

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

2017 PROJECT PEER REVIEW

U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

This page is intentionally left blank

INTRODUCTORY LETTER

Dear colleagues,

In the spring and summer of 2017, the Office of Energy Efficiency and Renewable Energy's (EERE's) Bioenergy Technologies Office (BETO or the Office) continued its longstanding commitment to transparency by implementing the seventh biennial external review of its research and development portfolio. The review was conducted in accordance with EERE Peer Review guidelines, and it was designed to provide an external assessment of the projects in BETO's portfolio and collect external stakeholder recommendations on the Office's overall scope, focus, and strategic direction. Results from the Peer Review process are used to inform programmatic decision making; enhance active project management; and modify, expand, or discontinue existing projects.

The Peer Review process is critical in evaluating past investments and demonstrating the success of BETO's new core mission: to invest in the research and development of technologies that will reduce technology uncertainty and enable industry to stand up an advanced and sustainable bioenergy sector. Our nation's abundant biomass and waste resources present a tremendous opportunity to sustainably produce high-performance, advanced biobased fuels, products, and renewable chemicals and help realize national goals for the future bioeconomy. The Peer Review process enables external stakeholders to provide feedback on the most impactful use of taxpayer funding and develop recommendations for the most efficient and effective ways to accelerate the development of an advanced bioeconomy.

The 2017 Peer Review comprised three levels of review: (1) individual projects were scored based on technical approach, relevance, progress, and future direction; (2) each technology area portfolio was evaluated for overall potential impact, innovation, synergies, focus, commercialization, and recommendations; and (3) the Office's structure and overall strategic direction was reviewed by an external Steering Committee. This report contains the results of each level of review and the inputs of more than 300 participants in the Peer Review process, including principal investigators, reviewers, Steering Committee members, and BETO staff. The Office would like to thank all of the reviewers and members of the Steering Committee who participated in this review. BETO would like to offer a special thanks for BCS, Incorporated's support in aiding the planning and implementation of this review process.

BETO is appreciative of the valuable insights and contributions that have been provided throughout the Peer Review process. Achieving the objectives of the Office is dependent on the effective management of all the projects in BETO's existing portfolio and on the appropriate focus and structure of future initiatives. BETO values the input of all the stakeholders in the bioenergy sector and looks forward to working with them in the years ahead to continue progress on the path toward building a successful advanced bioenergy industry and a sustainable bioeconomy.

Sincerely,

Jost ho lite

Dr. Jonathan Male Director, Bioenergy Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

EXECUTIVE SUMMARY

The Bioenergy Technologies Office (BETO) manages a diverse portfolio of projects across the spectrum of applied research and development within the dynamic context of developing technologies and evolving market conditions, as well as changing budgets and administration priorities. BETO's portfolio is organized according to the biomass-to-bioenergy supply chain—from feedstock source to end use—as illustrated in Figure ES-1.

The biennial Peer Review process enables external stakeholders to provide feedback on the responsible use of taxpayer funding and develop recommendations for the most efficient and effective ways to accelerate the development of an advanced bioenergy industry. BETO worked with the external Peer Review Steering Committee and Technology Area Review Panels to conduct the review process from July 2016 through July 2017. This report includes the results of both the Project Peer Review meeting held in March 2017 and the Program Management Review meeting held in July 2017.

Figure ES-1. Biomass-to-Bioenergy Supply Chain

ACRONYMS AND ABBREVIATIONS

3HP	3-hydroxypropionate				
A&S	Analysis and Sustainability				
ABC	Algal Biomass Conversion				
ABPDU	Advanced Biofuels Process Demonstration Unit				
ABY	Algal Biomass Yield				
ACN	acrylonitrile				
ACSC	Advanced Catalyst Synthesis and Characterization				
AD	anaerobic digestion				
ADO	Advanced Development and Optimization				
Agile BioFoundry	Agile Biomanufacturing Foundry				
АМО	Advanced Manufacturing Office				
ANL	Argonne National Laboratory				
AOP	annual operating plan				
ARPA-E	Advanced Research Projects Agency – Energy				
ASSERT	Analysis of Sustainability, Scale Economics, Risk, and Trade				
ASTM	American Society for Testing and Materials				
ASU	Arizona State University				
ATEC	Algae Technology Educational Consortium				
ATJ	alcohol-to-jet				
ATP3	Algae Testbed Public-Private Partnership				
AVAP	American Value-Added Pulping				
BAT	Biomass Assessment Tool				
BAU	business as usual				
BDO	butanediol				
BET0	Bioenergy Technologies Office				
BFNUF	Biomass Feedstock National User Facility				
BIC	Biofuels Information Center				
BCT	Biomass Conversion Technology				
BMP	best management practices				
BSM	Biomass Scenario Model				
BT16	2016 Billion-Ton Report				
BTEX	benzene, toluene, ethylbenzene, xylenes				
C	carbon				
C5	five-carbon				
C6	six-carbon				
CA	carbonic anhydrase				
CAP	Combined Algal Processing				
CAPS	Coordinated Agriculture Projects				
CARB	California Air Resources Board				

