

Separate measurements of ETL and HTL Leakage

Answer: Leakage Results in only Marginal Change in L

Putting Management to Work: Long lived all phosphor stacked WOLEDs

- Max Luminance > 200,000 nits
- 50 lm/W max
- CCT = 2780K
- CRI=89

Photo illustrating good color rendering of the SWOLEDs in this report. The luminaire comprises 36 pixels (2 mm²) operated at 50-100k nits

All Phosphor WOLED Performance

All Phosphor SWOLED Performance

What about TADF?

Uoyama, Adachi, et al., Nature 492, 234–238 2012

Nakanotani, Adachi, et al., Nature Comms. 2014

- Broad spectra
- Long lived triplets: 2-20µs
- Excitations maintained in triplet manifold
- Identical degradation mechanism to long-lived blue PHOLEDs
 - Can benefit from same solutions
- Similar concept to phosphor sensitized fluorescence (Baldo, et al., 2000)
- Narrow spectra
- Long lived triplets: 1-20µs
- Excitations maintained in triplet manifold
 - Need UV sensitizer to access blue
 - fluorescence dopant energies
 - Degradation too rapid to be practical for lighting applications

Finding the Middle Ground: Fluorescent/Phosphorescent WOLEDs

- Singlet and triplet excitons harvested along independent channels Resonant transfer of both excitonic species is independently optimized:
 - High energy singlet excitons for blue emission
 - Remainder of lower-energy triplet excitons for green and red emission

Minimizing exchange energy losses

More stable color balance

Potential for 100% IQE

Enhanced stability

```
(Y. Sun, et al., Nature, 440, 908, 2006)
```

Performance of WOLED

(Y. Sun, et al., Nature, 440, 908, 2006)

Forward viewing:

- Quantum Efficiency (10.0±0.2)%
- Power Efficiency (15.8 \pm 0.3) lm/W
- Color Rendering Index (CRI): 84 at 1, 10 mA/cm², 83 at 100 mA/cm²
- CIE: (0.40, 0.44) → (0.39, 0.43)

Where do we go from here?

- Find better managers
- Lower the frontier orbitals of all constituent materials
- Understand degradation pathways of dopants and hosts
 - The EML is 97% of the problem
- Use fl/ph approaches
- Stacked devices will always win
- Improve outcoupling!
 - 70% now demonstrated (see talk by Yue Qu)
 - Can we go higher?

Thoughts About Patterning & Deposition

- Purity is everything => Small molecule
- Multilayer structures important >> Dry process
- Very inexpensive
 → High throughput
- Depends on how to make color & white
 - RGB stripes
 - Pixellated WOLEDs
 - RGB Pixels
- Options
 - Vacuum thermal evaporation
 - Organic vapor phase deposition....

OLED Fabrication Processes

	Vapor (PVD)	Condensed Phase
Examples	VTE OVPD OVJP	Inkjet Nozzle Printing LITI μ-contact printing
Materials	Small molecules	Small molecules or polymers
Multilayer Structures	Molecularly sharp interfaces Even Mixing	Less thickness ctrl. May damage heterojunctions &
co-deposition	Amorphous film	complicate doping.
Patterning	Thin Metal Mask Direct Print	Direct Print
Atmosphere	Vacuum	Inert Gas
Media	None	Solvent or xfer film
Use	Commercial & Research	Research

Organic PVD

(c) Shtein *et al. J. Appl. Phys.* **93**, 7, 4005 (2003)

Printing an R-G-B WOLED Using Organic Vapor Jet Deposition

G. McGraw, et al. APL (Feb, 2008)

Printed WOLEDs Using OVJP

Process	OVJP	VTE
EQE (%)	9.4	12.6
PE (Im/W)	4.7	4.9
EQE (%)	8.6	8.9
PE (Im/W)	16.5	13.3
EQE (%)	5.4	6.0
PE (Im/W)	4.2	5.5

M. Arnold, G. McGraw and R. Lunt, Appl. Phys. Lett., 2008