Building Envelope Systems Research

Presented by: Roderick Jackson, Ph.D. Group Leader, Building Envelope Systems Research

Presented to: DOE Building Envelope and Windows Workshop

S4.(

ORNL is managed by UT-Battelle for the US Department of Energy

The Building Envelope is a COMPLEX and INTEGRATED SYSTEM

A Complex System with Complex Processes

During the day.....

At night.....

A COMPLEX SYSTEM in a COMPLEX ENVIRONMENT

commons.wikimedia.org

Building Component Requirements

- Many Climates and Extremes
 - Temperature, UV, Wind, Freeze/ Thaw, Moisture, Mold, Fire, Structure, Toxicity, Human Safety
- New vs Retrofit
- Many Building Types
 - Many different designs (parameter mixes)
- Strong Interactions
- Highly Cost Sensitive

Technical Challenges and Current Research

Insulation materials for building envelopes – Innovation opportunities

Insulation materials for building envelopes – Innovation opportunities

Insulation materials for building envelopes – Innovation opportunities

Robust Super Insulation at a Competitive Price

Technology Summary

- LBNL is developing a novel insulation using nanoscale phonon engineering to optimize surface energy, particle size, and acoustic property mismatch to achieve R-12/inch.
- R/inch value at least 2 4 times higher than conventional insulation
- Almost an order-of-magnitude lower cost vs. aerogel and VIPs
- Increased mechanical robustness and flexibility vs. aerogel and VIPs

- Particle-particle constriction limits inter-particle phonon transport
- Reduced surface energy and mismatched vibrational spectra further reduce phonon transmission

Modified Atmosphere Insulation Composite Boards

- ORNL/NanoPore/Firestone collaboration: new composite foam-MAI insulation board
- Combination of Modified Atmosphere Insulation (MAI) panels, a low-cost alternative to vacuum insulation, and polyisocyanurate
- Two applications: wall sheathing and commercial roof retrofits
- Second prototype achieved R11.4-R11.9/inch (goal is R-12/inch)
- Energy savings potential of 1,319 TBtu

10

New concretes, composites, and processes for next generation precast envelopes

Current Assembly Process

Cornice Cross Section

Can We Manage the Heat Differently?

- The building envelope is not spatially and temporally invariant.
- Why do we manage heat that way?

Thermal Management Using Anisotropy

Reducing Unwanted Heat Flows Through Building Envelopes

ORNL is investigating directional heat dissipation using anisotropy for reducing unwanted heat flows through the building envelope.

Anisotropic Materials and Composites

Anisotropic composites can be created by alternate layering of isotropic materials, with differing overall thermal conductivities (k) along different axes.

Simulations Show Potential for Reducing Unwanted Heat Gains

Calculations showed annual reductions of 9-69% in internal heat gains through a westfacing wall compared to the isotropic exterior insulation case

Calculated temperature distribution in the wall section with exterior insulation (left) vs. anisotropic composite and heat sink (right)

Envisioning a truly integrated dynamic system

Can Multifunctional Materials Enable New Integrated Solutions?

Image source: Fadl Saadi, "Smarter Structures: Synchronizing Building Envelope Technologies"

Multifunctional Materials Development

A multifunctional material requires a new design methodology in which system-level performance is emphasized over the optimization of individual functions.

Optimizing system-level performance involves optimization methodologies that are not commonly used in materials science.

The Original Multifunctional Materials...Evolved...

Personnelles/Didier-Le-Thiec

http://www6.nancy.inra.fr/eef_eng/Pages-

© 2010 Encyclopædia Britannica, Inc.

Self Healing Materials

Adv. Mater. 2010, 22, 5424–5430

Responsive to damage/failure event.

Anticipated that the original functionality can be restored.

Metals, ceramics, concrete, and polymers. Concrete, and National Laboratory BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

Roderick Jackson, PhD jacksonrk@ornl.gov @Dr_rkjackson