CBP	consolidated bioprocessing				
ССМ	Catalyst Cost Model				
CCPC	Consortium for Computational Physics and Chemistry				
CEMAC	Clean Energy Manufacturing Analysis Center				
CFP	catalytic fast pyrolysis				
CH ₄	methane				
ChemCatBio	Chemical Catalysis for Bioenergy				
CO	carbon monoxide				
CO ₂	carbon dioxide				
Co-Optima	Co-Optimization of Fuels and Engines				
CRADA	cooperative research and development agreement				
DDA	deacetylation/dilute acid				
DISCOVR	Development of Integrated Screening, Cultivar Optimization, and Validation Research				
DMR	deacetylation/mechanical refining				
DMT	Demonstration and Market Transformation				
DOE	U.S. Department of Energy				
DOI	U.S. Department of the Interior				
DPA	Defense Production Act				
EERE	Office of Energy Efficiency and Renewable Energy				
EMDS	Ecosystem Management Decision Support				
EPA	U.S. Environmental Protection Agency				
FAPRI	Food and Agricultural Policy Research Institute				
FASOM	Forest and Agricultural Sector Optimization Model				
FCC	fluid catalytic cracking				
FCIC	Feedstock-Conversion Interface Consortium				
FOA	funding opportunity announcement				
FPEAM	Feedstock Production Emissions to Air Model				
FSL	Feedstock Supply and Logistics				
FSMA	Food Safety Modernization Act				
F-T	Fischer-Tropsch Process				
FY	fiscal year				
GAI	Global Algae Innovations Inc.				
GCAM	Global Change Assessment Model				
gge	gasoline gallon equivalent				
GHG	greenhouse gas				
GMO	genetically modified organism				
GREET	Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation				
GTAP	Global Trade Analysis Project				
HTL	hydrothermal liquefaction				
IBE	isopropanol, butanol, and ethanol				
IBR	integrated biorefinery				

IEA	International Energy Agency
IH2	Integrated Hydropyrolysis Plus Hydroconversion Technology
INL	Idaho National Laboratory
IP	intellectual property
IPCC	Intergovernmental Panel on Climate Change
JEDI	Jobs and Economic Development Impact (Model)
KDF	Knowledge Discovery Framework
kg	kilogram
L	liter
LAP	laboratory analytical procedures
LCA	life-cycle analysis
LEAF	Landscape Environmental Assessment Framework
LEAPS	Laboratory Environmental Algae Pond Simulator
LLNL	Lawrence Livermore National Laboratory
LUC	land-use change
МС	membrane carbonation
MFSP	minimum fuel selling price
MOOC	Massive Open Online Courses
MSS	Moisture Swing Sorption
MSW	municipal solid waste
МТ	Market Transformation
МҮРР	Multi-Year Program Plan
NA	nanostructured adsorbents
NGO	nongovernmental organization
NIFA	National Institute of Food and Agriculture
NIR	near infrared
NREL	National Renewable Energy Laboratory
ORNL	Oak Ridge National Laboratory
ΟΤΑ	octatrienoic acid
PACE	Producing Algae and Co-Products for Energy
PAT	process analytical technologies
PBR	photobioreactor
PDU	Process Demonstration Unit
PD2B3	Project Definition for Pilot- and Demonstration-Scale Manufacturing of Biofuels, Bioproducts,
	and Biopower
PHA	polyhydroxyalkanoate
PHB	polyhydroxbutyrate
PI	principal investigator
PNNL	Pacific Northwest National Laboratory
RAFT	Regional Algal Feedstock Testbed Partnership
R&D	research and development

