Design and Manufacturing of High Performance, Reduced Charge Heat Exchangers (HPRC-HX)
DOE Award: DE-EE0008221

University of Maryland
Prof. Reinhard Radermacher (PI), raderm@umd.edu
Dr. Vikrant C. Aute (Co-PI), vikrant@umd.edu
Design and Manufacturing of High Performance, Reduced Charge Heat Exchangers

Team

• **University of Maryland, College Park (UMCP, Performer & Lead)**
 – Reinhard Radermacher (PI); Vikrant Aute (Co-PI), Yunho Hwang (Co-PI), Jiazhen Ling, Jan Muehlbauer; Graduate Research Assistants: Ellery Klein, James Tancabel
 – **Expertise:** 30+ years of experience in R&D of heat pumps, refrigerant, HVAC&R components and systems, modeling and optimization software development; system and component test facilities; funded by industry and government

• **Oak Ridge National Laboratory (ORNL, Performer)**
 – Patrick J. Geoghegan, Co-PI, R&D Staff; Researchers: Ayoub Mehdizadeh Momen, Mingkan Zhang
 – **Expertise:** Computational heat transfer, additive manufacturing, testing

• **Heat Transfer Technologies (HTT, Performer)**
 – Yoram Shabtay, Co-PI; President; John Black, VP, Market Development
 – **Expertise:** 20+ years of experience in design and mfg. of heat exchangers for pre-production evaluation; development of innovative joining techniques for small diameter tubes and manifolds

• **Industry Partners**
 – 9 Industry partners, including tube manufacturers and HVAC OEMs.
Design and Manufacturing of High Performance, Reduced Charge Heat Exchangers

Need/Challenges

• Heat Exchangers (HX) are a key component in HVAC&R systems
 – Hold refrigerant charge; Impact on system efficiency

• Improved heat exchangers lead to:
 – 30% less refrigerant amount
 – 25% less weight; 25% more compact
 – Lower energy consumption, lower emissions
 – Lower costs

• Challenges in bringing new HX Technology to market
 – Novel designs, need to be at least 20% better
 – Novel tools that leverage developments in computing, fluid and structures analyses
 – Lack of basic heat transfer and flow fundamentals and correlations
 – Availability of components
 – Joining/manufacturing techniques
 – Flow maldistribution
 – Fouling and wetting
 – Noise and vibration
Design and Manufacturing of High Performance, Reduced Charge Heat Exchangers

The Solution

- **Novel Optimization Framework**
 - Small hydraulic diameter HX
 - Shape optimized tubes
 - Potential finless designs
 - Minimize charge and weight, while maintaining thermal and structural performance

- **Focus on manufacturing**
 - Investigate manufacturing of non-round tubes and related joining methods

- **Focus on field performance**
 - Wetting, fouling

- **Active industry involvement**
 - New prototypes to be tested by industry partners; at their labs, with their systems
 - Immediate feedback on commercial viability and design modifications
Impact & Target Market

• Impact
 – New HX designs are expected to have 30% reduced charge and at least 25% reduced weight for the same performance
 – 30% reduction in refrigerant charge has the potential to reduce 35MT of CO2 emission*
 – HX design framework applicable to other HXs in HVAC&R industry
 • HX design independent of refrigerant choice and can be optimized for new refrigerants/blends
 – Size/weight reduction can lead to savings in material and logistics costs
 – Non-round tube manufacturing and joining methods will help reduce barrier to entry for potential OEMs and accelerate commercial use
 – Industry involvement in developing and testing of new designs with immediate and iterative feedback on commercial viability and tech to market

• Target Market
 – Residential and commercial air conditioners and heat pumps
 – New construction and retrofit applications
Thank You

University of Maryland
Vikrant C. Aute
vikrant@umd.edu