

CREE 🚓

LED Component and System Optics

Paul Fini 1/30/18

LED Package Optical Design

• Hemispherical lenses: maximize first-pass extraction to minimize recycling

Recycling (multiple bounces) may lead to significant optical losses

• Larger source (chip) size due to magnification may introduce étendue challenges

Domed packages are optimized for first-pass light extraction... but are they the best choice for <u>all</u> applications?

Package Optics for Diffuse Emission

- Cubic or otherwise rectangular lenses broaden far-field emission over angle
- Increased recycling but little to no optical loss due to high-Q chip, phosphors, and package surfaces

Contrary to earlier package designs, it is possible to <u>harness</u> recycling for broader intensity over angle without optical loss.

Benefits of Broad Emission to System Design

Well suited to omni-directional and quasi-Lambertian lamps & luminaires

Broader emission over angle avoids perceptible "pixelation" through diffuser

Wider package spacing enables cost reduction and/or lower system optical loss via lighter diffusion.

Bulb Retrofit Example: 810 lm, 2700K E26 Lamp w/ XQ-D

	Original	XQ-D Retrofit	
LED Type	5630 Plastic	HP Ceramic	
LED Count	27	16	
Lumens	808 lm	819 lm	
Power	10.5 W	9.9 W	
Efficacy	78 LPW 83 LPW		
Emission FWHM	244°	262°	

Improved efficacy and emission omnidirectionality with no change to the optical system.

Components for Directional Lamps/Luminaires

• Maximize luminance at a manageable package optical efficiency hit

• Nominal efficacy (lm/W) is lower, but directionality (cd/lm) is higher

Thermal management: high power for high luminance @ high reliability

Benefits of Flat-Top Components to System Design

 Directional lamps and luminaires require a high-luminance / "high-punch" source, particularly when size is restricted

Optics size and cost can often be reduced as source luminance increases

Measured using Carclo 10755R1 TIR optic

	XP-L High Density	XP-L High Intensity
Avg Luminance per Lumen (cd/cm²/lm)	3.2	7.8
Optical Source size	1 x	~0.66 x
Package Cost	\$	\$
Maximum Lumens	1226 lm	1095 lm

> High luminance has a direct impact on directional lamp size and cost.

"Nano-Punch" Track Light Concept w/ XP-L High Intensity

- 83% smaller and lighter than a PAR38
- 9000 cd @ 11° beam FWHM

	Nano-Punch Prototype	Halogen PAR38 Flood	
LED	XP-L High Intensity	N/A	
ССТ	3000K	3000K	
СВСР	9,000 cd @ 11° beam	2,379 cd @ 12° beam	
Initial Lumens	520 lm	1,325 lm	
System Power	8 W 71W		
Size	79mm length 32mm head Ø	143mm length 120mm head Ø	
Weight	0.10 lbs	0.70 lbs	

New Optics Designs – Lightguides

- Lightguides require compact LEDs to minimize thickness/volume
 - LED-LG light coupling is a critical factor in optical efficiency

LN4: "asymmetrical to diffuse" (using ceiling as optical element)

- Lightguide: thin for weight, cost reduction, and optical efficiency
- LEDs: compact size, high directionality (cd/lm) & luminance (lm/mm²) benefit coupling efficiency

Challenges & Opportunities

• Application-specific performance will continue to guide package optics designs & choices:

	Diffuse	Directional	Lightguides
Key Package Characteristics	Broad emissionLow optical loss due to recycling	Small source sizeHigh luminanceHigh power	Small source sizeHigh luminance
Package Challenges (present and future)	 Low phosphor crosstalk & self absorption Low chip & package surface absorption 	 Thermal management Phosphor and package reliability (esp. for laser-pumped) 	 High package cd/lm at low optical loss High luminance across all colors
Application Opportunities	 Consistent color over angle among mixed sources (e.g. RGBW) 	 Increased luminance via efficacy gains New ultra-compact directional lamp FFs 	 Novel, cost effective, & efficient luminaires Increased application efficiency

Summary

- LED package optical designs directly benefit luminaire performance and cost.
- Future applications will benefit from package-luminaire optics synergy.

Broad/Diffuse

- Challenge: minimize intra-package optical losses (phosphors, chip/surface absorption)
- Opportunity: optimize luminaire cost and performance by "reducing the burden" on luminaire optics

Directional

- Challenge: ultra-high luminance with high reliability and high color quality
- Opportunity: increased emission directionality and reduced optical source size

Lightguide-optimized

- Challenge: high luminance in ultra-compact packages, across color range
- Opportunity: increased application efficiency in novel luminaire form factors

CREE ÷

CREE.COM