REACH	Renewable Acid-Hydrolysis Condensation Hydrotreating			
RFS	Renewable Fuel Standard			
RINS or RIN	Renewable Identification Number			
RSB	Roundtable on Sustainable Biomaterials			
SCADA	supervisory control and data acquisition			
SCOPE	Scientific Committee on Problems of the Environment			
SD	System Dynamics			
SDSU	South Dakota State University			
SNL	Sandia National Laboratories			
SOC	soil organic compound			
SOFC	solid-oxide fuel cell			
SOT	state of technology			
SRWC	short-rotation woody crops			
STEM	science, technology, engineering, and math			
SUNY	State University of New York			
2016 Strategic Plan	Strategic Plan for a Thriving and Sustainable Bioeconomy			
SWAT	Soil and Water Assessment Tool			
TCPDU	Thermochemical Process Development Unit			
TEA	techno-economic analysis			
THF	tetrahydrofuran			
TRL	technology readiness level			
TRY	titer, rate, and yield			
USDA	U.S. Department of Agriculture			
USFS	U.S. Forest Service			
USFS FIA	U.S. Forest Service Forest Inventory and Analysis			
VGO	vacuum gas oil			
VTO	Vehicle Technologies Office			
w/w	weight by weight			
WBS	work breakdown structure			
WTE	Waste to Energy			
wt%	weight percent			
WWTP	wastewater treatment plant			

TABLE OF CONTENTS

INTRODUCTORY LETTERi
EXECUTIVE SUMMARY ii
ACRONYMS AND ABBREVIATIONS iii
INTRODUCTION1
FEEDSTOCK SUPPLY AND LOGISTICS
FEEDSTOCK-CONVERSION INTERFACE CONSORTIUM76
ADVANCED ALGAL SYSTEMS
CONVERSION R&D
THERMOCHEMICAL CONVERSION R&D
BIOCHEMICAL CONVERSION R&D
WASTE TO ENERGY
DEMONSTRATION AND MARKET TRANSFORMATION
CO-OPTIMIZATION OF FUELS AND ENGINES
ANALYSIS AND SUSTAINABILITY
STRATEGIC COMMUNICATIONS
PROGRAMMATIC EVALUATION AND RESPONSE

INTRODUCTION

The U.S. Department of Energy's (DOE's) Bioenergy Technologies Office (BETO or the Office) framed its 2017 Peer Review process in the context of two guiding documents that were released the prior year. The *Strategic Plan for a Thriving and Sustainable Bioeconomy* (2016 Strategic Plan) and BETO's 2016 *Multi-Year Program Plan* (MYPP) are referenced throughout this report. Both plans are summarized in the following section to introduce the vision, mission, goals, and structure of the Office. The 2016 Strategic Plan and 2016 MYPP overviews are followed by an overview of the Peer Review process and the format of this report. Since this project portfolio was reviewed, BETO has made a strategic shift to early-stage research and development (R&D) to build the knowledge base upon which industry can develop and deploy technologies that enable continued growth of the U.S. bioeconomy.

2016 Strategic Plan Overview

In 2016, BETO published a strategic plan that reflects the transformation and the advancements made in the bioenergy industry since the 1990s. The 2016 Strategic Plan expands BETO's mission beyond the cellulosic ethanol market to include renewable drop-in fuels (including diesel and jet fuels), biobased chemicals, and bioproducts. The new strategy also emphasizes the need to address environmental concerns associated with increased agricultural demand, including water and soil quality. The 2016 Strategic Plan is intended as an operational guide for managing and coordinating activities among technology areas. The plan is BETO's blueprint for tackling the challenges and opportunities associated with building a sustainable U.S. bioeconomy. While the BETO vision is set for 2040, it is important that processes are in place to verify progress, understand competing technologies, and revisit specific strategies every 5 years.

The 2016 Strategic Plan aligns with the Office of Energy Efficiency and Renewable Energy's 2016–2020 Strategic *Plan and Implementing Framework* vision, mission, and relevant strategic goals. The main components of BETO's 2016 Strategic Plan include key opportunity areas, a strategic goal for each key opportunity area, and strategies for accomplishing each strategic goal. These components are intended to be crosscutting programmatic-level guidance and should be used to determine how to adapt and align BETO activities and project portfolios to best meet BETO's objectives and carry out the Office's mission in a continually changing environment.

