

LED Component and System Optics

Paul Fini 1/30/18

LED Package Optical Design

- Hemispherical lenses: maximize first-pass extraction to minimize recycling
 - Recycling (multiple bounces) may lead to significant optical losses
- Larger source (chip) size due to magnification may introduce étendue challenges

> Domed packages are optimized for first-pass light extraction... but are they the best choice for <u>all</u> applications?

Package Optics for Diffuse Emission

- Cubic or otherwise rectangular lenses broaden far-field emission over angle
- Increased recycling but little to no optical loss due to high-Q chip, phosphors, and package surfaces

Contrary to earlier package designs, it is possible to <u>harness</u> recycling for broader intensity over angle without optical loss.

Benefits of Broad Emission to System Design

- Well suited to omni-directional and quasi-Lambertian lamps & luminaires
- Broader emission over angle avoids perceptible "pixelation" through diffuser

Wider package spacing enables cost reduction and/or lower system optical loss via lighter diffusion.

Bulb Retrofit Example: 810 lm, 2700K E26 Lamp w/ XQ-D

Components for Directional Lamps/Luminaires

- Maximize luminance at a manageable package optical efficiency hit
- Nominal efficacy (Im/W) is lower, but directionality (cd/Im) is higher

> Thermal management: high power for high luminance @ high reliability

Benefits of Flat-Top Components to System Design

- Directional lamps and luminaires require a high-luminance / "high-punch" source, particularly when size is restricted
- Optics size and cost can often be reduced as source luminance increases

CREE 🔶

> High luminance has a direct impact on directional lamp size and cost.

"Nano-Punch" Track Light Concept w/ XP-L High Intensity

- 83% smaller and lighter than a PAR38
- 9000 cd @ 11° beam FWHM

	Nano-Punch Prototype	Halogen PAR38 Flood	
LED	XP-L High Intensity	N/A	
ССТ	3000K	3000K	
СВСР	9,000 cd @ 11° beam	2,379 cd @ 12° beam	
Initial Lumens	520 lm	1,325 lm	
System Power	8 W	71W	
Size	79mm length143mm length32mm head Ø120mm head Ø		
Weight	0.10 lbs	0.70 lbs	

New Optics Designs – Lightguides

- Lightguides require compact LEDs to minimize thickness/volume
 - LED-LG light coupling is a critical factor in optical efficiency

LN4: "asymmetrical to diffuse" (using ceiling as optical element)

- Lightguide: thin for weight, cost reduction, and optical efficiency
- LEDs: compact size, high directionality (cd/lm) & luminance (lm/mm²) benefit coupling efficiency

Challenges & Opportunities

• Application-specific performance will continue to guide package optics designs & choices:

	Diffuse	Directional	Lightguides
Key Package Characteristics	 Broad emission Low optical loss due to recycling 	Small source sizeHigh luminanceHigh power	Small source sizeHigh luminance
Package Challenges (present and future)	 Low phosphor crosstalk & self absorption Low chip & package surface absorption 	 Thermal management Phosphor and package reliability (esp. for laser-pumped) 	 High package cd/lm at low optical loss High luminance across all colors
Application Opportunities	 Consistent color over angle among mixed sources (<i>e.g.</i> RGBW) 	 Increased luminance via efficacy gains New ultra-compact directional lamp FFs 	 Novel, cost effective, & efficient luminaires Increased application efficiency

Summary

- LED package optical designs directly benefit luminaire performance and cost.
- Future applications will benefit from package-luminaire optics synergy.
- Broad/Diffuse
 - Challenge: minimize intra-package optical losses (phosphors, chip/surface absorption)
 - *Opportunity*: optimize luminaire cost and performance by "reducing the burden" on luminaire optics
- Directional
 - Challenge: ultra-high luminance with high reliability and high color quality
 - Opportunity: increased emission directionality and reduced optical source size
- Lightguide-optimized
 - Challenge: high luminance in ultra-compact packages, across color range
 - Opportunity: increased application efficiency in novel luminaire form factors