BETO's 2016 Strategic Plan, which encompasses programmatic-level guidance, set the foundation for the projects reviewed in this portfolio. The 2016 MYPP identified research, development, and demonstration pathways and performance goals and outlined how BETO could meet its mission and vision. The projects in the portfolio reviewed during the 2017 Project Peer Review were established either through annual operating plans (AOPs) or through competitive funding opportunity announcements (FOAs). National laboratory recipients prepare AOPs for BETO review annually prior to each fiscal year (FY), and BETO develops FOAs based upon stakeholder input about R&D gaps and resources needed. Both AOPs and FOAs include project management plans that outline the implementation approach for the project to achieve strategic and performance goals.

BETO conducts R&D activities through an integrated supply chain approach addressing supply (feedstocks), conversion, distribution, and end use. Several activities underscore BETO's R&D—sustainability, strategic analysis, and communications—which enable development and dissemination of knowledge and tools related to the economic, environmental, and social dimensions of advanced bioenergy. While cellulosic biofuel production is BETO's primary focus, BETO also supports the production of chemical intermediates that are traditionally petroleum-de-

rived but can be produced from biomass. These intermediates are converted into high-value bioproducts, including bioplastics, biobased chemicals, lubricants, solvents, cosmetics, and food ingredients, such as algae oil—all of which have places in today's commercial markets.

During Fiscal Year 2017, BETO made a strategic shift to early-stage R&D that resulted in renaming the Demonstration and Market Transformation (DMT) Technology Area to Advanced Development and Optimization (ADO). This name change reflects a reframing of the program area's focus away from demonstration-scale projects into a lower technology readiness level (TRL) space. While BETO plans to operate within a lower TRL scale (TRL 4–6) to better leverage investments under a constrained budget, it also plans to prioritize the utilization of existing resources and to build upon past investments in order to help the industry progress.

The new role of the ADO Program has not yet been fully established, and, as such, the Office is planning to solicit stakeholder input. BETO will hold a public meeting to define the value the new ADO Program can provide stakeholders working to develop the bioenergy industry. The public meeting will also raise awareness of existing assets from past investments and identify future needs and opportunities. Through this public meeting, BETO aims to both provide clarity on BETO's new operating constraints and mission space and to engage with stakeholders to better understand public needs and priorities within this mission space.

Figure 1 summarizes the 2016 Strategic Plan, which guided BETO's implementation of the project portfolio reviewed in 2017. Key opportunities reflect the best paths available to support BETO's mission, and each opportunity is aligned with a strategic goal, which will be achieved by implementing a range of strategies.

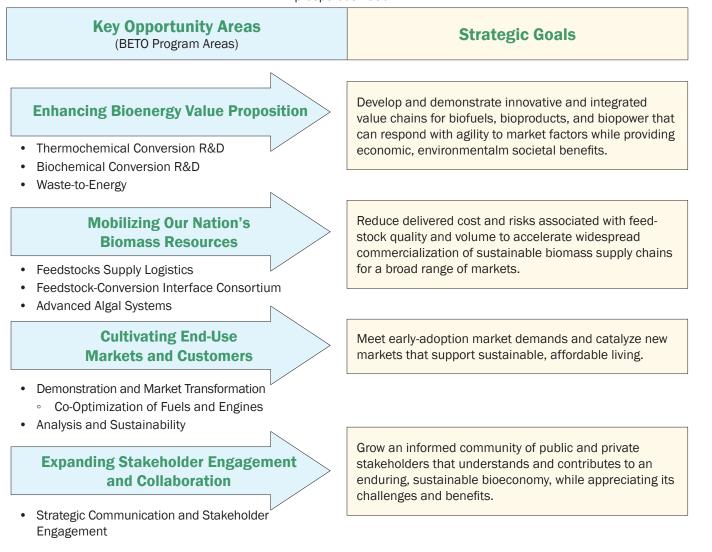
DOE Mission

Enhance U.S. security and economic growth through transformative science, technology innovationm and market solutions to meet our energy, nuclear securitym and environmental challenges.

EERE Vision

A strong and prosperous America powered by clean, affordable, and secure energy.

Relevant EERE Strategic Goals


- Accelerate the development and adoption of sustainable transportation technologies.
- Stimulate the growth of a thriving domestic clean energy manufacturing industry.
- Lead efforts to improve federal sustainability and implementation of clean energy solutions.

BETO Vision 2040

A thriving and sustainable bioeconomy fueled by innovative technologies.

BETO Mission

Developing and demonstrating transformative and revolutionary sustainable bioenergy technologies for a prosperous nation.

Figure 1. BETO 2016 Strategic Plan summary and program areas crosswalk

MYPP Overview

The MYPP, released in March 2016, sets forth BETO's goals and structure; identifies the R&D, market transformation, and crosscutting goals and activities that BETO will focus on over the next 5 years; and describes how these activities are critical in meeting the nation's future economic and energy challenges. The MYPP is intended for use as an operational guide to help BETO manage and coordinate its activities, as well as a resource to communicate its mission, goals, plans, and priorities to stakeholders and the public.

BETO manages a diverse portfolio of technologies across the spectrum of applied R&D within the dynamic context of developing technologies and evolving market conditions. BETO's portfolio is organized according to the biomass-to-bioenergy supply chain-from the feedstock source to end use. The MYPP identifies technical and market challenges and barriers to be addressed for each program area, as well as those that cross the entire supply chain.

Figure 2 shows how BETO's program areas align with supply-chain elements, with major emphases on feedstock supply and biomass conversion and how crosscutting programs support all areas. Key components of the portfolio include the following:

- · Conducting R&D on robust feedstock supply systems to deliver large quantities of quality feedstocks
- Conducting R&D on high-productivity advanced algal systems
- · Conducting R&D on conversion technologies able to process diverse and variable feedstocks
- Developing and verifying biorefinery technologies at minimal, scalable, engineering scale
- · Addressing distribution, end-use, and market challenges and opportunities
- Performing crosscutting sustainability, strategic analysis, and strategic communications activities.

Research, Development, Demonstration, and Market Transformation						
Feedstock Supply and Logistics	Advanced Algal Systems		Conversion		Demonstration and Market Transformation	
Develop high-volume distribution network of sustainable, quality biomass feedstocks.	Increase algal productivity, while maximizing the yield of products and chemicals.		Optimize conversion efficiency while improving quality of intermediates, fuels and products.		Demonstrate performance at increasing scales to enable commercial biorefineries.	
Crosscutting						
Sustainability		Strategic Analysis		Strategic Communications		
Quantify effects and enhance the benefits of advanced bioenergy with regard to water, air, soil, and quality of life.		Internal and external strategic program analyses and development of tools to understand the impacts of the bioeconomy.		Disseminate research and development impacts while educating the public on environmental and economic benefits of technological advances.		

Figure 2. BETO program area alignment with the biomass-to-bioenergy supply chain¹

¹ Feedstocks Supply and Logistics includes the Feedstock-Conversion Interface Consortium. Conversion R&D includes Thermochemical Conversion R&D, Biochemical Conversion R&D, and Waste to Energy. Demonstration and Market Transformation (DMT) includes the Co-Optimization of Fuels and Engines. In FY 2017, outside the scope of this review, BETO redefined activities within the DMT portfolio to align with administrative priorities and renamed this program area Advanced Development and Optimization.

BETO 2017 Peer Review Overview

The Project Peer Review meeting took place on March 6–9, 2017, in Denver, Colorado. During the public event, project investigators (PIs) presented 182 presentations covering 277 projects in BETO's R&D portfolio. These projects were systematically reviewed by more than 40 external subject matter experts from industry, academia, and federal agencies. The Project Peer Review included simultaneous review sessions of projects within nine technology areas; some of these technology areas are primary program areas, while some are sub-categories of the primary program areas, as indicated below:

- Feedstock Supply and Logistics (FSL)
 - Feedstock-Conversion Interface Consortium (FCIC)
- Advanced Algal Systems (Algae)
- Conversion R&D
 - Thermochemical Conversion R&D (Thermochem)
 - Biochemical Conversion R&D (Biochem)
 - Waste to Energy (WTE)
- Analysis and Sustainability (A&S)
- Demonstration and Market Transformation (DMT)/ADO
 - Co-Optimization of Fuels and Engines (Co-Optima).

The Program Management Review meeting took place on July 13, 2017, in Arlington, Virginia, and provided an Of-fice-level assessment of strategic planning and programmatic initiatives.

The projects reviewed represent a total DOE investment of more than \$700 million, approximately \$300 million of which was allocated during the period covered by this Peer Review (FY 2015–2017). Each Review Panel developed overall recommendations regarding the focus, management, and impact of the projects in each technology area. In addition, an external Steering Committee reviewed the Strategic Communications portfolio and the Review Panel summary reports from each technology area to develop overall recommendations for the Office. Results of the 2017 Peer Review have been, and will be, used to help inform programmatic decision making, modify or discontinue existing projects, guide future funding opportunities, and support other budget and strategic planning objectives.

The Peer Review brought together reviewers and BETO staff with PIs and other stakeholders along the entire bioenergy supply chain. Converging stakeholders in this way creates synergy across technology areas and enables the cross-fertilization of ideas and expertise, while providing for a more comprehensive review process. Figures 3 and 4 depict the BETO total project portfolio reviewed by technology area session and funding allocation.

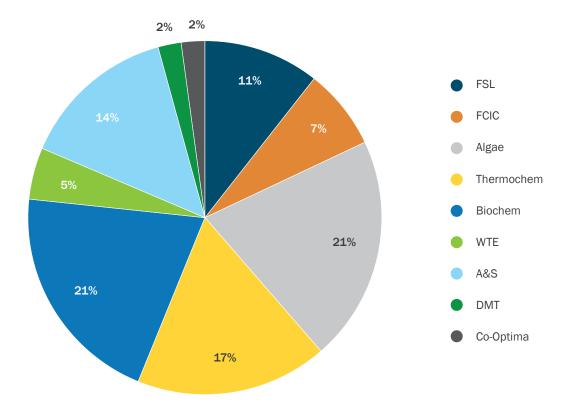


Figure 3. BETO project portfolio-number of projects by technology area session

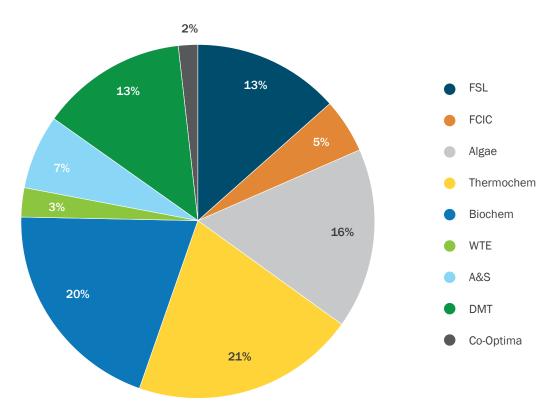


Figure 4. BETO project portfolio—total budget by technology area session. Note: Due to rounding, whole numbers in this chart do not add up to exactly 100%.

Roles and Responsibilities

The BETO 2017 Peer Review was conducted by an internal planning committee, an external Steering Committee, and nine external Review Panels. Upon initiation of the review process, an internal BETO planning committee was designated with the responsibility for coordinating all aspects of the review process, from initiation through completion. This committee included a lead and support person for each of the nine technology areas, as well as a chair, Valerie Reed, a deputy chair, Nichole Fitzgerald, and overall coordination support. Support contractors from BCS, Incorporated provided planning support for each session, developed an online reviewer evaluation system, facilitated development of report materials, and compiled and drafted the final Peer Review Report.

At the beginning of the process, the BETO planning committee identified and recruited an external Steering Committee to represent the perspectives of academia, industry, the financial community, and non-governmental organizations. The Steering Committee provided independent and impartial guidance on planning activities and the selection of external reviewers; participated in the review process; and developed crosscutting recommendations on the Office's overall focus, scope, and strategic direction.

Review Panels for each technology area consisted of four to six external experts who were selected based on their technical expertise and high-level qualifications in their designated technology area. The BETO technology area teams proposed individual candidates, which were submitted to the external Steering Committee for input. Efforts were made to ensure a balance within each Technology Area Review Panel by including a mix of reviewers from industry, academia, and federal agencies, with a range of expertise in the many sub-focus areas within each technology area. Review Panel members were required to sign legal agreements stipulating an absence of a conflict of interest with the projects they reviewed. The internal planning committee and BETO's director made the final decisions on reviewer selection. Each Review Panel was guided by a Lead Reviewer who, in most cases, had previous experience participating in a BETO Peer Review.

Table 1 and Table 2 list the members and affiliations of the Peer Review Steering Committee and the Lead Reviewers, respectively. Members of each Technology Area Review Panel are listed within each of the technology area session summaries.

Name	Affiliation
Mike Lakeman*	Boeing
Steven Costa	U.S. Department of Transportation
John May	Stern Brothers & Co.
Shelie Miller	University of Michigan
Dawn Mullally	American Lung Association
Robert (Bob) Rummer	University of Kansas
Bob Wooley	Biomass ad infinitum LLC

Table 1. Steering Committee Members

*Lead Reviewer

Table 2. Lead Reviewers

Name	Technology Area Review Panel	Affiliation	
Steve Searcy	FSL	Texas A&M University	
Gerson Santos Leon	FCIC	Abegnoa	
Eric Jarvis	Algae	Independent Consultant	
Candace Wheeler	A&S	General Motors (Retired)	
Suzanne Lantz	Biochem	DuPont	
Shawn Freitas	Thermochem	ThermoChem Recovery International	
F. Michael McCurdy	DMT/ADO	Leidos	
Luca Zullo	WTE	VerdeNero LLC	

Project Categories and Evaluation Criteria

Each project in the BETO portfolio was categorized based upon its start and/or end date. To capture projects that have been active since the 2015 Peer Review, the three project categories are as follows:

- Sun-setting (projects with end dates between October 2015 and October 2017)
- Ongoing (projects with end dates after October 2017 and start dates prior to October 2016)
- New (projects with start dates after October 2016).

Project scoring involved weighting the evaluation criteria based upon each project's category. The weighting for project categories and evaluation criteria is illustrated in Table 3.

Project Categories				
Weights		Sun-Setting Projects (end date between October 2015 and October 2017)	Ongoing Projects	New Projects (start date after October 2016)
Review Criteria	Approach	25%	25%	25%
	Accomplishments/ Progress	50%	25%	0%
	Relevance	25%	25%	25%
	Future Work	0%	25%	50%

Table 3. Project Evaluation Criteria Weighting

Review Panel members were asked to evaluate each project on specific criteria: approach, accomplishments/progress, relevance, and future work. These evaluation criteria, as described below, served as the standard template for the scores and comments provided to each project.

- **Approach**—Projects were evaluated on the degree to which they developed a thorough approach involving the following components:
 - The project performers have implemented technically sound research, development, and deployment approaches and have demonstrated the results needed to meet their targets.
 - The project performers have identified a project management plan that includes well-defined milestones and adequate methods for addressing potential risks.
 - The project performers have clearly described critical success factors that will define technical and commercial viability, and they have explained and understand the challenges they must overcome to achieve success.
- Accomplishments/Progress—Projects were evaluated on the degree to which they demonstrated accomplishments during the project award period:
 - The project performers have made progress in reaching their objectives based on their project management plan. The project performers have described their most important accomplishments in achieving milestones, reaching technical targets, and overcoming technical barriers.
 - The project performers have clearly described the progress since the period of the last review.
- **Relevance**—Projects were evaluated on the degree to which they contributed value to the broader BETO vision and industry development:
 - The project performers have described how the project contributes to meeting program/technology area goals and BETO objectives, as cited in the MYPP.
 - The project performers have considered applications of their expected outputs.
 - The project performers have presented the relevancy of the project and how successful completion of the project will advance the state of technology and impact the viability of commercial bioenergy applications.
- Future Work—Projects were evaluated on the degree to which they are positioned for further accomplishments:
 - The project performers have outlined adequate plans for future work, including key milestones and go/no-go decision points.
 - The project performers have communicated key planned milestones and addressed how they plan to deal with upcoming decision points and any remaining issues.

Format of the Report

Information in this report has been compiled based on the following sources and is organized as follows:

- **1.Peer Review Report Introduction**: This section contains overview information on the Peer Review process, roles and responsibilities, and project evaluation criteria.
- **2.BETO Overview**: This section provides an overview of BETO's mission, vision, and goals, as well as descriptions of the Office's approach to achieving goals and the market barriers that create challenges to doing so.
- **3. Technology Area Summaries**: These nine sections represent the comprehensive evaluation for each of the nine technology areas reviewed. Each section includes the following components:
 - *i. Introduction*: Overview of the technology area's project portfolio, including total funding allocated for FY 2015–FY 2016 and percentage of total BETO project portfolio.
 - *ii. Program Overview*: Background information about the BETO program that operates the given technology area, including program scope, R&D activities, important definitions. This component also includes context on the program's approach for overcoming challenges and for supporting BETO strategic and performance goals.
 - *iii. Review Panel Members*: A list of names and affiliations for each of the individuals who provided project evaluations and contributed to the Review Panel's summary report.
 - *iv. Technology Area Score Results*: This chart depicts the average weighted score for each project in each technology area.
 - v. *Review Panel Summary Report*: A summary of project evaluations that provides insight into the technology area's overall impact, level of innovation, leverage of synergies, appropriate focus, feasibility for commercialization, and top recommendations. The Lead Reviewer for each technology area drafted this summary in consultation with the full Technology Area Review Panel. Consensus among the reviewers was not required, and reviewers were asked to include differences of opinion and dissenting views within the report.
 - *vi. Technology Area Programmatic Response*: The program's official response to the recommendations provided in the Review Panel's summary report.
 - *vii. Project Evaluations*: The individual project reports, which constitute 2–3-page reports summarizing the results of each project evaluated during the review process. Each report includes the following elements:
 - a. Project Name and Work Breakdown Structure (WBS) Number: The full project name is listed as the heading, with the identifying code underneath in parentheses. Project evaluations for each technology area are ordered by WBS number, from lowest to highest.
 - b. Weighted Project Score: Each project's average weighted score is stated numerically. A box and whisker chart depicts the average scores for each evaluation criterion, as well as the range of scores given to the project by the individuals within the Review Panel. The chart also indicates the average value for each evaluation criterion across all projects within the technology area.
 - c. Summary Table: Each report provides reference information about the project, including the recipient organization, PI name, project dates, project type, and funding values.

- 1) Recipient: The recipient indicates the organization tasked with leading the project (this may include multiple organizations in situations where the project has more than one recipient).
- 2) Principle Investigator: The PI is the individual affiliated with the recipient organization who is assigned to lead the project.
- 3) Project Category: Each project is categorized as sun-setting, ongoing, or new, based on its start/end date.
- 4) Project Type: There are many types of projects within the BETO portfolio, but this review focused primarily on two types of projects: (1) AOPs, which are core R&D projects performed by DOE's national laboratories, and (2) projects awarded through a funding opportunity announcement, which are indicated in this table by listing the FOA's name, number, and fiscal year.
- 5) Funding: The funding is the allocated project budget. Values for AOPs are available on a fiscal year basis, while competitively awarded project funding is only available as a total value.
- d. Project Descriptions: Project descriptions are compiled from the abstracts that the PIs submitted for each project.
- e. Overall Impressions: These are verbatim comments made by the Review Panel, edited only for grammar and clarity. Each bulleted response represents the opinion of one reviewer. Reviewers were not asked to develop consensus remarks and, in most cases, did not discuss their overall comments on each project with one another. In a limited number of cases, reviewer remarks deemed inappropriate or irrelevant were excluded from the final report.
- f. PI Response to Reviewer Comments: This is the PI's response to the reviewers' comments. In some cases, PIs chose to respond bullet by bullet to each of the reviewers' comments and, in other cases, provided only a summary response.
- **4.Strategic Communications Portfolio Evaluation**: The Steering Committee provided a review of BETO's Strategic Communications efforts, with a focus on identifying strengths and limitations. Sections of this chapter cover alignment of investments with results, coordination with the Office, messaging, and audiences.
- **5.Strategic Communications Programmatic Response:** This is the BETO Strategic Communications lead's response to the Steering Committee's Strategic Communications portfolio evaluation.
- **6.Programmatic Evaluation:** This is the external Steering Committee's overall summary feedback and final recommenda¬tions following the conclusion of the Program Management Review. This report was based on the Steering Committee's participation in each component of the Peer Review process, as well as closed-door, facilitated review sessions following the Project Peer Review and the Program Management Review meetings. Components of this report include identification of overall strengths and weaknesses, comments on the portfolio impact, assessment of the Office's 2016 Strategic Plan, and input regarding technologies and market trends that may affect BETO's ability to achieve its goals.
- **7.BETO Programmatic Response:** This is BETO leadership's official, comprehensive response to the Steering Committee's feedback and recommendations in their programmatic evaluation.